
MISCELLANY

MISCELLANY

arc

.id.au

MISCELLANEOUS TECHNICAL ARTICLES BY A R COLLINS

CALENDARS

Historical Calendar

CANVAS GRAPHICS

Cango Graphics Library

Cango User Guide

Cango Axes Extensions

Canvas Layers

Canvas 3D Graphics

Cango3D User Guide

Javascript Graphics Shell

Drawing Gears

JAVASCRIPT ANIMATION

Javascript Animation

Javascript Xeyes

SIGNAL PROCESSING

Spectrum Analyser

FIR Filter Design

Zoom FFT

UNDERWATER ACOUSTICS

Sound Propagation

Sound Pressure Levels

HISTORIC ORDNANCE

Royal Ordnance 1637

British Cannon Design

Cannonball Sizes

Cannonball Aerodynamic Drag

Smooth Bore Cannon Ballistics

Robins On Ballistics

Flintlock Animation

Gear Drawing with Bezier Curves

Introduction

Spur gear tooth profiles are shaped as circle involute curves. The involute is generated from its base circle as if a taut

line were unwound from the circumference, the end of that line would describe a circle involute. The involute is a

transcendental function usually drawn by calculating coordinates of many points along the curve and plotting straight

Gear Drawing with Bezier Curves http://arc.id.au/GearDrawing.html

1 of 12 8/06/2013 9:53 PM

line segments between them.

In an effort to simplify the drafting of circular involute functions, Fumitaka Higuchi et al [1] developed a method of

approximating the involute using Bezier curves. The result is a smooth, quite accurate approximation, suitable for

CAD. The Bezier curve is defined by just a few control points and maintains it shape under 3D transformation. This

greatly reduces the computational load required for drafting.

Set out here is a brief description of the Higuchi method, along with a JavaScript implementation. The accuracy of the

approximation is calculated and examples of drawing gears with the Bezier curves are shown.

Circle involute parametric equations

Fig 1 shows a graphical representation of how the involute profile for a gear tooth is generated. Click on the red dot

and drag the 'taut' line as it unwraps from the blue base circle. The dot traces out a circle involute.

The cartesian coordinates of a point on the involute may be expressed in parametric form using the generating angle θ

as a parameter. Click here to show the construction lines of the derivation (click again to hide them).

From the diagram, point x',y' is at radius R
b
 and angle θ, therefore:

The line c, as it unwinds from the circle, is always tangential to the circumference and the radius R
b
 is always

perpendicular to c. Therefore:

The involute is the locus of the end of a string being 'unwound' from the base circle. This implies:

Therefore, the parametric equations for the involute, to be approximated with Bezier curves, are:

Figure 1. Schematic diagram of gear showing involute profile (magenta) and

its base circle (blue).

Gear Drawing with Bezier Curves http://arc.id.au/GearDrawing.html

2 of 12 8/06/2013 9:53 PM

Involute Gear Tooth profile dimensions

The geometry of a gear is set by the following basic factors:

the module value, m,

the number of gear teeth Z,

and the pressure angle φ.

The pitch circle diameter D, involute base circle radius R
b
 and addendum circle radius R

a
 are related by the formulae:

The involute gear profile starts at the base circle and ends where the involute meets the tip circle, also known as the

addendum circle. The value of the involute generating parameter θ starts at 0 on the base circle and ends at value, θ
a
,

which may be calculated the schematic diagram shown in Fig. 2 as follows:

The cartesian coordinates of a point on the involute are given at eqn 1. Substituting the polar coordinates of the point,

(R, ψ), results in the expression:

Squaring both sides and adding:

Hence the value of θ at the addendum, the outer radius of the gear teeth, is given by

Also useful in Higuchi's approximation method, is an expression for the distance along the involute, s, as a function of

θ.

Figure 2. Schematic diagram of involute gear tooth showing the polar

coordinates of the involute profile (magenta) and its base circle (blue).

Gear Drawing with Bezier Curves http://arc.id.au/GearDrawing.html

3 of 12 8/06/2013 9:53 PM

Higuchi et al involute approximation method

The first step in the Higuchi method [1] is to approximate the circle involute curve using the Chebyshev

approximation formula which expresses the curve as a truncated series of polynomials. This requires mapping θ onto

the -1..+1 range expected by the Chebyshev formula. The terms of the series are then recombined to represent the

Bernstein polynomial form (the basis of Bezier curves). A further parameter mapping of the Chebyshev parameter

onto the 0..1 range for the Bezier parameter is required.

The radius of curvature of the involute varies along its length, starting from zero at its on the base circle. This

singularity generates a corresponding singularity in the Bezier approximation, resulting in a double control point at the

base circle. Higuchi suggests avoiding this wasted node by beginning the approximation a short distance from the base

circle, say 1% of the total length.

Higuchi applies this method to a typical gear, having module, 3mm, 17 teeth and pressure angle 25°. Approximation

errors are reported for Bezier approximations of order 4, 6 and 8. These errors are typically a few parts in 106, 109 and

1012 respectively when normalised by the diametral pitch.

JavaScript implementation

A JavaScript implementation of the Higuchi method was written and the source code is available in the file gearUtils-

03.js. This implementation handles any order Bezier curve from 3 upward, with arbitrary start and end points along the

involute.

The JavaScript utility provides the function:

involuteBezCoeffs(module, numTeeth, pressureAngle, order, fstart, fstop)

The required parameters are module, the metric gear size, and numTeeth, the number of teeth. The optional

parameters are: pressureAngle (defaults to 20°), order, the order of the Bezier approximation (defaults to 3), fstart,

the start offset as a proportion of the involute profile length from start to addendum (defaults to 0.01) and fstop, the

stop offset as a fraction of the distance to addendum (defaults to 1). The function returns an array of JavaScript objects

of the form {x:, y:} representing a x,y coordinates of the Bezier curve nodes. For an order N approximation, there will

be N+1 nodes in the array; the start point, N-1 control points and the end point.

Cubic Bezier approximation

The Higuchi technique would be of great benefit in web based gear modelling if it produced accurate approximations

using cubic (order 3) Bezier curves, as the HTML5 canvas element has native support only for quadratic and cubic

Bezier curves.

To test the method's performance, a cubic Bezier curve fit was made to a typical gear profile. The specifications of the

gear used in the example are the same as used in Higuchi's paper, (module=3, teeth=17, pressureAngle=25). Fig. 3

shows a plot of the cubic Bezier curve approximation to the involute (green line). A piece-wise plot of the true

involute, is shown for comparison (magenta line). The Bezier curve control points are shown as crosses.

Gear Drawing with Bezier Curves http://arc.id.au/GearDrawing.html

4 of 12 8/06/2013 9:53 PM

Figure 3. Cubic Bezier approximation to a circular involute (green line) calculated using the Higuchi-Chebyshev

approximation method. The true involute is shown for comparison (magenta line).

Cubic Bezier errors

Table 1 shows the approximation errors for the cubic Bezier approximation to the involute shown in Fig. 3. The errors

are calculated at intervals along the involute. Column 1 shows the distance along the profile as a fraction of total

length. Column 2 shows the errors as the absolute value of the distance of the point on the approximation to the closest

point on the true involute, measured in millimetres. Column 3 shows these error values normalised to the pitch

diameter. The distance of a point from a cubic Bezier curve was calculated using the Bezier utilities library jsBezier.js

written by Simon Porritt.

Distance

along involute

Error

(mm)
Error/Diametral Pitch

0.01 0.0486 9.5E-4

0.05 0.0003 5.3E-6

0.11 0.0005 9.3E-6

0.20 0.0049 9.6E-5

0.31 0.0125 2.4E-4

0.44 0.0202 4.0E-4

0.60 0.0221 4.3E-4

0.79 0.0096 1.9E-4

1.00 0.0284 5.6E-4

Table 1. Approximation errors for a single cubic Bezier curve approximation to the involute shown in Fig. 3. Each

error is the distance from a point on the approximation to the closest point on the true involute.

Using a cubic Bezier curve to approximate the full profile length results in normalised errors of a few parts in 104. The

worst errors occur at the extremities, not accurate enough for gear design work.

Two cubic Bezier approximation

The solution to reducing the approximation error is to split the involute into two sections fitting a cubic Bezier curve

to each. This reduces the errors by an order of magnitude, to just of a few parts in 105.

Gear Drawing with Bezier Curves http://arc.id.au/GearDrawing.html

5 of 12 8/06/2013 9:53 PM

The junction point of the two Bezier curves is set 25% along the involute, this helps apportion the curvature to be

modelled between the two curves. The first cubic Bezier starts 1% of the way along the involute to avoid the

duplicated node at the involute singularity. The start point of the second Bezier coincides with the end point of the first

Bezier, so one of these nodes may be discarded. The resulting Bezier approximation has 7 nodes, start, mid and end

points and 4 control points.

Here is an example using the 'involuteBezCoeffs' function to generate the two cubic Bezier curves representing a gear

profile. The gear parameters are the same as the example in the Higuchi paper.

var module = 3;

var teeth = 17;

var pressureAngle = 25;

var Rpitch = module*teeth/2;

var Rb = Rpitch * Math.cos(pressureAngle*Math.PI/180); // base circle radius

// generate Higuchi involute approximation

var fs = 0.01; // start 1% off the base circle

var fm = 0.25; // break 25% along involute

var fe = 1; // end at 100%

var dedBz = involuteBezCoeffs(module, teeth, pressureAngle, 3, fs, fm);

var addBz = involuteBezCoeffs(module, teeth, pressureAngle, 3, fm, fe);

 ...

var data = ["M", dedBz[0].x, dedBz[0].y,

 "C", dedBz[1].x, dedBz[1].y, dedBz[2].x, dedBz[2].y, dedBz[3].x, dedBz[3].y,

 "C", addBz[1].x, addBz[1].y, addBz[2].x, addBz[2].y, addBz[3].x, addBz[3].y];

// draw the involute using Cango library

g.drawPath(data, -Rpitch, 0, 'blue');

Fig. 4 shows a plot of the two cubic Bezier approximation to a circular involute (blue line) calculated by dividing the

involute into two sections and fitting a cubic Bezier to each section using the Higuchi-Chebyshev approximation

method. For comparison the magenta line is the true involute.

Figure 4. A two cubic Bezier approximation to the same circular involute shown in Fig. 3 (blue line). The true

involute, is shown in magenta for comparison.

Two cubic Bezier errors

Table 2 shows the approximation errors at various points along the involute. Column 1 shows the distance along the

involute expressed as a fraction of the total length. Column 2 shows the approximation error, the absolute value of

Gear Drawing with Bezier Curves http://arc.id.au/GearDrawing.html

6 of 12 8/06/2013 9:53 PM

distance of a point from a Bezier curve measured in millimetres. Column 3 shows these values normalised to the gear's

pitch circle diameter.

Distance

along involute

Error

(mm)
Error/Diametral Pitch

0.01 0.00005 1.0E-6

0.05 0.00004 8.5E-7

0.11 0.00029 5.6E-6

0.20 0.00022 4.3E-6

0.31 0.00060 1.2E-5

0.44 0.00029 5.8E-6

0.60 0.00040 7.8E-6

0.79 0.00061 1.2E-5

1.00 0.00107 2.1E-5

Table 2. Approximation errors for a two cubic Bezier curve approximation. Each error is the distance to the closest

point on the true involute.

The two cubic Bezier approximation provides a quick, accurate method of drawing involute gear teeth suitable for 3D

manipulation.

Drawing involute spur gears with Cango

Having established the profile of the tooth face, the full tooth shape may be generated by the addition of an arc across

the tip of the tooth, the mirror image of the tooth profile and then root fillets and the arc across the root circle to the

next tooth.

The angular spacing between teeth, pitch angle, for a gear with Z teeth is:

pitch angle =

Drawing involute profiles is simplified by using the polar coordinate form of the involute equation. This expression is

readily determined from Fig. 2:

Using the cosine rule of the triangle in Fig. 2:

Since

Shown below is the JavaScript source code to create a set of drawing commands for a single gear tooth outline. The

output of this function is an array of drawing commands in SVG format that can be used to create a Cango PATH

object representing the outline of a single gear tooth. This Cango object can be duplicated and rotated and appended to

create all the teeth on a gear. This code is included in the 'gearUtils' file.

function createGearTooth(module, teeth, pressureAngle)

{

 function genInvolutePolar(Rb, R) // Rb = base circle radius

 {

 // returns the involute angle as function of radius R.

 return (Math.sqrt(R*R - Rb*Rb)/Rb) - Math.acos(Rb/R);

Gear Drawing with Bezier Curves http://arc.id.au/GearDrawing.html

7 of 12 8/06/2013 9:53 PM

 }

 function rotate(pt, rads) // rotate pt by rads radians about origin

 {

 var sinA = Math.sin(rads);

 var cosA = Math.cos(rads);

 return {x: pt.x*cosA - pt.y*sinA,

 y: pt.x*sinA + pt.y*cosA};

 }

 function toCartesian(radius, angle) // convert polar coords to cartesian

 {

 return {x: radius*Math.cos(angle),

 y: radius*Math.sin(angle)};

 }

 // ****** external gear specifications

 var m = module; // Module = mm of pitch diameter per tooth

 var Z = teeth; // Number of teeth

 var phi = pressureAngle || 20; // pressure angle (degrees)

 var addendum = m; // distance from pitch circle to tip circle

 var dedendum = 1.25*m; // pitch circle to root, sets clearance

 var clearance = dedendum - addendum;

 // Calculate radii

 var Rpitch = Z*m/2; // pitch circle radius

 var Rb = Rpitch*Math.cos(phi*Math.PI/180); // base circle radius

 var Ra = Rpitch + addendum; // tip (addendum) circle radius

 var Rroot = Rpitch - dedendum; // root circle radius

 var fRad = 1.5*clearance; // fillet radius, max 1.5*clearance

 var Rf = Math.sqrt((Rroot+fRad)*(Rroot+fRad)-(fRad*fRad)); // radius at top of fillet

 if (Rb < Rf)

 Rf = Rroot+clearance;

 // ****** calculate angles (all in radians)

 var pitchAngle = 2*Math.PI/Z; // angle subtended by whole tooth (rads)

 var baseToPitchAngle = genInvolutePolar(Rb, Rpitch);

 var pitchToFilletAngle = baseToPitchAngle; // profile starts at base circle

 if (Rf > Rb) // start profile at top of fillet (if its greater)

 pitchToFilletAngle -= genInvolutePolar(Rb, Rf);

 var filletAngle = Math.atan(fRad/(fRad+Rroot)); // radians

 // ****** generate Higuchi involute approximation

 var fe = 1; // fraction of profile length at end of approx

 var fs = 0.01; // fraction of length offset from base to avoid singularity

 if (Rf > Rb)

 fs = (Rf*Rf-Rb*Rb)/(Ra*Ra-Rb*Rb); // offset start to top of fillet

 // approximate in 2 sections, split 25% along the involute

 var fm = fs+(fe-fs)/4; // fraction of length at junction (25% along profile)

 var dedBz = involuteBezCoeffs(m, Z, phi, 3, fs, fm);

 var addBz = involuteBezCoeffs(m, Z, phi, 3, fm, fe);

 // join the 2 sets of coeffs (skip duplicate mid point)

 var inv = dedBz.concat(addBz.slice(1));

 //create the back profile of tooth (mirror image)

 var invR = []; // involute profile along back of tooth

 for (var pt, i=0; i<inv.length; i++)

 {

 // rotate all points to put pitch point at y = 0

 pt = rotate(inv[i], -baseToPitchAngle-pitchAngle/4);

 inv[i] = pt;

 // generate the back of tooth profile nodes, mirror coords in X axis

 invR[i] = {x:pt.x, y:-pt.y};

 }

 // ****** calculate section junction points R=back of tooth, Next=front of next tooth)

 var fillet = toCartesian(Rf, -pitchAngle/4-pitchToFilletAngle); // top of fillet

 var filletR = {x:fillet.x, y:-fillet.y}; // flip to make same point on back of tooth

 var rootR = toCartesian(Rroot, pitchAngle/4+pitchToFilletAngle+filletAngle);

 var rootNext = toCartesian(Rroot, 3*pitchAngle/4-pitchToFilletAngle-filletAngle);

 var filletNext = rotate(fillet, pitchAngle); // top of fillet, front of next tooth

 // ****** create the drawing command data array for the tooth

 var data = [];

 data.push("M", fillet.x, fillet.y); // start at top of fillet

 if (Rf < Rb)

 data.push("L", inv[0].x, inv[0].y); // line from fillet up to base circle

 data.push("C", inv[1].x, inv[1].y, inv[2].x, inv[2].y, inv[3].x, inv[3].y,

 inv[4].x, inv[4].y, inv[5].x, inv[5].y, inv[6].x, inv[6].y);

 data.push("A", Ra, Ra, 0, 0, 0, invR[6].x, invR[6].y); // arc across addendum circle

 data.push("C", invR[5].x, invR[5].y, invR[4].x, invR[4].y, invR[3].x, invR[3].y,

Gear Drawing with Bezier Curves http://arc.id.au/GearDrawing.html

8 of 12 8/06/2013 9:53 PM

 invR[2].x, invR[2].y, invR[1].x, invR[1].y, invR[0].x, invR[0].y);

 if (Rf < Rb)

 data.push("L", filletR.x, filletR.y); // line down to top of fillet

 if (rootNext.y > rootR.y) // is there a section of root circle between fillets?

 {

 data.push("A", fRad, fRad, 0, 0, 1, rootR.x, rootR.y);// back fillet

 data.push("A", Rroot, Rroot, 0, 0, 0, rootNext.x, rootNext.y); // root circle arc

 }

 data.push("A", fRad, fRad, 0, 0, 1, filletNext.x, filletNext.y);

 return data; // return an array of Cango (SVG) format draw commands

}

Drawing gears with Cango

To create the outline of a full gear from the profile of the tooth, the Cango PATH object representing one tooth is

created, this is then duplicated, rotated by the pitch angle and appended to the gear object to make each of the gear's

teeth. This gear outline then has a circular axle shaft hole appended, its then ready to be rendered to the screen and

animated. The code snippet to create a gear using Cango is shown below:

var m = module; // Module = mm of pitch diameter per tooth

var Zg = gearTeeth;

var phi = pressureAngle || 20;

var Rg = Zg*m/2; // gear Pitch radius

// generate gear

var data = createGearTooth(m, Zg, phi);

var gearTooth = g.compileShape(data, '#b0a0b0', '#606060');

gearTooth.rotate(180/Zg); // rotate gear 1/2 tooth to mesh

var gear = gearTooth.dup();

for (var i=1, newTooth; i<Zg; i++)

{

 newTooth = gearTooth.dup();

 newTooth.rotate(360*i/Zg);

 gear.appendPath(newTooth, true); // trim 'moveTo' command = true

}

// add axle shaft hole

var Dsg = 0.6*Rg; // diameter of gear shaft

var shaft = g.compilePath(shapeDefs.circle);

shaft.scale(Dsg);

shaft.revWinding();

gear.appendPath(shaft); // retain the 'moveTo' command for shaft subpath

Adding backlash when drawing meshed gears

In practical gearing there is always a gap between the non-drive face of the pinion tooth and the adjacent wheel tooth

to prevent gears from jamming. This gap is termed backlash. If the direction of rotation is reversed, there is a period

during which the pinion moves independently until the backlash gap is taken up and gear tooth contact re-established.

Backlash may be created by cutting the gear spaces a little deeper, so the gaps are wider than the teeth, this method is

preferred for stock gears. Alternatively, backlash may be introduced by increasing the center distance between the

gears. This separation does not affect the speed ratio between the gears or require any alteration to the gear tooth

profile.

Recommended backlash is:

backlash = 0.04*Module

To create this backlash the center distance is increased by ∆C where:

∆C = backlash/2 * tan(phi);

Fig. 5 shows a pair of gears with module value of 5 mm. The pinion has 24 teeth and the gear 52, the pressure angle is

20°. The involute profiles were calculated using the 2 cubic Bezier approximation. Backlash of 0.2 mm was added by

increasing the center distance by 0.275 mm.

Gear Drawing with Bezier Curves http://arc.id.au/GearDrawing.html

9 of 12 8/06/2013 9:53 PM

Figure 5.A spur gear animation drawn with the two cubic Bezier approximation to the involute gear tooth profiles.

Internal gear drawing example

Internal gears, or ring gears, may be drawn with similar efficiency. Shown below is the JavaScript source code to

create the drawing commands for a single internal gear tooth outline. This code is included in the 'gearUtils' file.

function createIntGearTooth(module, teeth, pressureAngle)

{

 function genInvolutePolar(Rb, R) // Rb = base circle radius

 {

 // returns the involute angle as function of radius R.

 return (Math.sqrt(R*R - Rb*Rb)/Rb) - Math.acos(Rb/R);

 }

 function rotate(pt, rads) // rotate pt by rads radians about origin

 {

 var sinA = Math.sin(rads);

 var cosA = Math.cos(rads);

 return {x: pt.x*cosA - pt.y*sinA,

 y: pt.x*sinA + pt.y*cosA};

 }

 function toCartesian(radius, angle) // convert polar coords to cartesian

 {

 return {x: radius*Math.cos(angle),

 y: radius*Math.sin(angle)};

 }

 // ****** gear specifications

 var m = module; // Module = mm of pitch diameter per tooth

 var Z = teeth; // Number of teeth

 var phi = pressureAngle || 20;// pressure angle (degrees)

 var addendum = 0.6*m; // pitch circle to tip circle (ref G.M.Maitra)

 var dedendum = 1.25*m; // pitch circle to root radius, sets clearance

 // Calculate radii

 var Rpitch = Z*m/2; // pitch radius

 var Rb = Rpitch*Math.cos(phi*Math.PI/180); // base radius

 var Ra = Rpitch - addendum; // addendum radius

 var Rroot = Rpitch + dedendum;// root radius

 var clearance = 0.25*m; // gear dedendum - pinion addendum

 var Rf = Rroot - clearance; // radius of top of fillet (end of profile)

 var fRad = 1.5*clearance; // fillet radius, 1 .. 1.5*clearance

 // ****** calculate subtended angles

Gear Drawing with Bezier Curves http://arc.id.au/GearDrawing.html

10 of 12 8/06/2013 9:53 PM

 var pitchAngle = 2*Math.PI/Z; // angle between teeth (rads)

 var baseToPitchAngle = genInvolutePolar(Rb, Rpitch);

 var tipToPitchAngle = baseToPitchAngle; // profile starts from base circle

 if (Ra > Rb)

 tipToPitchAngle -= genInvolutePolar(Rb, Ra); // start profile from addendum

 var pitchToFilletAngle = genInvolutePolar(Rb, Rf) - baseToPitchAngle;

 var filletAngle = 1.414*clearance/Rf; // to make fillet tangential to root

 // ****** generate Higuchi involute approximation

 var fe = 1; // fraction of involute length at end of approx (fillet circle)

 var fs = 0.01 // fraction of length offset from base to avoid singularity

 if (Ra > Rb)

 fs = (Ra*Ra-Rb*Rb)/(Rf*Rf-Rb*Rb); // start profile from addendum (tip circle)

 // approximate in 2 sections, split 25% along the profile

 var fm = fs+(fe-fs)/4; //

 var addBz = involuteBezCoeffs(m, Z, phi, 3, fs, fm);

 var dedBz = involuteBezCoeffs(m, Z, phi, 3, fm, fe);

 // join the 2 sets of coeffs (skip duplicate mid point)

 var invR = addBz.concat(dedBz.slice(1));

 //create the front profile of tooth (mirror image)

 var inv = []; // back involute profile

 for (var pt, i=0; i<invR.length; i++)

 {

 // rotate involute to put center of tooth at y = 0

 pt = rotate(invR[i], pitchAngle/4-baseToPitchAngle);

 invR[i] = pt;

 // generate the back of tooth profile, flip Y coords

 inv[i] = {x:pt.x, y:-pt.y};

 }

 // ****** calculate coords of section junctions

 var fillet = {x:inv[6].x, y:inv[6].y}; // top of fillet, front of tooth

 var tip = toCartesian(Ra, -pitchAngle/4+tipToPitchAngle); // tip, front of tooth

 var tipR = {x:tip.x, y:-tip.y}; // addendum, back of tooth

 var rootR = toCartesian(Rroot, pitchAngle/4+pitchToFilletAngle+filletAngle);

 var rootNext = toCartesian(Rroot, 3*pitchAngle/4-pitchToFilletAngle-filletAngle);

 var filletNext = rotate(fillet, pitchAngle); // top of fillet, front of next tooth

 // ****** create the drawing command data array for the tooth

 var data = [];

 data.push("M", inv[6].x, inv[6].y); // start at top of front profile

 data.push("C", inv[5].x, inv[5].y, inv[4].x, inv[4].y, inv[3].x, inv[3].y,

 inv[2].x, inv[2].y, inv[1].x, inv[1].y, inv[0].x, inv[0].y);

 if (Ra < Rb)

 data.push("L", tip.x, tip.y); // line from end of involute to addendum (tip)

 data.push("A", Ra, Ra, 0, 0, 0, tipR.x, tipR.y); // arc across tip circle

 if (Ra < Rb)

 data.push("L", invR[0].x, invR[0].y); // line from addendum to start of involute

 data.push("C", invR[1].x, invR[1].y, invR[2].x, invR[2].y, invR[3].x, invR[3].y,

 invR[4].x, invR[4].y, invR[5].x, invR[5].y, invR[6].x, invR[6].y);

 if (rootR.y < rootNext.y) // there is a section of root circle between fillets

 {

 data.push("A", fRad, fRad, 0, 0, 0, rootR.x, rootR.y); // fillet on back of tooth

 data.push("A", Rroot, Rroot, 0, 0, 0, rootNext.x, rootNext.y); // root circle arc

 }

 data.push("A", fRad, fRad, 0, 0, 0, filletNext.x, filletNext.y); // fillet on next

 return data; // return an array of Cango (SVG) format draw commands

}

Given the profile of one tooth, the complete ring gear may be constructed using Cango graphics library in a similar

fashion to the spur gear described above.

Fig. 6 shows an internal gear and pinion with module value of 5 mm. The pinion has 22 teeth and the ring gear 42, the

pressure angle is 20°. The involute profiles were calculated using the 2 cubic Bezier approximation. Backlash of

0.2 mm was added by increasing the center distance.

Gear Drawing with Bezier Curves http://arc.id.au/GearDrawing.html

11 of 12 8/06/2013 9:53 PM

Figure 6. An internal gear animation, drawn with the two cubic Bezier approximation to the involute gear tooth

profiles.

The Higuchi method has proven to be applicable to gear drawing on the HTML5 canvas element despite the limitation

to order 3 Bezier approximation that the canvas imposes. All the source code used on this page is released free for

non-commercial use.

References:

1. F.Higuchi, S. Gofuku, T. Maekawa, H. Mukundan, N.M. Patrikalakis, YNU Digital Eng Lab Memorandum 05-1 2006.

2. G.M.Maitra, Handbook of Gear Design, 1994

Gear Drawing with Bezier Curves http://arc.id.au/GearDrawing.html

12 of 12 8/06/2013 9:53 PM

