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4 The Equivalence Principle

We are now in a position to prove the equivalence principle of General Relativity. Indeed as we will
see, from our QFT viewpoint, the equivalence principle is not an independent principle. Rather,
it is a necessary consequence of Lorentz invariance for massless spin-2 particles—a theorem then,
but unfortunately the name ‘equivalence theorem’ is taken already! The equivalence principle
was proved by Weinberg. We will follow his original paper [2], as well as his QFT book [1], in
particular sect. 13.1.

4.1 Photon couplings: charge conservation

As a warmup we consider the consequences of Lorentz invariance for the interactions of a photon
with other particles. We will show that a low-energy photon can only couple to charges that are
conserved by all scattering processes.

Consider the emission of a very soft photon of four-momentum ¢* by another particle, massive
or otherwise, as depicted in fig. 1. By ‘soft’ we mean that the photon’s energy is very low.
Implicitly we are taking the limit ¢* — 0, or more precisely, we are expanding in powers of g*,
keeping the leading terms only. For definiteness let’s restrict to a +1 helicity photon, although
everything we say will apply equally to both photon helicities. The initial and final states of the
emitting particle are labeled by their four-momenta, p* and p* — ¢*, and by their spin state, o
and o’.

Of course the process of fig. 1 cannot happen for finite ¢* if all particles are on-shell, because
of four-momentum conservation. But this diagram can be part of a larger diagram, where, say,
only the initial particle line and the emitted photon are on-shell. Indeed this vertex diagram will
be one of the fundamental units of our proof, which will involve more complicated diagrams in

Figure 1: The emission of a soft photon of momentum ¢* by a incoming particle with momentum pt
and spin state o.
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which our vertex appears as a sub-diagram.
The amplitude associated with our diagram takes the form

M= M"-ei(q), (96)

where e, (q) is the polarization vector of the emitted photon, and M* depends on the rest of the
diagram, that is, on the final and initial states of the emitting particle. In the very soft limit,
g" — 0, the initial and final momenta coincide, and we have

M* = M*(p,0,0") (97)
We can now consider two separate cases:

e If the particle under study is spinless, i.e. if it is a scalar particle, there is no spin variable
to take into account. M* then can only depend on p*. Since it must be a four vector, it
takes the form

M*(p) = p"f(p?) - (98)
If the initial particle is on-shell, i.e. if it is a physical particle coming in from infinity,
rather than a virtual particle in an internal line in a diagram, then p? = —m?. In this

case f(p?) = f(—m?) is a constant that depends on the particle species, but not on the
kinematical variables of our process. We call this constant the charge of the particle. More
precisely, with the conventions of ref. [1]

M =2i (2m)ept - e.(q) for ¢ —0. (99)

Example: scalar QED. To convince ourselves that this matches the usual definition of charge,
let’s consider scalar QED. The Lagrangian is

L= (Du¢) Drg—m2pte — LF,, P (100)

where the covariant derivative is

D, =0,—ieA, (101)

The amplitude we are interested in receives contributions from the Lagrangian terms that involve
one ¢ (to destroy the incoming scalar), one ¢! (to create the outgoing scalar), and one A, (to create
the outgoing photon). By expanding the covariant derivatives we get the relevant Lagrangian terms

L >ie A"(¢10,0 — (0,0")8) (102)
The amplitude for fig. 1 is then
M =i(2m) e [pel(q) + (0" — ¢")e(q)] (103)

which for ¢* — 0 reduces precisely to eq. (99).
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e [f the emitting particle has spin J # 0, the amplitude for our elementary process in fig. 1
may be more complicated, because now M* can depend on the momenta as well as on the
spin variables. Namely, unlike in eq. (98), the direction of M* now needs not be along p*,
because there are other four-vectors that we can construct employing the spin variables. For
instance, if the particle under study is a massive spin one particle, we have the polarization
four-vectors e(p) and e, (p). Also, even if M* does point along p*, the overall coefficient—
the analogue of f(p?) in eq. (98)—may in principle depend on all the Lorentz invariants we
can construct with the momenta and spin variables. Let us postulate for the moment that
even for particles with spin, the amplitude for emitting a very soft photon does not depend
on the emitting particle’s spin, and that the final spin ¢’ has to be the same as the initial
one:

M =2i(2m) ep" - € (q) - boor for ¢ —0. (104)

We will question this assumption later, and see why it is in fact necessary for Lorentz
invariance to hold.

Consider now a generic scattering process o — 3, where several particles come in from infinity,
collide, and then the same or other particles go out to infinity, as schematically depicted in fig. 2a.
The ‘blob’ represents the full scattering amplitude—the sum of all Feynman diagrams with initial
state o and final state 3. Let us call M,z this scattering amplitude. Now, consider exactly the
same process where a very soft photon of four-momentum ¢ is also emitted, as in fig. 2b. (Of
course for finite ¢g* the rest of the external momenta cannot be exactly the same as in a — [,
because we could not conserve four-momentum unless we slightly modified some of the initial or
final momenta; but in the ¢* — 0 limit we do approach the original momenta of the o —
process.) If we expand this amplitude in Feynman diagrams, Feynman rules instruct us to take all
the diagrams that make up the original M,3, and attach the photon line to all possible particle
lines, external as well as internal.

Let’s focus on the diagrams where the photon line is attached to an external line, as in fig. 3a.
The new vertex involving the photon is just our elementary vertex of fig. 1, and gives a factor
of eq. (104). Because this is proportional to d,., after emitting the photon particle 1 still has
its original spin o;. Also, the photon is very soft, so particle 1 retains its orginal momentum
p1 too. As a result, the rest of the process of fig. 3a is identical to the original o — [ process,
with precisely the same external momenta and spins. We therefore get a factor of M. The last
ingredient is just the propagator that connects the photon vertex to the rest of the diagram, with
momentum p; — q. Putting everything together we have

(=) 1 o\

x 21 (2m) e  pi - €¥(q) , 105
(2m)* (p1 — @)% + m% (2m)" e1 N(Q) (105)
where m; and e; are particle 1’s mass and charge, respectively, and we are neglecting the +ie in
the propagator, because it is irrelevant for our purposes. It is crucial that we keep ¢* # 0 in the
propagator. This is because the propagator is singular in the ¢* — 0 limit. Indeed

ﬁg. 3a = Mag X

(pr—q)*+mi=p—2p-q+@+mi=-2p q, (106)
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Figure 2: (a): A generic scattering process with initial state o and final state 3. (b): The same process
where a very soft photon is also emitted.

where we used that both the initial particle 1 and the emitted photon are on-shell. Therefore we
have "
—e1pPr .
fig. 3a = M,z x P e.(q) . (107)
We get analogous contributions from the diagrams in which the photon is attached to a different
external particle line, with the qualification that for outgoing particle lines we get an overall plus
rather than a minus. This is because if we attach the photon to an outgoing line with momentum
 the momentum flowing in the propagator before the photon is emitted is pk 4 ¢*, as clear from
fig. 3b. Then the full amplitude for our process of fig. 2b is conveniently rewritten as

M = M"e,(q) (108)
with p
MY = Mg Z nnPny internal , (109)
Pn - q

n

where the sum runs over all external particles, n, is a sign that is +1 for outgoing particles and
—1 for incoming ones, and ‘internal” stands for the sum of all the diagrams where the photon
is attached to an internal particle line. However the latter contributions are not singular in the
g" — 0 limit. Indeed the propagators we isolated above are singular precisely because the external
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Figure 3: (a): A contribution to the amplitude of fig. 2b where the photon is emitted by an incoming
external particle. (b): The analogous contribution for an outgoing external particle.

particles are on-shell, so that when we send ¢ — 0 the momentum flowing in the propagator goes
on-shell, thus making the propagator diverge. Instead virtual particles are not on-shell, and as a
consequence attaching a photon to their lines introduces a new propagator that does not go on-shell
when ¢* — 0. Since divergences can only come from propagators, and not from vertices—which
are just products of coupling constants, polarization spinors/vectors/tensors, and derivatives—
we conclude that the ‘internal’ piece in M* above is not singular for ¢ — 0, and is therefore
subleading in a small g expansion. We will therefore neglect it.

We now make use of Lorentz invariance. More precisely, we make use of the the redundancy
in describing the emitted photon with its polarization four-vector: e,(q) and e,(q) + cg, must
describe the same photon state, for any complex c¢. As a consequence, when computing a physical
amplitude like the one under study we must have

Mtq, =0. (110)

We can call this ‘gauge-invariance of the S-matrix’, although as we stressed the only real symmetry
we are trying to enforce is Lorentz invariance, and gauge invariance is a formal redundancy that
allows us to construct Lorentz invariant theories. From eq. (135) we have

Mocﬁznnenzoa (111)



22 General Relativity from Lorentz Invariance

that is, either the original amplitude M,z vanishes, in which case the process a — (3 cannot
happen, or such a process must conserve charge:

Z e, = Z e . (112)

incoming outgoing

In other words, a very low energy photon can only couple to a charge that is conserved by all
scattering processes that have non-vanishing probability of happening.

We can now go back to the crucial assumption of our proof—that in a vertex like fig. 1, even
for particles with spin, the amplitude for emitting a very soft photon is independent of the initial
spin o, and is non-vanishing only if the final spin ¢’ coincides with o, as in eq. (104). Let us see
what would happen if this were not the case. As we argued, in the small ¢* limit the most generic
form of a vertex like fig. 1 is

M = Mﬂ(p, g, OJ) eZ(Q) ) (113)

where M* is a four-vector function of its arguments. We can go through our computation above
for the amplitude @ — 3 4 photon, and see the changes that would occur if we where to use this
elementary vertex amplitude. When we attach the photon line to an external particle line like in
fig. 3a, we have two differences: the vertex amplitude of course is different, but also the particle
line that connects the vertex to the blob now has an arbitrary spin state o}, over which we have
to sum. As a consequence, in fig. 3a we do not get an overall factor of the original amplitude
Mg, but rather Mg(...,01,...)—the amplitude for the o — 3 process with particle 1’s spin
o1 replaced by ¢]. Then eq. (107) becomes

— Mt (p1,01,0%)
1P, 01,01) o) (114)
p1-q

ﬁg.3a:ZMQg(...,a’l,...)x

91

where we are neglecting the overall factors of i, (27), etc. we would get from the propagator. Of
course we get an analogous contribution from each external particle line, whereas diagrams where
the photon line is attached to an internal particle line of the o« — 3 process still give negligible
contributions, because with respect to our proof above we are just changing the structure of
vertices, while as we argued divergences in the ¢ — 0 limit can only come from propagators.
Therefore, the overall amplitude for emitting a very soft photon in the o — (3 process now is

/ 7771 M# p?’b’o-nﬂo-ql’b *
M:ZZMag(...,an,...) ;n'q )eu(q) (115)

Because of Lorentz-invariance, this amplitude must vanish if we formally replace the emitted
photon’s polarization four-vector with the photon’s momentum ¢*:

nM'u n» n» !
S5 Mol L0 (116)
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Now, notice that for given p,,’s and ¢,,’s, the l.h.s. is a smooth function of the photon’s four-vector
g'—apart from the divergences at the poles of course. If it has to vanish for all light-like four-
momenta ¢, it must also vanish for an arbitrary four-vector (not necessarily light-like) ¢*. This is
only possible if the direction of each individual M¥(p,,o,,0,) is along p#. Indeed, for any given
external particle n, we can choose the four-vector ¢* to be orthogonal to p¥, but not orthogonal
to the other external four-momenta. The n-th term in eq. (116) is therefore divergent at finite
g", and cannot be cancelled by the other terms which are instead finite. The cancellation must

therefore come from its numerator, that is
M (P, 0ny00)qu =0 V¢" such that g,ph =0, (117)

that is,
M (pny Oy 07,) = Ply X €n(Pny Ony 0,) - (118)

This looks like eq. (104), but with a momentum- and spin-dependent charge. If we plug it back
into eq. (116) we are left with

ZZMaﬁ(- Oy ) X M (P, 0n,00) = 0. (119)

This should hold for all processes @ — (3. Now, the problem with this equation, as opposed to
eq. (111), is that rather than constraining the way the photon couples to other particles, it is a
formidable constraint on the amplitude for the original process a — [ (with some of the spins
modified). In particular, it is a constraint that depends on the way the photon couples to other
particles, i.e. on the ‘charge functions’ e, (p,, o,, 0},). But, at least at lowest order in perturbation
theory, the original process o — [ knows nothing about the photon and its couplings, and the
only constraint it satisfies is four-momentum conservation. Thus, there is no way of satisfying
eq. (119) unless

en(Pn, On, 07,) = €n(Dns 0n) X 5071041 ) (120)

so that the sum over o], is trivial and an overall M,z gets factored out of the sum over n:
Mag Y o en(pn, o) = 0. (121)

We therefore get that for processes with non-vanishing amplitude, the momentum- and spin-
dependent charges e, (pn,0,) must be conserved. But if the process @ — (3 has a non-vanishing
amplitude, the same process where we change, say, particle 1’s spin to ¢} and we leave everything
else unchanged also has—barring accidents for very specific configurations of momenta and spins—
non-vanishing amplitude: once again, the only kinematical constraint for scattering amplitudes is
the total four-momentum d-function 4. Therefore, the momentum- and spin-dependent charges

40f course for massless particles of definite helicities we might have the situation where only one of the two
helicities interact. This is the case for instance for left-handed massless neutrinos in the Standard Model of
electroweak interactions. But as we saw, different helicities of a massless particle strictly speaking correspond to
different particles, so changing helicity of a massless particle is not merely a change of our spin label o,,.
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must be conserved by the two processes:

_el(pla 01) + Znn €n<pn7 Un) =0= —61(])1, 0-/1) + Znn en(pm Un) ) (122)

n>1 n>1

from which we get

el(pb 01) = el(plv O-i) ) (123)
that is, the charge of a particle cannot depend on its spin state. But then, if e, is a scalar function
of p# only, for on-shell particles it is a constant, because p? = —m?2. We therefore reach the

conclusion that even for particles with spin, the amplitude for emitting a very soft photon is given
by eq. (104), where e is a constant that depends on the particle species only, and that any process
with non-vanishing amplitude must conserve the total charge.

4.2 Graviton couplings: the equivalence principle

With minor modifications, the same argument can be applied to the graviton. Here however the
constraint we get will be much stronger. Consider the emission of a very soft graviton by some
particle, as depicted in fig. 1. The amplitude takes the form

M= M"e,(q), (124)

where e,,,(¢q) is the polarization tensor for the outgoing graviton, and the ‘tensor amplitude’ M*”
is a function of the kinematical variables of the other particle: p,o and p — ¢,0’. In the very soft
limit p and p — ¢ coincide, and we are left with

M" = M* (p,o0,0"), qg—0. (125)

Now, like for the photon, if the emitting particle is spinless, M*" can only depend on p; it must
be a tensor; the only possibility is
MM = p'p” f(p?) . (126)

But if the emitting particle is on-shell, p*> = —m? is a constant. Therefore f(p?) is a constant,

which only depends on the particle species but not on its state. This defines the gravitational
coupling constant for the particle under study. More precisely, with our conventions,

M = 2i 2m)' f pp” - €, () | for ¢ —0. (127)

Example: scalar field in GR. Of course our goal is to prove that general relativity is essentially the
only possible theory of gravitation, but let’s consider it here as an example, to check whether eq. (127)
makes sense. The action for gravity and a (minimally coupled) scalar ¢ in GR is

S=8y+85s =10 /d‘*:mﬁ—gRJr /d%,ﬁ—g[ — 19" 0,0 0,0 — sm*¢?] . (128)
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We get non-trivial contributions to the amplitude of fig. 1 only from interactions that involve two ¢
fields (to create and destroy the two scalar particles in the diagram) and one h,,, (to create the outgoing
graviton). These only comes from Sy, which we expand in powers of h,,:

55,

2
S| o)+ O(R) (129)

Nuv

S¢[¢aguu =N + hw/] = S¢[¢a UW] + /d4l'

The linear piece—which is what interests us—is related to the ¢ stress-energy tensor. Indeed, given the
definition of the latter

2 88,
T (g) = —=— 2% 130
@) = 7= 59m @) (130)
we have
Solt, gpu] = S + / dhx Yhy, T 4 (131)

where ‘flat’ reminds us to compute the corresponding quantity for g,, = 7,,. The stress-energy tensor
of our scalar in flat space is

Tiae = 000" ¢+ 51" [ — 00 0%¢ — m*¢?] . (132)
The amplitude for the process in fig. 1 is then

M =i@2m)* 5 [(ip") (=i — ")) + (n < v)]eh, (q) + # 0™ e, (q) - (133)

The last piece vanishes, because the graviton polarization tensor is traceless (as well as purely spatial,
and transverse). The rest, for ¢* — 0 reduces precisely to eq. (127), with gravitational coupling f = %

Notice that we should not trust this particular value of f, because we have been cavalier about the
normalization of the graviton field h,,. In GR the metric is dimensionless, and so is h,,. However we
know that in QFT canonically normalized fields are typically dimensionful. In particular integer-spin
fields have mass dimension one. This means that the correct h,, field to use in computing amplitudes
differs from the GR one in the normalization. As a consequence eq. (133) is off by the same normalization
correction factor. We can postpone for the moment the issue of the correct normalization of h,, since
as long as we only consider processes where a single graviton is emitted or absorbed, the same correction
factor will enter all amplitudes we compute as an overall constant. Ultimately, as we will see, the correct
value of f is related to Newton’s constant.

If the particle emitting the graviton has spin J > 0, in principle the tensor amplitude M* can
depend on the spin variables o, ¢’ as well, and its tensor structure needs not be just p#p”. Like
for the photon, we postulate that in the soft limit there is in fact no spin-dependence in M*, and
that the amplitude is non-vanishing only if the initial spin is the same as the final one:

M =2i (27)* fp'p” - €. (q) - door for ¢ —0. (134)

We will discuss later why this assumption is justified.
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Now we follow precisely the same steps as for the photon. We consider a generic scattering
process @ — (3 (fig. 2a), and the same process where a very soft graviton is also emitted (fig. 2b).
The amplitude for the latter is the sum of all diagrams that make up the former where we also
attach the new graviton line in all possible places. The only ingredient that differs from the photon
case is our new elementary vertex for fig. 1, eq. (134). In particular all propagators are the same
as for the photon emission case, and for ¢ — 0 we can neglect the diagrams where we attach the
graviton to an internal particle line of the original & — (3 process. We get

fig. 20 = Moy 3 IS l0P0 e ) (135)
" Pn - q
where the sum runs over all external legs, 7,, is —1 and +1 for incoming and outgoing particles, re-
spectively, and the f,,’s are the individual gravitational coupling constants, which may in principle
depend on the particle species.
Now, as we argued, for the amplitude to be Lorentz-invariant, it must vanish if we formally
replace the graviton polarization tensor with g,. Imposing this we have

Mag Y mn fupli =0 (136)

That is, either M, vanishes, in which case the original process o — 3 is forbidden, or we have
discovered an additive four-vector

Fr=>" faph (137)
that has to be conserved by all possible scattering processes:
Elrllcoming = F(ﬁltgoing (138)

But the only such quantity conserved by all non-trivial scattering processes is the total four-
momentum. By ‘non-trivial” we mean processes where the individual particle momenta change.
Then F* must be proportional to the total four-momentum P*, which is only possible if all different
gravitational coupling constants f, are in fact the same constant f, which is thus independent of
the particle species,

fa=1Tf V particles , F* = fp". (139)

To see that indeed this is the only possibility, consider an elastic 2 — 2 collision °, where
particles a and b—with gravitational couplings f, and f,—have initially momenta p, and py,
collide, and emerge from the collision with momenta p,” and p,’. In the CM frame we have
conservation of the total momentum

Pa+ 06 =0=pa + Dy (140)

5By ‘elastic’ we denote those collisions that do not change the particle content of the initial state, but only their
momenta and spins. That is, the particles entering the collision region are the same as those exiting it.



G8099 — Selected Topics in Gravity 27

p
T —"— ygA ﬁ-ﬁ
A N eB

%
:@f@

Figure 4: If there are two sectors A, B of the world that do not interact with each other, each scattering
amplitude factorizes into two sub-amplitudes.

as well as of our new quantity F*:

faﬁa‘{’fbﬁb:faﬁa/‘{'fbﬁb/ (141)
By means of the former we can rewrite the latter as
(fa - fb) (ﬁa - ﬁa/) =0. (142)

That is, either our scattering process is in fact a trivial process where particles a and b do not
interact—p," = p, and p,’ = p,—or their gravitational couplings must be identical: f, = f, = f.
Notice that a and b are arbitrary particle species, and that there is no loss of generality in
restricting to elastic processes: if two particles interact at all, as a consequence of the optical
theorem the scattering amplitude for elastic processes cannot vanish. We have therefore shown
that all particles must share the same gravitational coupling constant f.

This is nothing but the equivalence principle: at low energies, gravity couples to all forms of
energy-momentum with the same strength, regardless of ‘chemical composition’. Gravitational
interactions are insensitive to the particle species—they only care about energy and momentum.
We see here that the equivalence principle, rather than being an independent principle, it is in
fact an unavoidable consequence of Lorentz invariance and quantum mechanics for massless spin-2
particles

There is one caveat for our proof that F* must be proportional to the total four-momentum.
Suppose that particle species can be divided into two (or more) subsets A and B that do not
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interact with each other. That is, particles belonging to one subset have non-trivial interactions
within the same subset, but do not interact at all with particles belonging to the other. In such
a case, in any scattering process we can decompose the initial and final states as

a=ay+ag, B =04+ 0B, (143)

where ay p and (34 p are the initial and final states for the individual subsets. The scattering
amplitude factorizes like in fig. 4, and besides total four-momentum conservation, we also have
that the total four-momentum within each subset is conserved:

Pt =Pl

Ba PO!jB = PgB : (144)

As a consequence, we can split our new four-vector F* as F* = F + F§, and each of the two
contributions must be separately conserved. According to our proof above, this is only possible if

Fy=faPi, Fg=/[sPy. (145)

That is, subsystems of the world that do not interact with each other can have different grav-
itational coupling constants. But if f4 and fp are both non-zero, both subsystems do interact
with gravity, and therefore do interact with each other, at least through diagrams like fig. 5—in
which case PZ p are not separately conserved, and we are back to the case f4 = fg = f! The
only other option is that one of the two subsystems, say B, does not interact with gravity either,
fe = 0. In a sense we have to decide which subsystem gravitons themselves belong to—and we
want to belong to the same. The other subsystem—B-—does not interact with us in any way, not
even gravitationally. All particles that we know of—and that we can ever know of—are those in
our subsystem. The existence of B cannot be probed, because to probe something you have to
interact with it (as Heisenberg taught us).

One final remark: we never specified what kind of particles participate in the scattering o — (3
as external states. Our proof was completely general: the particles in question may be massive or
massless, with arbitrary spin. In particular, some of them may themselves be gravitons! Then,
their coupling to a very soft graviton must be the same as for the other particles, oc fp*p”. There-
fore, not only low-energy gravitational interactions cannot distinguish between different ‘ordinary’
particles—they cannot tell the difference between a graviton and an ordinary particle either. This
fact is sometimes referred to as the strong equivalence principle: as far as gravitational interactions
are concerned, the energy and momentum stored in gravitational fields are indistinguishable from
ordinary matter’s energy and momentum. Once again, we see that in QFT this is not a principle,
but a theorem.

We conclude this section by questioning the validity of our fundamental assumption, eq. (134).
We can proceed in exactly the same way as for the photon—see last section. The most generic
form of the elementary vertex amplitude (fig. 1) is

M = M"(p,o,0')-€,(q) . (146)

|n%



G8099 — Selected Topics in Gravity 29

pA Ba

Figure 5: A contribution to the A-B interaction, when both sectors interact with gravity.

Plugging this into the amplitude for fig. 2b, and neglecting the contributions from attaching the
graviton to internal particle lines, we get

nMy'lLW pmo'mo'; *
fig. 2b =33 Mas(..., 0l ...)" ( )eW(q) , (147)

Pn - q

where like in the photon case, Mygs(..., 0}, ...) is the amplitude for the original process o — 3
with the n-th spin replaced by ¢/,. For Lorentz invariance to hold we must have

nMHV mny n?l
SN Masleees ol ) 2Py 0w On) ). (148)

Pn-q

Extrapolating this relation to generic ¢"’s (i.e., with ¢* # 0), for any given n we can take ¢* to
be orthogonal to p# and not orthogonal to any other momentum. The n-th denominator thus
vanishes, and the resulting divergence can only be canceled if the n-th numerator also vanishes:

M (pn,on,0,,) g =0 Vq¢" such that ¢ -p, =0, (149)

This is only possible if

M (s Ony 07) = Py Py X fuPny 0ns 07) (150)
where we used that MM has to be symmetric. The above structure for M/ resembles eq. (134),
with a momentum- and spin-dependent coupling constant f,,. Our constraint (148) becomes

ZZMO‘ﬂ<"'70;”") X Ny fo(Dry Oy o) D=0 (151)
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This equation, rather than constraining the graviton couplings, in general imposes a linear relation
between different scattering amplitudes in the original system, before taking into account the
coupling with gravity—relation that depends on how eventually the various particles are going to
couple to gravity. At least at lowest order in the gravitational coupling constants, this makes no
sense. The only way out is that the gravitational couplings are diagonal in spin-space,

fn(pn; On, U;) = fn(prw Un) X 5OnU§L ) (152)

so that we get an overall M,z out of the sum over external particles, and we are left with

Mcxﬁznn fn(pmo-n) pz =0. (153)

Either the original amplitude M, vanishes, or the four vector

FH = an(pman)lﬁ (154)

has to be conserved by our scattering process. But, as we showed above, the only additive four-
vector that is conserved by all non-trivial scattering processes is the total four-momentum. There-
fore F* must be proportional to the total four-momentum, which means that the gravitational
coupling constants are independent of momenta and spins, as well as of the particle species:

This completes our proof.
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