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ABSTRACT

This paper presents a brief introduction to geometric algebra and demonstrates the application to
quantum mechanics with spin wave vectors. The approach here differs from previous approaches in
that it uses an alternative geometric algebra expression for the wave vector, such that the probability
of measurement simplifies to an inner product of state vectors. This has attractive properties for the
algebra of transformations in quantum mechanics. Finally, it is shown how the expressions can be
related to spinors.

1 Introduction

Geometric algebra - also known as Clifford algebra - provides a powerful mathematical structure for applications in the
physics for rigid body motion, electromagnetism and more. In this paper the application to the algebra of spin quantum
mechanics is shown. The approach differs from previous approaches in that special emphasis is put on the equation for
the probability of measurement, which is usually given by the Born rule. Starting from a geometric algebra expression
for the wave vector, the corresponding expressions for probability of measurement, spatial rotations and qubit gates are
derived.

2 Introduction to geometric algebra

2.1 Algebra of vector multiplication

Vector algebra defines axioms for vector addition and multiplication by a real scalar number. Geometric algebra adds
an additional multiplication between vectors. It is called geometric product and written as ab for two vectors a and
b. This product is associative (ab)c = a(bc) (unlike the vector dot product), but in general not commutative ab ̸= ba
(like matrix multiplication). Scalars still commute with this new multiplication. This product is also distributive over
addition a(b+ c) = ab+ ac, (a+ b)c = ac+ bc and hence follows the same rules as matrix multiplication.

In order to create a fruitful structure, geometric algebra adds an axiom that vectors square to a real number

aa ∈ R

For a vector space it is possible to find a set of orthonormal basis vectors

e1, e2, . . . , en

where the maximum number n of these vectors is the dimension of the vector space. In geometric algebra these
orthonormal basis vectors obey

eiei = 1

eiej = −ejei (i ̸= j) (1)

This is how orthonormality is defined in geometric algebra, since the equivalent of the inner product can be defined as
a · b = 1

2 (ab+ ba). Hence, basis vectors square to 1 and different basis vectors anticommute. Technically, it is possible
to have a geometric algebra where for some normal vectors e2i = −1 or e2i = 0, but here these different signature
algebras are not used. These are essentially all the rules that are needed to verify and understand all of the following.
You could essentially treat the orthonormal basis vectors as matrices which follow equations (1).



2.2 Multivectors as general elements

By successively multiplying basis vectors we can generate the whole algebra. The general element of geometric algebra
is called a multivector and has the basis

(1, ei, . . . , eiej , . . . , eiejek, . . .)

since these products cannot be reduced any further. Usually the basis vector products are reordered by index and one
writes eij··· = eiej · · · as an abbreviation. For example the most general multivector for the three-dimensional basis
e1, e2, e3 is

A = α0 + α1e1 + α1e1 + α1e1 + α12e12 + α13e13 + α23e23 + α123e123

which has 8 components and the coefficients α are real numbers. A multivector from n basis vectors has up to 2n

components. All other expressions can be reduced to this form by the above rules. A multivector consisting of a sum of
products of exactly k basis vectors is said to have grade k. Scalars are grade-0 elements; vectors having only terms with
e1, e2, . . . , en are grade-1 elements.

Multivectors are usually written with capital letters A, whereas grade-1 vectors are written with small letters a.
Multivector multiplication inherits the same associativity and distributivity rules as vectors.

2.3 Additional operations

A useful operation is the extraction of the scalar part (grade 0) which is written as

⟨A⟩
In our three dimensional example we have ⟨A⟩ = α0. If a subscript is used as in ⟨A⟩k, it means to extract the part with
grade k.

Another useful operation is the reverse of a multivector which is written as

A†

It reverses the order of a multiplication, e.g. (abc)† = cba for vectors and (ABC)† = C†B†A† for multivectors. You
can verify that for multivectors of grade 4j + {2, 3} the sign changes with the reverse operation (e.g. (e1e2)† = e2e1 =
−e1e2). For sums (A+B)† = A† +B†.

For many - but not all - multivectors it is possible to find an inverse multivector AA−1 = 1. In particular for grade-1
vectors or products of vectors A = abc · · ·

a−1 =
1

a2
a A−1 =

1

AA†A
†

where is first factor turns out to be a scalar. Some multivectors like e1e2 + e3e4 do not have an inverse.

You can also find that expressions of the form α + Jβ with scalars α, β and the bivector J = e0e1 follow the same
rules as complex numbers. For example J2 = e0e1e0e1 = −e0e1e1e0 = −1.

For a more formal introduction to geometric algebra and it’s applications to physics you can refer to [Doran and
Lasenby, 2007].

3 Wave vector in geometric algebra

The usual complex n-dimensional spin wave vector ψ can be written as the geometric algebra expression

ψ =


ψ1

ψ2

...
ψn

 ↔ Ψ =

n∑
k=1

1√
2
(ek + J fk) (ℜψk + J ℑψk) (2)

where ψk = ℜψk + iℑψk is a component of the spin wave vector with real and imaginary components, ei, fi are
a set of distinct orthonormal vectors in a 2n + 2 dimensional vector space with e2i = +1, f2i = +1, and J = e0f0
is a bivector which helps reproducing the complex multiplication. All coefficients are real numbers and no complex
numbers are required. J commutes with all basis vectors ei≥1, fi≥1 and itself. The symbol ↔ will be used to denote a
translation of the conventional approach to geometric algebra.
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The motivation to use this particular expression is that the probability to measure a state ψ(A) in another state ψ(B)

which is given by the Born rule, can be calculated with geometric algebra from a simple expression

P (A→ B) =
∣∣∣〈ψ(A)|ψ(B)

〉∣∣∣2 ↔ P (A→ B) =
〈
Ψ(A)Ψ(A)†Ψ(B)Ψ(B)†

〉
− 1 (3)

The proof for this equation is presented in the appendix A.

Other treatments of geometric algebra for spin wave vectors usually use an expression equivalent to Ψ =
∑

k ek(ℜψk +
I ℑψk) with a pseudoscalar I =

∏
i ei. While all approaches reproduce quantum mechanics correctly, only for an

expression as (2) the probability of measurement simplifies to (3).

4 State vector and measurement of probabilities

The expression in equation (3) can be further simplified by introducing the state vector

Ω = J(ΨΨ† − 1) (4)

This definition is chosen to get an insightful expression for a single spin-1/2 state vector. The probabilities become

P (A→ B) =
〈
Ω(A)Ω(B)†

〉
(5)

since ⟨ΨΨ†⟩ = 1 for normalized wave functions (see appendix B). This the same as the dot product between real
vectors as you can verify that for general multivectors with distinct basis vector products Ei = eab···〈∑

i

αiEi

∑
j

βjE
†
j

〉
=

∑
ij

αiβj

〈
EiE

†
j

〉
=

∑
ij

αiβjδij =
∑
i

αiβi

Only products αiβj from the same basis multivectors i = j contribute to the scalar result. The coefficients αi and βj
could be put into a plain column vector and the dot product could be applied.

The state vector can be derived to be the expression

Ω = J(ΨΨ† − 1)

=
∑
i

eifi |ψi|2 +
∑
i<j

(eifj + ejfi)ℜ(ψiψ
∗
j )−

∑
i<j

(eiej + fifj)ℑ(ψiψ
∗
j ) (6)

when written in terms of the original spin wave vector components. This expression does not depend on J anymore.
The derivation can be found in appendix B. While this representation could be directly taken from the density
matrix, the development shown here provides the algebra to do that without artificially plucking the components
|ψi|2,ℜ(ψiψ

∗
j ),ℑ(ψiψ

∗
j ) from the density matrix.

5 Single spin state vector, Bloch sphere and rotations in space

5.1 State vector

A single spin-1/2 particle can be represented by a 2-dimensional complex wave vector and be translated to geometric
algebra with equation (2) as

ψ =

(
a+ bi
c+ di

)
=

(
cos θ

2

sin θ
2e

iϕ

)
↔ Ψ =

1√
2
(e1(a+ bJ) + f1(aJ − b) + e2(c+ dJ) + f2(cJ − d))

where θ, ϕ are Euler angles.

However, it is more instructive to look at the state vector from equation (6)

Ω = J(ΨΨ† − 1)

=
1

2
(e1f1 + e2f2) +

1

2
(e2f2 − e1f1) cos θ +

1

2
(e1f2 + e2f1) sin θ cosϕ+

1

2
(e1e2 + f1f2) sin θ sinϕ (7)

which is derived in the appendix C.
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5.2 Spatial basis bivectors

We can define new bivectors and write this as

Ω = T +Xx+ Y y + Zz (8)

X =
1

2
(e1f2 + e2f1) Y =

1

2
(e1e2 + f1f2) Z =

1

2
(e2f2 − e1f1) T =

1

2
(e1f1 + e2f2)

x = sin θ cosϕ y = sin θ sinϕ z = cos θ

This is the first time that we can relate a combination of the orthonormal vectors to coordinates in space, if we accept
that space coordinates can be represented as bivectors. Equation (8) effectively describes a Bloch sphere.

The probability to measure on state in another state is the inner product P = ⟨Ω(A)Ω(B)⟩.

5.3 Spatial rotations

Spatial rotations around an axis given by the normed vector n̂ = (rx, ry, rz) and an angle α can be accomplished by

Ω′ = RΩR† (9)

with the multivector

R = exp
(α
2
(T +Xrx + Y ry + Zrz)

)
(10)

= cos
α

2
+ (T +Xrx + Y ry + Zrz) sin

α

2

where R is known as a rotor due to RR† = 1. It is helpful to confirm that (T + Xrx + Y ry + Zrz)
2 = −1. The

algebraic validation can be aided by the multiplication formulas in appendix D. The real coefficients x, y, z transform
as you would expect from rotations in three dimensions.

Due to Ω = J(ΨΨ† − 1), RR† = 1 and J commuting with the rotor, the same rotor can be applied one-sided to the
wave vector

Ψ′ = RΨ (11)

since
Ω′ = J(Ψ′Ψ′† − 1) = J(RΨΨ†R† − 1) = RJ(ΨΨ† − 1)R† = RΩR†

But there is nothing special to the one-sided application, as a two-sided application Ψ′ = RΨR† would work as well.

We can use equation (10) and (11) to transform the wave function by any rotation.

References
Chris Doran and Anthony Lasenby. Geometric Algebra for Physicists. Cambridge University Press, 2007.

A Derivation of probability of measurement

We want to reproduce the Born rule

P (A→ B) =
∣∣∣〈ψ(A)|ψ(B)

〉∣∣∣2
With the geometric algebra wave vector

Ψ =
∑
i

Λiψi Λi =
1√
2
(ei + Jfi)

and the task to reproduce the probability of measuring state Ψ(A) in another state Ψ(B) we can calculate the expression〈
Ψ(A)Ψ(A)†Ψ(B)Ψ(B)†

〉
=

〈∑
ijkl

ΛiΛ
†
jΛkΛ

†
l ψ

(A)
i ψ

(A)†
j ψ

(B)
k ψ

(B)†
l

〉
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A contribution to the scalar result can only come from ΛiΛ
†
jΛkΛ

†
l terms which have a scalar part, or a scalar part when

multiplied by J . Since, we are only interested in terms which contribute to the scalar result, we can use the equation〈
ΛiΛ

†
jΛkΛ

†
l

〉
= δilδjk + δijδkl (12)

Therefore 〈
Ψ(A)Ψ(A)†Ψ(B)Ψ(B)†

〉
=

〈∑
ijkl

(δilδjk + δijδkl) ψ
(A)
i ψ

(A)†
j ψ

(B)
k ψ

(B)†
l

〉

=

〈∑
ij

ψ
(A)
i ψ

(A)†
j ψ

(B)
j ψ

(B)†
i +

∑
i

ψ
(A)
i ψ

(A)†
i

∑
k

ψ
(B)
k ψ

(B)†
k

〉

=

〈∑
ij

ψ
(A)
i ψ

(A)†
j ψ

(B)
j ψ

(B)†
i

〉
+ 1

since wave functions are normalized.

The original Born rule can be written as

P (ψ(A) → ψ(B)) = |⟨ψ(A)|ψ(B)⟩|2

=
∑
i

ψ
(A)
i ψ

(B)∗
i

∑
j

ψ
(A)∗
j ψ

(B)
j

=
∑
ij

ψ
(A)
i ψ

(A)∗
j ψ

(B)
j ψ

(B)∗
i

The previous expression
〈∑

ij ψ
(A)
i ψ

(A)†
j ψ

(B)
j ψ

(B)†
i

〉
represents the same calculation, with the extra step of taking the

real part in the end. But as the probability is real anyway, we conclude that

P (A→ B) =
〈
Ψ(A)Ψ(A)†Ψ(B)Ψ(B)†

〉
− 1

The initial geometric algebra expression for the wave vector was found by requiring this result (up to an arbitrary
scalar).

B Derivation of state vector

We start with the expression

Ψ =
∑
i

1√
2
(ei + Jfi)(ℜψi + J ℑψi)

With ψi = ℜψi + J ℑψi we can write

ΨΨ† =
1

2

∑
ij

(ei + Jfi)ψiψ
†
j (ej − Jfj)

=
∑
i

(1− eifiJ)ψiψ
†
i +

1

2

∑
i<j

(
(ei + Jfi)(ej − Jfj)ψiψ

†
j + (ej + Jfj)(ei − Jfi)ψjψ

†
i

)
=

∑
i

(1− eifiJ)ψiψ
†
i

+
1

2

∑
i<j

(eiej + fifj − (eifj + ejfi)J)ψiψ
†
j

+
1

2

∑
i<j

(ejei + fjfi − (ejfi + eifj)J)ψjψ
†
i
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With the real and imaginary parts

Rij =
1

2
(ψiψ

†
j + ψjψ

†
i ) ψiψ

†
j = Rij + J Iij

JIij =
1

2
(ψiψ

†
j − ψjψ

†
i ) ψjψ

†
i = Rij − J Iij

where Rij , Iij are scalars this becomes

ΨΨ† =
∑
i

(1− eifiJ)ψiψ
†
i

+
1

2

∑
i<j

(eiej + fifj − (eifj + ejfi)J) (Rij + J Iij)

+
1

2

∑
i<j

(−eiej − fifj − (eifj + ejfi)J) (Rij − J Iij)

=
∑
i

ψiψ
†
i −

∑
i

eifiJψiψ
†
i −

∑
i<j

(eifj + ejfi)JRij +
∑
i<j

(eiej + fifj)J Iij

For normalized wave vectors ∑
i

ψiψ
†
i = 1

Therefore
Ω = J(ΨΨ† − 1) =

∑
i

eifiψiψ
†
i +

∑
i<j

(eifj + ejfi)Rij −
∑
i<j

(eiej + fifj) Iij

is a bivector which contains all the information that we need about a system to calculate it’s probabilities.

C Derivation of spin state vector

The wavefunction for a single spin-up in a direction given by Euler angles θ, ϕ is usually written as

ψ =

(
ψ1

ψ2

)
=

(
cos θ

2

sin θ
2e

iϕ

)
up to an arbitrary phase.

The state vector written in geometric algebra is
Ω = J(ΨΨ† − 1)

=
∑
i

eifi |ψi|2 +
∑
i<j

(eifj + ejfi)ℜ(ψiψ
∗
j )−

∑
i<j

(eiej + fifj)ℑ(ψiψ
∗
j )

= e1f1 cos
2 θ

2
+ e2f2 sin

2 θ

2
+ (e1f2 + e2f1) cos

θ

2
sin

θ

2
cosϕ+ (e1e2 + f1f2) cos

θ

2
sin

θ

2
sinϕ

= e1f1
1− cos θ

2
+ e2f2

1 + cos θ

2
+ (e1f2 + e2f1)

1

2
sin θ cosϕ+ (e1e2 + f1f2)

1

2
sin θ sinϕ

=
1

2
(e1f1 + e2f2) +

1

2
(e2f2 − e1f1) cos θ +

1

2
(e1f2 + e2f1) sin θ cosϕ+

1

2
(e1e2 + f1f2) sin θ sinϕ

D Multiplication of state vector basis

X =
1

2
(e1f2 + e2f1) Y =

1

2
(e1e2 + f1f2) Z =

1

2
(e2f2 − e1f1) T =

1

2
(e1f1 + e2f2)

P = e1f1e2f2

XX = −1

2
(1 + P ) Y Y = −1

2
(1 + P ) ZZ = −1

2
(1 + P ) TT = −1

2
(1− P )

XP = X Y P = Y ZP = Z TP = −T
XY = Z Y Z = X ZX = Y

XT = 0 Y T = 0 ZT = 0

The bivectors X,Y, Z, T have no inverse.
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