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Some Recent Contributions to Panel Flutter Research
Y. C. FUNG*

California Institute of Technology, Pasadena, Calif.

With the objective of formulating a realistic computing program to analyze panel flutter
in aerospace vehicles, plausible simplifying assumptions are examined in the light of experi-
mental results. It is shown that in certain areas very simple analysis yields respectable re-
sults, whereas in other areas great elaboration is necessary to obtain an accurate prediction.
In particular, the role played by the boundary layer flow is discussed. The attenuation and
phase shift in pressure-deflection relationship caused by the boundary layer can become im-
portant under certain circumstances. Examples are given which show that the boundary
layer greatly stabilizes flat plates in a transonic or low supersonic flow and circular cylindrical
shells at higher Mach numbers. Some recent contributions to panel flutter research by the
author and his colleagues and students at the California Institute of Technology are summa-
rized. Although details are to be published elsewhere, a brief description of experimental re-
sults concerning flat plates and cylindrical shells is given here. The experimental and theo-
retical investigations taken together provide a fairly clear picture with regard to proper as-
sumptions for an accurate analysis. Recommendations for future research in this field are
given.

Nomenclature

= pU2L3/MD, ratio of dynamic pressure to panel
rigidity = ^ (Q of Ref. 1)

= coefficients of Fourier series of Zo(x,t), Eq. (9)
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m = 1, 2, . . . , coefficients of sine series of zQ(x,t},
Eqs.(29)and(30)

velocity of sound, in main flow and boundary
layer, respectively

coefficients of Fourier series of Zi(x,t), Eq. (10)
coefficients, see Eqs. (12) and (13)
Eh3/ [12(1 - ju2)], bending rigidity of plate
frequency, cps
structural damping factor
thickness of plate or shell wall
coL/C/, reduced frequency in main flow
coL/Ud, reduced frequency in boundary layer
chord length
Mach number of main flow and of boundary layer,

respectively
number of waves along circumference (number of

nodes = 2n)
see Eq. (33)
wall pressure
static pressure in freestream and in boundary layer,

respectively
excess of model internal pressure above PB, psig
wind tunnel stagnation pressure
wall pressure in potential flow without boundary

layer
^pU2, dynamic pressure of main flow
radius of middle surface of circular cylinder
cylindrical polar coordinates
absolute temperature in freestream and in bound-

ary layer, respectively
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t
U
u,v
Vv
w(x,r,t\

WQ

x,y

20
zQ(x,y)

time
velocity of freestream
velocity components in x,y directions
velocity of traveling waves, see Eq. (9)
radial velocity on wall and amplitude, respectively

root mean square value of the deflection (radial
or vertical) of an oscillation shell or plate

rectangular Cartesian coordinates; x in flow
direction

constaot
wall displacement
displacement of the edge of boundary layer
vir/L, wave number, see Eqs. (9-11)
see Eq. (36)

yv "' — constants, see Eqs. (14) and (23)
5 = idealized boundary layer thickness
6 = apparent boundary layer thickness (wall to 99%

freestream-velocity point)
fi, = constants, see Eqs. (15) and (23)
KV = TA boundary layer thickness parameter, see Eq.

(18)
/x = Poisson's ratio
v = ±1, =b 2, . . . , an index
p, Pd ~ density in freestream and in boundary layer,

respectively
<rv = constants, see Eqs. (19) and (23)
<j>, <f>§ = velocity potentials in main flow and in boundary

layer, respectively
co = circular frequency
(Bm, (B_m = pressure coefficients, see Eqs. (31) and (32)
9Tl(/c^) = ratio of wall pressure with and without boundary

layer, see Eqs. (20) and (21)
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5. Role of Boundary Layer Flow

The boundary layer flow over a solid body has important
influence in many phenomena in aeroelasticity. In buffeting
or stall flutter, the boundary layer may detach from the solid
wall, causing complete change in flow pattern. In panel
flutter, the boundary layer causes changes in amplitude and
phase relationship between pressure and wall displacement.

To formulate a simple idealized problem, which sheds
some light on the role of boundary layer in panel flutter,
consider the following: an infinite flat plate oscillates
harmonically in a standing sine wave with straight nodal
lines perpendicular to the flow. The unperturbed flow in
the half-space above the plate is a uniform supersonic flow
of Mach number M; in between the supersonic flow and the
plate is a layer of parallel uniform subsonic flow of constant
thickness d and Mach number M5. The interface between
the supersonic flow and the subsonic layer is a vortex sheet
of constant strength. Assume that the amplitude of oscilla-
tion of the plate is small compared with the thickness of the
subsonic layer d and that the perturbed flows in both the
subsonic layer and the supersonic half-space are isentropic
and irrotational. The problem is to relate the pressure dis-
tribution on the plate with the surface displacement.

Although the idealization just named is so severe that the
conditions are unrealizable, it does preserve two features that
are important to the problem. First, the entire flow outside
of the boundary layer is influenced by the oscillation of the
wall; second, the pressure across the boundary layer does not

y = S
oj>, U, a, />, M>l

*,v,

z,(x,t)
\

- — " t — T
8
t

z0(x,t)

Fig. 13 Notations for an idealized boundary layer

remain constant but is variable throughout the thickness.
Let (u,v) be the perturbation velocity and $ be the per-

turbation velocity potential, so that V$ = (u, v) and (w2 +
v*)/U2 <<C 1. The uniform main flow velocity, speed of
sound, fluid density, and Mach number will be denoted by
U, a, p, M, respectively, and the corresponding quantities
in the subsonic layer will be indicated with a subscript d
(see Fig. 13). The linearized equations of motion are (see
Ref. 26, pp. 419,432)

<»

(2)
for

0

The boundary conditions are ( — 0 0 < x < °°)> (— <» < t < °°)

• - « = £ - ! + *5

i.e.,

_ _= — = — —by bt dx

y = 3: p(x,d-^f) = p(x,d+>,t)

5 d0A /S0 , TT b <
-" + " ~P + u

fK\(5)

(6)

y -> oo : finiteness and radiation condition

Consider a standing wave on the wall:

.
(x, t) = e™* X,

mirx
(8)

In the process it will be shown that the perturbed oscillation
of the boundary layer [interface z\(x, t) ] consists of not only a
standing wave but also a traveling wave. The traveling
wave becomes more important to the stability of the panel
as the supersonic Mach number is reduced (M -* 1). Thus
a surprising reconciliation between the "standing wave
theory of panel flutter" and the " traveling wave theory
of panel flutter" (Miles27) is obtained. Write

(9)20(3, * ) =

Zl (X)t) =

where
av — vir/L Vv = — u/av (11)

It is easy to see that the differential Eqs. (1) and (2) have
the solutions

Y,
t> = — oo

(y
f = y - d) (12)
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[Cv smfvy + Dv (13)

where

co
-

(14)

TT r /A v ~ii/

L L V x + " ) ~~ " I = ±1» ±2> • • •

-)*-"]
(15)

1/2

and

k = coL/C7

(v = ±1, ± 2 , . . . )

= uL/U8 (16)
are reduced frequencies.

As v ranges over — » to <», yv*t £v* can have both plus and
minus signs. For 7,, the selection of branches of the multi-
valued function must be based on the radiation and finiteness
conditions at oo. For f„, it is arbitrary. Choose yvy f„ to
be real and positive if yv

z, f v
2 were real and positive, and

jVj $v to be imaginary with complex argument —ir/2 (on the
lower half-plane) if yf, f v* were real and negative. With
this choice, <t>(xt y\ t) represents an outgoing wave in the y
direction if 7y

2 > 0 or decreases exponentially as y -> oo if
7z,2 < 0. Note that, if co were allowed to be complex, then a
divergent wall oscillation, Im co < 0, will correspond to a
complex-valued yv with Im yv < 0. Then $ decreases with
increasing y, as the radiation condition would imply.

The constants Ev, Cv, Dv can be determined from the
boundary conditions (3-5). Then condition (6) gives the
desired result:

BV/AV = I/(COSK,, — crv sin*,,) (17)
where

P5 (co +

(18)
r) + v V £
/7r) + z// 7,

(19)
Thus the problem is solved. The pressure on the wall is
obtained:

= P

where

— a-,,

(20)

(21)

The function 2fir(fcF) represents the influence of the boundary
layer. Since WI(KV) -> 1 as d -> 0, the expected solution of an
oscillating wall in a uniform supersonic main flow is ob-
tained :

PO = wall pressure in potential flow

(22)

To examine the nature of the solution, it is sufficient to
consider v = 1 and — 1, corresponding to traveling waves of
wave length 2L up- and downstream, respectively; other
values of v merely represent waves of shorter wave length

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8
Reduced Frequency, k = <^L/U

Fig. 14a Real part of the function 9TC(Kp), ratio of aero-
dynamic pressure on wall with and without boundary

layer; traveling waves; M = 1.3, MS = 0.65
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Fig. 14b Imaginary part of the function 9Tl(^), ratio of
aerodynamic pressure on wall with and without boundary

layer; traveling waves; M = 1.3, Ms = 0.65

2L/\v\. As traveling waves, the individual terms can be
understood better in terms of the phase velocity Vv relative
to the panel [see Eqs. (9-11)]. Thus

(23)
- FA2 fv

It is seen that yvj f v vanish when, respectively,

U - Vv = ±a U8- Vv=
Further, crv becomes either zero or indeterminate if

U = Vv U8= Vv

(24)

(25)
These correspond to steady transonic flows or static condi-
tions, respectively, with respect to an observer moving with
the traveling wave. In the former case, Eq. (24), the
approximation is not valid.

The influence of boundary layer is exhibited by the function
SflZfe), which is the ratio of pressures in flows with and
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without boundary layer. If one sets T = T§, so thatp = ps,
p = ps, a = 0,5 for the undisturbed flow, then Sfllfe) depends
on the parameters M, M8, d/L, and k.

The behavior of 9fTC(ja>) is exhibited numerically in Fig. 14,
which is very instructive in showing that a wide variation
in 9fE is possible. On the other hand, a standing wave of the
wall,

zQ(x,t) =
corresponds to

zi(x,t) = •

(26)

(27)

TTX

COS/Ci — (7i
zQel0) sin— —

cos/c_i — cr_i sin/c_i 2i
(28)

This shows clearly that the edge of the boundary layer ap-
pears as an attenuated wall oscillation plus a traveling wave.

The foregoing results cannot be used directly in analyzing
panel flutter of finite panels, because the influence of a lead-
ing edge is not clarified. It is known that for 1 < M < 1.4
the potential theory of supersonic flow shows a strong leading
edge effect (no disturbance in front of the leading edge).
For the idealized boundary layer (uniform subsonic flow in
0 < y < 5), the writer has worked out a complete solution
for an arbitrary oscillation of a finite wall, but the results
are complicated. For a qualitative examination, two simple
alternatives are suggested. The first ignores the leading
edge effect, treating a finite panel as one period of an infinite
wall. Thus, if

zQ(x,t) = 0

]T am

for x < 0

for x > 0 (29)

it is assumed that the wall pressure p(x,t) is the same as that
induced by

zQ(x,t) = eiwt ^ am si
OT=1

Hence, from Eq. (20), one has
o 772 °°

for - (30)

(31)
m=l

where

l

(k - rax)2
- ————— -

I — in
(32)

The second alternative assumes that the change of aero-
dynamic pressure due to boundary layer on a finite panel
is the same as that on an infinite wall with the same wave
form repeated periodically. Thus, if Zo(x,t) is given by (29),
one assumes that

pressure on wall = pQ + Ap (33)

where PQ is the wall pressure corresponding to (29) in a po-
tential flow without a boundary layer, and Ap is the differ-
ence of p from Eqs. (20) and (22). The function po(x,f) is
known (see Miles29). Simplifications are discussed by
Luke30 and Lock and Fung.14 The function Ap is

Qimirx/L _

(34)

The first alternative is used in the flutter calculations to be
discussed in the next section, in which the analysis is ex-
tended to circular cylinders.

It is hoped that such a simple analysis can be supple-
mented by a comparison of the final results with those ob-
tained in more exact theories. A theoretical-empirical
scheme of fixing 5, M^ T$ might be evolved which could be
sufficiently accurate for practical purposes. This, however,
has not been done yet. Two improved theories have been
published so far. One, due to Miles,31 considers the boundary
layer as an inviscid, parallel shear flow over an infinite, plane
panel. The other, due to McClure,32 treats the full prob-
lem in the Heisenberg, Tollmien, Lin, Lees, Lighthill tradi-
tion, extending the boundary layer problem to oscillating
walls. Both Miles and McClure applied their theories to
panel flutter. Miles31 showed that, for a circular cylinder,
the stability boundary of short-wavelength traveling waves
does not change much on account of the shear layer, but the
rate of divergence in the unstable regime may be reduced
by an order of magnitude. McClure's solution of the tran-
sonic flutter of a flat plate is truly remarkable. In applica-
tion to the Lock-Fung experiment, McClure obtained the
stability boundary as shown in Fig. 3, which is rather close
to the experimental value. However, it must be remembered
that McClure ignores the leading edge effect in the manner
of Eq. (31). How the leading edge effect would influence
McClure's stability boundary is yet unknown.

Miles and McClure's analyses are, of course, much more
complicated than what was presented here. There are still
weakness and difficulties that make an extension of their
solutions to an arbitrary wall oscillation impossible. Fortu-
nately, the flexible wall problem has attracted much atten-
tion among aero- and hydrodynamicists recently, owing to a
great debate about the possibility of reducing the drag of a
body in a flow by elastic walls. The names of Kramer,
Benjamin, Landahl, Becker, and Laufer are becoming well
known in this newly discovered field. It is expected that
the matter will be settled before long and with it the aero-
dynamic aspects on panel flutter, but the matter will not be
discussed further here.

 




