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Abstract. In Newtonian gravity, mass is an intrinsic property of matter while in
general relativity (GR), mass is a contextual property of matter, e.g., when two
di↵erent GR spacetimes are adjoined. Herein, we explore the possibility that the
astrophysical missing mass attributed to non-baryonic dark matter (DM) actually
obtains because we have been assuming the Newtonian intrinsic view of mass rather
than the GR contextual view. Perhaps, we should model astrophysical phenomena
via combined GR spacetimes to better account for their complexity. Accordingly, we
consider a GR ansatz in fitting galactic rotation curve data (THINGS), X-ray cluster
mass profile data (ROSAT/ASCA), and CMB angular power spectrum data (Planck
2015) without DM. We find that our fits compare well with both modified gravity
programs and DM programs.
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1. Introduction

The astrophysical missing mass problem is unresolved despite decades of work on

modified gravity programs, dark matter theory, and experimental searches for non-

baryonic dark matter (DM). Due to the complexity of “realistic distributions of matter

in galaxies, we have neither analytic, nor numerical solutions to general relativity (GR)

from which orbits can be predicted” [1]. Indeed, it is not reasonable to expect an exact

GR solution applicable to most missing mass phenomena. So, perhaps it is reasonable to

consider GR deviations from Newtonian gravity to account for missing mass phenomena,

even in such weak gravitational fields. In fact, Cooperstock et al. used GR instead of

Newtonian gravity in fitting galactic rotation curves (RC’s) and found that the non-

luminous matter in galaxies “is considerably more modest in extent than the DM extent

claimed on the basis of Newtonian gravitational dynamics” [2–4]. Cooperstock also

showed [5] that there is no Newtonian limit for the flat rotation curves of GR’s axially-

symmetric van Stockum solution. Herein, we propose another mechanism by which

GR deviates from Newtonian gravity in order to account for missing mass phenomena

without DM.

The di↵erence we are pointing out is the well-known result per GR that matter

can simultaneously possess di↵erent values of mass when it is responsible for di↵erent

combined spatiotemporal geometries. This spatiotemporal contextuality of mass is

not present in Newtonian gravity where mass is an intrinsic property of matter. For

example, when a Schwarzschild vacuum surrounds a spherical matter distribution the

“proper mass” Mp of the matter, as measured locally in the matter, can be di↵erent

than the “dynamic mass‡” M in the Schwarzschild metric responsible for orbital

kinematics about the matter [6]. This di↵erence is attributed to binding energy and

goes as dMp =

✓
1� 2GM(r)

c2r

◆�1/2

dM , which means it is too small to account for

missing mass phenomena, but it is evidence of GR contextuality for mass. In another

example, suppose a Schwarzschild vacuum surrounds a sphere of Friedmann-Lemâıtre-

Robertson-Walker (FLRW) dust connected at the instanteously null Schwarzschild radial

coordinate. The dynamic mass M of the surrounding Schwarzschild metric is related to

the proper mass Mp of the FLRW dust by [7]

Mp

M
=

8
>>>>>><

>>>>>>:

1 flat model

3 (⌘ � sin(⌘))

4 sin3(⌘/2)
� 1 closed model

3 (sinh(⌘)� ⌘)

4 sinh3(⌘/2)
 1 open model

(1)

where ⌘ is conformal time. Using this well-known embedding for the closed FLRW

model (used originally to model stellar collapse [8]), we have for the ratio
Mp

M
of a ball

‡ Typically, “dynamical mass” and “luminous mass” are the terms used with dynamical mass larger
than luminous mass. Our terminology is following the GR convention.
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of FLRW closed-model dust surrounded by Schwarzschild vacuum as joined at FLRW

radial coordinate �o

Mp

M
=

3(2�o � sin(2�o))

4 sin3(�o)
(2)

(Figure 1), where

ds2 = �c2d⌧ 2 + a2(⌧)
�
d�2 + sin2 �d⌦2

�
(3)

is the closed FLRW metric. The heuristic picture here is that a ball of FLRW dust

has collapsed from its expanding FLRW cosmological context leaving a vacuum region

about the ball. The dynamic mass of the collapsed ball of dust measured by a vacuum

region observer in orbit about the collapsed ball is then less than the proper mass of

the ball as determined by observers in the remaining expanding FLRW global context.

Since it is dynamic mass that is used for mass-luminosity ratios, there will be a

discrepancy between dynamic mass as determined by mass-luminosity ratios and larger

scale determinations of proper mass. And, this discrepancy can be quite large. For

�o =
⇡

2
Eq(2) gives

Mp

M
= 2.36 and for �o = 0.8⇡ Eq(2) gives

Mp

M
= 22.1. The

ratio quickly increases beyond �o =
⇡

2
because dM < 0, since the spherical area

starts decreasing with increasing �. It is also the case that the extrinsic curvature

of the interface changes sign for �o >
⇡

2
, so this region has the dust surrounding the

vacuum and is not what we’re considering, but we’re not proposing that this is an exact

GR solution explaining away DM. Again, no such exact solution is likely forthcoming,

given the complexity of matter distribution in most astrophysical situations. Rather,

we’re simply pointing out that the GR contextuality of mass created when di↵erent GR

spacetimes are combined allows for large di↵erences between proper and dynamic mass.

Essentially, mass is an intrinsic property of matter per Newtonian gravity, but mass is

a geometric consequence of matter per GR. Since two di↵erent spacetime geometries

may be associated with one and the same matter in a combined GR solution, mass is a

contextual property of matter per GR. So, given the complexity of most astrophysical

matter distributions, combined GR spacetimes might provide a better model of dark

matter phenomena than Newtonian gravity or a single GR spacetime. We should quickly

point out that this may prima facie seem to constitute a violation of the equivalence

principle, as understood to mean inertial mass equals gravitational mass, since inertial

mass can’t be equal to two di↵erent values of gravitational mass. But, the equivalence

principle says simply that spacetime is locally flat [9] and that is certainly not being

violated here nor with any solution to Einstein’s equations. So, we believe it is reasonable

to consider this di↵erence between GR and Newtonian gravity as the source of missing

mass phenomena§.

§ We previously considered contextuality motivated by disordered locality requiring a modified gravity
[10], but here we consider the contextuality already inherent in combined GR spacetimes.
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Figure 1. Plot of Mp

M as a function of the radial coordinate �o at the junction between
the closed, matter-dominated FLRW spacetime and the Schwarzschild spacetime. In
GR, unlike Newtonian gravity, matter can simultaneously have two di↵erent values of
mass. Thus, mass is not an intrinsic property of matter in GR, it is contextual.

2. The Ansatz

While proper mass Mp must be ⇠ 10 times larger than dynamic mass M in order to

account for missing mass phenomena, the correction to the background spacetime metric

responsible for missing mass phenomena is small. For example, assuming circular orbits

as is common for fitting galactic rotation curves, we have v2r = GMp(r) where Mp(r) is

the (larger) proper mass inside the circular orbit at radius r and v is the orbital speed.

This gives
2GMp(r)

c2r
of the Schwarzschild metric equal to 2

v2

c2
. The largest galactic

rotation speeds are typically only 10�3c, so the metric deviation from flat spacetime per

the Schwarzschild metric is ⇠ 10�6, an empirically small metric correction for galactic

kinematics. Intracluster medium gas is even more rarefied and the potentials used for

FLRW metric perturbations leading to anisotropies in the angular power spectrum of

the cosmic microwave background (CMB) are already ⌧ 1 to include DM.

In this geometric view, missing mass phenomena are understood as small deviations

from some background metric. Of course, if one favors an exotic new kind of matter a la

DM to account for missing mass phenomena, then it is important to note that the exotic

new matter is far more prevalent than ordinary matter. But in our approach, it is more

important to note that we’re dealing with weak gravitational fields. It is customary to

expect deviations of GR from Newtonian gravity for a strong gravitational field with

its large spacetime curvature, but attempting to account for missing mass phenomena

via GR actually requires that GR deviate from Newtonian gravity for weak fields, as

we showed above. Thus, contrary to conventional thinking, what we’re advocating is a

geometric view of even weak gravitational fields, at least when the matter is distributed

on astronomical scales. Of course, this is not unprecedented.

In addition to Cooperstock et al. noted above, Mo↵at & Rahvar used “The weak
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field approximation of MOG (modified gravity)” as a perturbation of “the metric and

the fields around Minkowski space-time” in fitting galactic RC’s [11] and X-ray cluster

mass profiles [12] without DM. Certainly modified Newtonian dynamics (MOND) can

be viewed in this fashion, since MOND advocates an extremely small modification

to Newtonian acceleration on astronomical scales in the context of flat spacetime

(Newtonian gravity), and acceleration due to gravity in flat spacetime is replaced by

curved spacetime in GR. So, MOND’s premise is similar to ours, i.e., a small change in

spacetime curvature on astrophysical scales (equivalent to a small change to acceleration

in Newtonian gravity) replaces the need for a greatly increased mass in accounting for

galactic dynamics. Again, a correction is justified if the contextual nature of mass

in combined GR spacetimes provides a better model of dark matter phenomena than

Newtonian gravity or a single GR spacetime, and this seems a reasonable assumption

given the complexity of most astrophysical matter distributions.

Since

• M = Mp for the spatially flat FLRW model surrounded by Schwarzschild vacuum

per Eq(1).

• (3)R = 0 for both the spatially flat FLRW dust and Schwarzschild vacuum.

• We’re talking about weak gravitational fields.

we might attribute the large mass di↵erence between M and Mp to a small di↵erence

in spatial curvature. Indeed, the di↵erence between Mp and M shown in Eq(2) obtains

from the integrated di↵erence in spatial geometry between the closed, matter-dominated

FLRW dust ball and the surrounding Schwarzschild vacuum [7]

Mp

M
=

R �o

0 sin2 � d�R �o

0 sin2 � d(sin�)
(4)

In the case of dark energy as pertains to the SCP Union2.1 SN Ia data, we considered

metric corrections h↵� to proper distance Dp satisfying the vacuum perturbation

equation r2h↵� = 0 in the flat space of FLRW matter-dominated cosmology, i.e.,
d2

dD2
p

hii = 0 whereDp is proper distance per the FLRWmetric [13,14]. We then corrected

proper distance according to Dp !
p

1 + hii Dp =

r
1 +

Dp

A
Dp (A is an arbitrary

constant used as a fitting parameter and was found to be about 8 Gcy). Here we adopt

this approach for modeling missing mass phenomena. We will assume dMp =
p
1 + hdM

in analogy with our correction of proper distance above. Further,r2h = 0 with spherical

symmetry assumed for galactic rotation curves, X-ray cluster mass profiles, and the

baryon-photon perturbations in pre-recombination FLRW cosmology. The important

di↵erence between our treatment of dark energy and missing mass is that while h satisfies

the perturbation equation, it does not have to be the case that h ⌧ 1. But, as explained

above, it is the case that even the enhanced proper mass constitutes a small perturbative

correction to a background metric, so the motivation for this GR ansatz isn’t totally
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ill-founded. Accordingly, the GR ansatz is based on h =
A

r
+B which is used to obtain

proper mass from dynamic mass per

dMp =
p
1 + h dM =

r
A

r
+B dM (5)

As with dark energy, the arbitrary constants A and B are used as fitting parameters.

The best fit values of A and B show interesting trends across and within the three data

sets [15].

3. Conclusion

Overall, the GR ansatz Eq(5) fits of THINGS data (average mean square error MSE =

101 (km/s)2) compare well with MOND (d unconstrained average MSE = 51.7 (km/s)2

and d constrained average MSE = 67.1 (km/s)2), Burkett DM halo (average MSE =

119 (km/s)2), and Navarro-Frenk-White (NFW) DM halo (average MSE = 149 (km/s)2)

(Figure(2)). As with galactic RC’s, the GR ansatz fits of X-ray cluster mass profiles

(ROSAT/ASCA data, average MSE = 0.00535 from (�Log(M))2) compare well with

metric skew-tensor gravity (MSTG) (average MSE = 0.0236) and core-modified NFW

DM (average MSE = 0.00975) (Figure(3)). Finally, the GR ansatz fit of the Planck

2015 CMB angular power spectrum data (root-mean-square error RMSE = 225 (µK)2)

compares well with both ⇤CDM and scalar-tensor-vector gravity (STVG) (Figure(4),

both have RMSE = 240 (µK)2). Twelve galactic RC’s, eleven X-ray cluster mass profiles

and the first three peaks of the CMB angular power spectrum do not provide enough

data fits to draw any strong conclusions per se, but the general trends and results noted

above are consistent with well-established research. Therefore, GR contextual mass

arising from combined GR spacetimes modeling complex/realistic astrophysical matter

distributions might provide a better model of astrophysical missing mass phenomena

than Newtonian intrinsic mass.
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Figure 2. Graph of our GR ansatz fit (thick blue, MSE = 10.1), MOND fit (thick
green, MSE = 18.8), Burkett DM halo fit (red, MSE = 72.9), and NFW DM halo
fit (black, MSE = 101) of NGC 3198 THINGS galactic RC data (black dots with
error bars). Disk contribution is grey, gas contribution is burnt orange, and bulge
contribution is light blue. Vertical axis is rotation velocity in km/s, horizontal axis
is orbital radius in kpc, and mean square error (MSE) is in (km/s)2. Where the fits
are crowded they all conform nicely to the data, so aberrant fitting regions are visible.
Note: The MOND fit is with d unconstrained. Complete results can be found in [15].

Figure 3. A log-log plot of our GR ansatz fit, MSTG fit, and core-modified NFW
DM fit of the Fornax X-ray cluster mass profile (compiled from ROSAT and ASCA
data). Vertical scale is in solar masses and horizontal scale is in kpc. Our GR ansatz
(upper red lines, MSE = 0.00126) is increasing the gas (dynamic) mass (triangles) to
fit the proper mass (squares). MSTG (lower red lines, MSE = 0.0128) is decreasing
the proper mass to fit the gas (dynamic) mass. Core-modified NFW DM (upper blue
lines, MSE = 0.00128) is adding matter to increase the gas (dynamic) mass to fit the
proper mass. The sizes of the objects are approximately equal to their errors. Mean
square error (MSE) is (�Log(M))2. Line separation in the pair of lines (connecting fit
points) corresponds to error. Complete results can be found in [15].
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Figure 4. This is a plot of D` in (µK)2 versus ` in the range 100  `  1000
for the Planck 2015 CMB data [16] (black error bars), the Planck consortium’s best
⇤CDM fit [17] (solid green line), and our GR ansatz fit (Hu & Sugiyama [18,19] (HuS)
standard cold dark matter (sCDM) fit) (orange dots). Our GR ansatz and STVG
trivially reproduce the HuS fit without DM. Since we do not have ⇤, our best fit to
these data would equal the HuS sCDM best fit. The root-mean-square error (RMSE)
for the HuS sCDM fit points shown is 225 (µK)2. STVG can also trivially replace
DM in ⇤CDM and STVG keeps ⇤, so the STVG best fit to these data would equal
the ⇤CDM best fit. The RMSE for the ⇤CDM fit shown corresponding to the HuS fit
points shown is 240 (µK)2, although this fit is for all ` in the range 30  `  2508. A
derivation of these results can be found in [15].
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