
Correct TE wave solution in a rectangular waveguide

for a GGT coordinate system

First some quick definitions and explanation of the setup:

Axis / origin:

Call the waveguide axis the z-axis, the x-axis is perpendicular to two walls, and the y-axis
perpendicular to the remaining walls. Define the origin to be on a corner, the width in
the x direction to be a, and the width in the y direction to be b.

I will refer to the components of the fields using subscripts (ie ~E = x̂Ex + ŷEy + ẑEz).
Note that because we are interested in the TE mode, Ez = 0.

In SR (or the ‘special frame’ of GGT), the cutoff frequency for the mn mode is

ω2
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a
)2 + c2(

nπ

b
)2. (1)

I will use this as the definition of ωmn, and use ωc to refer to the cutoff frequency in a
GGT frame (as per Gagnon’s notation).

As has been proved multiple times in a very straight forward manner, ωmn will also be
the cutoff frequency for GGT. Since some individuals refuse to see the forest unless each
tree is numbered, this is the “long method” of proving that the frequency does indeed
stay the same. That is, I will solve Maxwell’s equations in the moving GGT frame.

So, here we go...

We are interested in the travelling waves, so we can assume a solution of the form:

~E = ~E(x, y) exp(ikz − iωt) (2)

~B = ~B(x, y) exp(ikz − iωt) (3)

Our boundary conditions are
E‖ = 0, B⊥ = 0 (4)

Where parallel refers to components parallel at a waveguide wall, and perpendicular refers
to the the component perpendicular at a waveguide wall.

Along with
Ez = 0 (5)

and Maxwell’s equations for a GGT frame

~∇ · [ε0
~E − ε0~v × ~B + ε0c

−2~v × (~v × ~E)] = ρ (6)

~∇× [µ−1
0

~B − ε0~v × ~E] = j +
∂

∂t
[ε0

~E − ε0~v × ~B + ε0c
−2~v × (~v × ~E)] (7)

~∇× ~E = − ∂

∂t
~B (8)

~∇ · ~B = 0 (9)

this specifies the entire problem. So let’s plug and chug through it.



Let’s look at how ~E and ~B are related using − ∂
∂t

~B = ~∇× ~E
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Since we already know the time dependance of B, this yields
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Applying the boundary condition B⊥ = 0 we find:

Bx(y = 0) = Bx(y = b) = 0 ⇒ Ey(y = 0) = Ey(y = b) = 0 (16)

By(x = 0) = By(x = a) = 0 ⇒ Ex(x = 0) = Ex(x = a) = 0 (17)

Note that ~B is now completely specified in terms of ~E and all boundary conditions on ~B
have been applied. So we are done with the magnetic field.

Apply the boundary condition E‖ = 0

Ex(y = 0) = Ex(y = b) = 0 (18)

Ey(x = 0) = Ey(x = a) = 0 (19)

Now we are done with the boundary conditions. If we evalute ~∇× (~∇× ~E), we find:
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Looking at just the Ex component, and assuming a seperable solution

Ex = X(x)Y (y) exp(ikz − iωt) (21)

Evaluating the wave equation we find:
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Grouping terms and dividing by XY to make the situation more obvious results in
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Because this must be true for all x, y in the waveguide, 1
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where Ax and Ay are just some constants.

We know that each equation has two linearly independent solutions of the form X(x) =
exp(irx). Plugging this into the differential equation yields
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So in the general case,

X(x) = C1 exp(r+x) + C2 exp(r−x) (28)

Applying the boundary conditions on Ex we see X(0) = 0 and thus C2 = −C1. Thus
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Now applying the boundary condition X(a) = 0,
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where m is an integer. Thus:
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And similarly
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Returning to eq (23) and plugging this in, we find
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Before continuing any further, note that vx and vy are treated equally here, unlike in
Gagnon’s solution. My roommate and I proposed an explanation for how Gagnon made



this mistake (and my roommate found out how to combine some errors to entirely repro-
duce Gagnon’s incorrect result), but you are free to speculate where their error actually
occurs. The point is, it is apparrent Gagnon made the largest of their errors before this
point.

Solving for k,
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To make it even more obvious, simplifying
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It is clear that the minimum ω (the cutoff frequency) is indeed still ωc = ωmn in GGT. Also
notice something else. The minimum ω does NOT correspond to k = 0 (this is another of
Gagnon’s mistakes). This makes sense because in the SR frame, at the cutoff frequency
we have k = 0 and thus every point agrees on the phase (simultaneity). This should
obviously not be true in the GGT frame (which has a different simultaneity convention).

In general, the minimum ω is the smallest frequency before k becomes imaginary (a
decaying wave). In SR, this is indeed the same as setting k = 0, but not in GGT.

And now we come to a close.


