One feature of the magnetic force law (Eq. 5.1) warrants special attention:

| Magnetic forces do no work.

For if QO moves an amount dl = v dt, the work done 1s
AWnag = Fiag - dl = Q(v X B) -vdi = 0. (5.11)

This follows because (v x B) is perpendicular to v, so (v x B) . v = 0. Magnetic forces may
alter the direction in which a particle moves, but they cannot speed it up or slow it down.
The fact that magnetic forces do no work is an elementary and direct consequence of the
Lorentz force law, but there are many situations in which it appears so manifestly false that
one’s confidence is bound to waver. When a magnetic crane lifts the carcass of a junked
car, for instance, something is obviously doing work, and it seems perverse to deny that the
magnetic force is responsible. Well, perverse or not, deny it we must, and it can be a very
subtle matter to figure out what agency does deserve the credit in such circumstances. I'll
show you several examples as we go along.

Problem 5.1 A particle of charge g enters a region of uniform magnetic field B (pointing into
the page). The field deflects the particle a distance d above the original line of flight, as shown
in Fig. 5.8. Is the charge positive or negative? In terms of a, d, B and ¢, find the momentum
of the particle.

Problem 5.2 Find and sketch the trajectory of the particle in Ex. 5.2, if it starts at the origin
with velocity

(@) v(0) = (E/B)y,

(b) v(0) = (E/2B)y,

(€) v(0) = (E/B)Y + 2).
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Figure 5.8

Problem 5.31n 1897 J. J. Thomson “discovered” the electron by measuring the charge-to-mass
ratio of “‘cathode rays™ (actually, streams of electrons, with charge ¢ and mass m) as follows:

(a) First he passed the beam through uniform crossed electric and magnetic fields E and B
(mutually perpendicular, and both of them perpendicular to the beam), and adjusted the electric
field until he got zero deflection. What, then, was the speed of the particles (in terms of E and
B)?

(b) Then he turned off the electric field, and measured the radius of curvature, R, of the beam.
as deflected by the magnetic field alone. In terms of E, B, and R, what is the charge-to-mass
ratio (¢ /m) of the particles?

5.1.3 Currents

The current in a wire is the charge per unit time passing a given point. By definition.
negative charges moving to the left count the same as positive ones to the right. This
conveniently reflects the physical fact that almost all phenomena involving moving charges
depend on the product of charge and velocity—if you change the sign of g and v, you
get the same answer, so it doesn’t really matter which you have. (The Lorentz force law
is a case in point; the Hall effect (Prob. 5.39) is a notorious exception.) In practice, it is
ordinarily the negatively charged electrons that do the moving—in the direction opposite
the electric current. To avoid the petty complications this entails, I shall often pretend it's
the positive charges that move, as in fact everyone assumed they did for a century or so
after Benjamin Franklin established his unfortunate convention.® Current is measured in
coulombs-per-second, or amperes (A):

| A=1C/s. (5.12)
A line charge A traveling down a wire at speed v (Fig. 5.9) constitutes a current
I = Av, (5.13)

because a segment of length vAt, carrying charge AvAr, passes point P in a time interval
Atr. Current is actually a vector:
I =Av; (5.1

31f we called the electron plus and the proton minus, the problem would never arise. In the context of Franklin'~
experiments with cat’s fur and glass rods, the choice was completely arbitrary,
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Figure 5.9

since the path of the flow is dictated by the shape of the wire, most people don’t bother
to display the vectorial character of I explicitly, but when it comes to surface and volume
currents we cannot afford to be so casual, and for the sake of notational consistency it is
a good idea to acknowledge this right from the start. A neutral wire, of course, contains
as many stationary positive charges as mobile negative ones. The former do not contribute
to the current—the charge density A in Eq. 5.13 refers only to the moving charges. In the
unusual situation where both types move, I = A vy + A_v_.
The magnetic force on a segment of current-carrying wire is evidently

Frnag = f(v X B)dqg = /(v X B)rdl = ](I x B)dl. (5.15)

Inasmuch as I and dl both point in the same direction, we can just as well write this as

F]nag — f’ (dl X B). (5.16)

Typically, the current is constant (in magnitude) along the wire, and in that case / comes
outside the integral:

Finag =1 f(dl x B). (5.17)

Example 5.3

A rectangular loop of wire, supporting a mass m, hangs vertically with one end in a uniform
magnetic field B, which points into the page in the shaded region of Fig. 5.10. For what
current 7, in the loop, would the magnetic force upward exactly balance the gravitational force
downward?

Solution: First of all, the current must circulate clockwise, in order for (I x B) in the horizontal
segment to point upward. The force is

Fmag = ]Ba,

where a is the width of the loop. (The magnetic forces on the two vertical segments cancel.)
For Finag to balance the weight (mg), we must therefore have

mg
= —, 5.
| Ba (5.18)

The weight just hangs there, suspended in mid-air!
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Figure 5.10

What happens if we now increase the current? Then the upward magnetic force exceeds the
downward force of gravity, and the loop rises, lifting the weight. Somebody’s doing work, and
it sure looks as though the magnetic force is responsible. Indeed, one is tempted to write

Wrnag —_ Fmagh = lBah, (5]9’

where 4 is the distance the loop rises. But we know that magnetic forces never do work.
What’s going on here?

Well, when the loop starts to rise, the charges in the wire are no longer moving horizontally—
their velocity now acquires an upward component u, the speed of the loop (Fig. 5.11), in addition
to the horizontal component w associated with the current (I = Aw). The magnetic force.
which is always perpendicular to the velocity, no longer points straight up, but tilts back. It
is perpendicular to the ner displacement of the charge (which is in the direction of v), and
therefore it does no work on g. It does have a vertical component (gw B); indeed, the net
vertical force on all the charge (Aa) in the upper segment of the loop is

Fyert = hawB = I Ba (5.20y

(as before); but now it also has a horizontal component (qu B), which opposes the flow of
current. Whoever is in charge of maintaining that current, therefore, must now push those
charges along, against the backward component of the magnetic force.

Figure 5.11
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The total horizontal force on the top segment is evidently
Fhoriz = AauB. (5.21)
In a time dt the charges move a (horizontal) distance w dt, so the work done by this agency
(presumably a battery or a generator) is

Whatiery = Aan wwdt = IBah,

which is precisely what we naively attributed to the magneric force in Eq. 5.19. Was work
done in this process? Absolutely! Who did it? The battery! What, then, was the role of the
magnetic force? Well, it redirected the horizontal force of the battery into the vertical motion
of the loop and the weight,



