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3 Curvature

In our discussion of manifolds, it became clear that there were various notions we could talk

about as soon as the manifold was defined; we could define functions, take their derivatives,

consider parameterized paths, set up tensors, and so on. Other concepts, such as the volume

of a region or the length of a path, required some additional piece of structure, namely the
introduction of a metric. It would be natural to think of the notion of “curvature”, which we

have already used informally, is something that depends on the metric. Actually this turns

out to be not quite true, or at least incomplete. In fact there is one additional structure

we need to introduce — a “connection” — which is characterized by the curvature. We will

show how the existence of a metric implies a certain connection, whose curvature may be

thought of as that of the metric.
The connection becomes necessary when we attempt to address the problem of the partial

derivative not being a good tensor operator. What we would like is a covariant derivative;

that is, an operator which reduces to the partial derivative in flat space with Cartesian

coordinates, but transforms as a tensor on an arbitrary manifold. It is conventional to spend

a certain amount of time motivating the introduction of a covariant derivative, but in fact

the need is obvious; equations such as ∂µT µν = 0 are going to have to be generalized to
curved space somehow. So let’s agree that a covariant derivative would be a good thing to

have, and go about setting it up.

In flat space in Cartesian coordinates, the partial derivative operator ∂µ is a map from

(k, l) tensor fields to (k, l+1) tensor fields, which acts linearly on its arguments and obeys the

Leibniz rule on tensor products. All of this continues to be true in the more general situation

we would now like to consider, but the map provided by the partial derivative depends on the
coordinate system used. We would therefore like to define a covariant derivative operator

∇ to perform the functions of the partial derivative, but in a way independent of coordinates.

We therefore require that ∇ be a map from (k, l) tensor fields to (k, l+1) tensor fields which

has these two properties:

1. linearity: ∇(T + S) = ∇T + ∇S ;

2. Leibniz (product) rule: ∇(T ⊗ S) = (∇T ) ⊗ S + T ⊗ (∇S) .

If ∇ is going to obey the Leibniz rule, it can always be written as the partial derivative
plus some linear transformation. That is, to take the covariant derivative we first take the

partial derivative, and then apply a correction to make the result covariant. (We aren’t going

to prove this reasonable-sounding statement, but Wald goes into detail if you are interested.)
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Let’s consider what this means for the covariant derivative of a vector V ν . It means that, for

each direction µ, the covariant derivative ∇µ will be given by the partial derivative ∂µ plus
a correction specified by a matrix (Γµ)ρσ (an n× n matrix, where n is the dimensionality of

the manifold, for each µ). In fact the parentheses are usually dropped and we write these

matrices, known as the connection coefficients, with haphazard index placement as Γρµσ.

We therefore have

∇µV
ν = ∂µV ν + ΓνµλV

λ . (3.1)

Notice that in the second term the index originally on V has moved to the Γ, and a new index

is summed over. If this is the expression for the covariant derivative of a vector in terms of
the partial derivative, we should be able to determine the transformation properties of Γνµλ
by demanding that the left hand side be a (1, 1) tensor. That is, we want the transformation

law to be

∇µ′V ν′ =
∂xµ

∂xµ′

∂xν′

∂xν
∇µV

ν . (3.2)

Let’s look at the left side first; we can expand it using (3.1) and then transform the parts
that we understand:

∇µ′V ν′ = ∂µ′V ν′ + Γν
′

µ′λ′V λ′

=
∂xµ

∂xµ′

∂xν′

∂xν
∂µV ν +

∂xµ

∂xµ′
V ν ∂

∂xµ

∂xν′

∂xν
+ Γν

′

µ′λ′

∂xλ′

∂xλ
V λ . (3.3)

The right side, meanwhile, can likewise be expanded:

∂xµ

∂xµ′

∂xν′

∂xν
∇µV ν =

∂xµ

∂xµ′

∂xν′

∂xν
∂µV ν +

∂xµ

∂xµ′

∂xν′

∂xν
ΓνµλV

λ . (3.4)

These last two expressions are to be equated; the first terms in each are identical and therefore
cancel, so we have

Γν
′

µ′λ′

∂xλ′

∂xλ
V λ +

∂xµ

∂xµ′
V λ ∂

∂xµ

∂xν′

∂xλ
=

∂xµ

∂xµ′

∂xν′

∂xν
ΓνµλV

λ , (3.5)

where we have changed a dummy index from ν to λ. This equation must be true for any

vector V λ, so we can eliminate that on both sides. Then the connection coefficients in the

primed coordinates may be isolated by multiplying by ∂xλ/∂xλ′

. The result is

Γν
′

µ′λ′ =
∂xµ

∂xµ′

∂xλ

∂xλ′

∂xν′

∂xν
Γνµλ −

∂xµ

∂xµ′

∂xλ

∂xλ′

∂2xν′

∂xµ∂xλ
. (3.6)

This is not, of course, the tensor transformation law; the second term on the right spoils it.

That’s okay, because the connection coefficients are not the components of a tensor. They
are purposefully constructed to be non-tensorial, but in such a way that the combination

(3.1) transforms as a tensor — the extra terms in the transformation of the partials and
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the Γ’s exactly cancel. This is why we are not so careful about index placement on the

connection coefficients; they are not a tensor, and therefore you should try not to raise and
lower their indices.

What about the covariant derivatives of other sorts of tensors? By similar reasoning to

that used for vectors, the covariant derivative of a one-form can also be expressed as a partial

derivative plus some linear transformation. But there is no reason as yet that the matrices

representing this transformation should be related to the coefficients Γνµλ. In general we

could write something like
∇µων = ∂µων + Γ̃λµνωλ , (3.7)

where Γ̃λµν is a new set of matrices for each µ. (Pay attention to where all of the various

indices go.) It is straightforward to derive that the transformation properties of Γ̃ must be

the same as those of Γ, but otherwise no relationship has been established. To do so, we

need to introduce two new properties that we would like our covariant derivative to have (in

addition to the two above):

3. commutes with contractions: ∇µ(T λ
λρ) = (∇T )µ

λ
λρ ,

4. reduces to the partial derivative on scalars: ∇µφ = ∂µφ .

There is no way to “derive” these properties; we are simply demanding that they be true as

part of the definition of a covariant derivative.

Let’s see what these new properties imply. Given some one-form field ωµ and vector field

V µ, we can take the covariant derivative of the scalar defined by ωλV λ to get

∇µ(ωλV
λ) = (∇µωλ)V

λ + ωλ(∇µV λ)

= (∂µωλ)V
λ + Γ̃σµλωσV

λ + ωλ(∂µV λ) + ωλΓ
λ
µρV

ρ . (3.8)

But since ωλV λ is a scalar, this must also be given by the partial derivative:

∇µ(ωλV
λ) = ∂µ(ωλV

λ)

= (∂µωλ)V
λ + ωλ(∂µV

λ) . (3.9)

This can only be true if the terms in (3.8) with connection coefficients cancel each other;

that is, rearranging dummy indices, we must have

0 = Γ̃σµλωσV
λ + ΓσµλωσV

λ . (3.10)

But both ωσ and V λ are completely arbitrary, so

Γ̃σµλ = −Γσµλ . (3.11)
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The two extra conditions we have imposed therefore allow us to express the covariant deriva-

tive of a one-form using the same connection coefficients as were used for the vector, but
now with a minus sign (and indices matched up somewhat differently):

∇µων = ∂µων − Γλµνωλ . (3.12)

It should come as no surprise that the connection coefficients encode all of the information
necessary to take the covariant derivative of a tensor of arbitrary rank. The formula is quite

straightforward; for each upper index you introduce a term with a single +Γ, and for each

lower index a term with a single −Γ:

∇σT
µ1µ2···µk

ν1ν2···νl
= ∂σT

µ1µ2···µk
ν1ν2···νl

+Γµ1
σλ T λµ2···µk

ν1ν2···νl
+ Γµ2

σλ T µ1λ···µk
ν1ν2···νl

+ · · ·
−Γλσν1

T µ1µ2···µk
λν2···νl

− Γλσν2
T µ1µ2···µk

ν1λ···νl
− · · · . (3.13)

This is the general expression for the covariant derivative. You can check it yourself; it

comes from the set of axioms we have established, and the usual requirements that tensors

of various sorts be coordinate-independent entities. Sometimes an alternative notation is
used; just as commas are used for partial derivatives, semicolons are used for covariant ones:

∇σT
µ1µ2···µk

ν1ν2···νl
≡ T µ1µ2···µk

ν1ν2···νl;σ . (3.14)

Once again, I’m not a big fan of this notation.
To define a covariant derivative, then, we need to put a “connection” on our manifold,

which is specified in some coordinate system by a set of coefficients Γλµν (n3 = 64 independent

components in n = 4 dimensions) which transform according to (3.6). (The name “connec-

tion” comes from the fact that it is used to transport vectors from one tangent space to

another, as we will soon see.) There are evidently a large number of connections we could

define on any manifold, and each of them implies a distinct notion of covariant differentia-
tion. In general relativity this freedom is not a big concern, because it turns out that every

metric defines a unique connection, which is the one used in GR. Let’s see how that works.

The first thing to notice is that the difference of two connections is a (1, 2) tensor. If

we have two sets of connection coefficients, Γλµν and Γ̂λµν , their difference Sµν
λ = Γλµν − Γ̂λµν

(notice index placement) transforms as

Sµ′ν′
λ′

= Γλ
′

µ′ν′ − Γ̂λ
′

µ′ν′

=
∂xµ

∂xµ′

∂xν

∂xν′
∂xλ′

∂xλ
Γλµν −

∂xµ

∂xµ′

∂xν

∂xν′
∂2xλ′

∂xµ∂xν
− ∂xµ

∂xµ′

∂xν

∂xν′
∂xλ′

∂xλ
Γ̂λµν +

∂xµ

∂xµ′

∂xν

∂xν′
∂2xλ′

∂xµ∂xν

=
∂xµ

∂xµ′

∂xν

∂xν′
∂xλ′

∂xλ
(Γλµν − Γ̂λµν)

=
∂xµ

∂xµ′

∂xν

∂xν′
∂xλ′

∂xλ
Sµν

λ . (3.15)
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This is just the tensor transormation law, so Sµν
λ is indeed a tensor. This implies that any

set of connections can be expressed as some fiducial connection plus a tensorial correction.
Next notice that, given a connection specified by Γλµν , we can immediately form another

connection simply by permuting the lower indices. That is, the set of coefficients Γλνµ will

also transform according to (3.6) (since the partial derivatives appearing in the last term

can be commuted), so they determine a distinct connection. There is thus a tensor we can

associate with any given connection, known as the torsion tensor, defined by

Tµν
λ = Γλµν − Γλνµ = 2Γλ[µν] . (3.16)

It is clear that the torsion is antisymmetric its lower indices, and a connection which is
symmetric in its lower indices is known as “torsion-free.”

We can now define a unique connection on a manifold with a metric gµν by introducing

two additional properties:

• torsion-free: Γλµν = Γλ(µν).

• metric compatibility: ∇ρgµν = 0.

A connection is metric compatible if the covariant derivative of the metric with respect to

that connection is everywhere zero. This implies a couple of nice properties. First, it’s easy

to show that the inverse metric also has zero covariant derivative,

∇ρg
µν = 0 . (3.17)

Second, a metric-compatible covariant derivative commutes with raising and lowering of

indices. Thus, for some vector field V λ,

gµλ∇ρV
λ = ∇ρ(gµλV

λ) = ∇ρVµ . (3.18)

With non-metric-compatible connections one must be very careful about index placement

when taking a covariant derivative.

Our claim is therefore that there is exactly one torsion-free connection on a given manifold

which is compatible with some given metric on that manifold. We do not want to make these

two requirements part of the definition of a covariant derivative; they simply single out one

of the many possible ones.
We can demonstrate both existence and uniqueness by deriving a manifestly unique

expression for the connection coefficients in terms of the metric. To accomplish this, we

expand out the equation of metric compatibility for three different permutations of the

indices:

∇ρgµν = ∂ρgµν − Γλρµgλν − Γλρνgµλ = 0
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∇µgνρ = ∂µgνρ − Γλµνgλρ − Γλµρgνλ = 0

∇νgρµ = ∂νgρµ − Γλνρgλµ − Γλνµgρλ = 0 . (3.19)

We subtract the second and third of these from the first, and use the symmetry of the

connection to obtain

∂ρgµν − ∂µgνρ − ∂νgρµ + 2Γλµνgλρ = 0 . (3.20)

It is straightforward to solve this for the connection by multiplying by gσρ. The result is

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) . (3.21)

This is one of the most important formulas in this subject; commit it to memory. Of course,

we have only proved that if a metric-compatible and torsion-free connection exists, it must

be of the form (3.21); you can check for yourself (for those of you without enough tedious
computation in your lives) that the right hand side of (3.21) transforms like a connection.

This connection we have derived from the metric is the one on which conventional general

relativity is based (although we will keep an open mind for a while longer). It is known

by different names: sometimes the Christoffel connection, sometimes the Levi-Civita

connection, sometimes the Riemannian connection. The associated connection coefficients

are sometimes called Christoffel symbols and written as
{

σ
µν

}
; we will sometimes call

them Christoffel symbols, but we won’t use the funny notation. The study of manifolds with

metrics and their associated connections is called “Riemannian geometry.” As far as I can

tell the study of more general connections can be traced back to Cartan, but I’ve never heard

it called “Cartanian geometry.”

Before putting our covariant derivatives to work, we should mention some miscellaneous

properties. First, let’s emphasize again that the connection does not have to be constructed

from the metric. In ordinary flat space there is an implicit connection we use all the time
— the Christoffel connection constructed from the flat metric. But we could, if we chose,

use a different connection, while keeping the metric flat. Also notice that the coefficients

of the Christoffel connection in flat space will vanish in Cartesian coordinates, but not in

curvilinear coordinate systems. Consider for example the plane in polar coordinates, with

metric

ds2 = dr2 + r2dθ2 . (3.22)

The nonzero components of the inverse metric are readily found to be grr = 1 and gθθ = r−2.

(Notice that we use r and θ as indices in an obvious notation.) We can compute a typical
connection coefficient:

Γr
rr =

1

2
grρ(∂rgrρ + ∂rgρr − ∂ρgrr)

=
1

2
grr(∂rgrr + ∂rgrr − ∂rgrr)
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+
1

2
grθ(∂rgrθ + ∂rgθr − ∂θgrr)

=
1

2
(1)(0 + 0 − 0) +

1

2
(0)(0 + 0 − 0)

= 0 . (3.23)

Sadly, it vanishes. But not all of them do:

Γr
θθ =

1

2
grρ(∂θgθρ + ∂θgρθ − ∂ρgθθ)

=
1

2
grr(∂θgθr + ∂θgrθ − ∂rgθθ)

=
1

2
(1)(0 + 0 − 2r)

= −r . (3.24)

Continuing to turn the crank, we eventually find

Γr
θr = Γr

rθ = 0

Γθrr = 0

Γθrθ = Γθθr =
1

r
Γθθθ = 0 . (3.25)

The existence of nonvanishing connection coefficients in curvilinear coordinate systems is

the ultimate cause of the formulas for the divergence and so on that you find in books on

electricity and magnetism.

Contrariwise, even in a curved space it is still possible to make the Christoffel symbols

vanish at any one point. This is just because, as we saw in the last section, we can always
make the first derivative of the metric vanish at a point; so by (3.21) the connection coeffi-

cients derived from this metric will also vanish. Of course this can only be established at a

point, not in some neighborhood of the point.

Another useful property is that the formula for the divergence of a vector (with respect

to the Christoffel connection) has a simplified form. The covariant divergence of V µ is given

by
∇µV µ = ∂µV µ + Γµ

µλV
λ . (3.26)

It’s easy to show (see pp. 106-108 of Weinberg) that the Christoffel connection satisfies

Γµ
µλ =

1
√
|g|

∂λ
√
|g| , (3.27)

and we therefore obtain

∇µV µ =
1

√
|g|

∂µ(
√
|g|V µ) . (3.28)
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There are also formulas for the divergences of higher-rank tensors, but they are generally

not such a great simplification.
As the last factoid we should mention about connections, let us emphasize (once more)

that the exterior derivative is a well-defined tensor in the absence of any connection. The

reason this needs to be emphasized is that, if you happen to be using a symmetric (torsion-

free) connection, the exterior derivative (defined to be the antisymmetrized partial derivative)

happens to be equal to the antisymmetrized covariant derivative:

∇[µων] = ∂[µων] − Γλ[µν]ωλ

= ∂[µων] . (3.29)

This has led some misfortunate souls to fret about the “ambiguity” of the exterior derivative
in spaces with torsion, where the above simplification does not occur. There is no ambiguity:

the exterior derivative does not involve the connection, no matter what connection you

happen to be using, and therefore the torsion never enters the formula for the exterior

derivative of anything.

Before moving on, let’s review the process by which we have been adding structures to

our mathematical constructs. We started with the basic notion of a set, which you were
presumed to know (informally, if not rigorously). We introduced the concept of open subsets

of our set; this is equivalent to introducing a topology, and promoted the set to a topological

space. Then by demanding that each open set look like a region of Rn (with n the same for

each set) and that the coordinate charts be smoothly sewn together, the topological space

became a manifold. A manifold is simultaneously a very flexible and powerful structure,

and comes equipped naturally with a tangent bundle, tensor bundles of various ranks, the
ability to take exterior derivatives, and so forth. We then proceeded to put a metric on

the manifold, resulting in a manifold with metric (or sometimes “Riemannian manifold”).

Independently of the metric we found we could introduce a connection, allowing us to take

covariant derivatives. Once we have a metric, however, there is automatically a unique

torsion-free metric-compatible connection. (In principle there is nothing to stop us from

introducing more than one connection, or more than one metric, on any given manifold.)
The situation is thus as portrayed in the diagram on the next page.



3 CURVATURE 63

introduce a topology
(open sets)

(automatically
has a

connection)

space
topological

manifold

manifold
with

connection

Riemannian 
manifold

locally like      

introduce a connection

introduce a metric

Rn

set

Having set up the machinery of connections, the first thing we will do is discuss parallel
transport. Recall that in flat space it was unnecessary to be very careful about the fact

that vectors were elements of tangent spaces defined at individual points; it is actually very

natural to compare vectors at different points (where by “compare” we mean add, subtract,

take the dot product, etc.). The reason why it is natural is because it makes sense, in flat

space, to “move a vector from one point to another while keeping it constant.” Then once

we get the vector from one point to another we can do the usual operations allowed in a
vector space.

q

p

keep vector
constant

The concept of moving a vector along a path, keeping constant all the while, is known

as parallel transport. As we shall see, parallel transport is defined whenever we have a
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connection; the intuitive manipulation of vectors in flat space makes implicit use of the

Christoffel connection on this space. The crucial difference between flat and curved spaces is
that, in a curved space, the result of parallel transporting a vector from one point to another

will depend on the path taken between the points. Without yet assembling the complete

mechanism of parallel transport, we can use our intuition about the two-sphere to see that

this is the case. Start with a vector on the equator, pointing along a line of constant

longitude. Parallel transport it up to the north pole along a line of longitude in the obvious

way. Then take the original vector, parallel transport it along the equator by an angle θ, and
then move it up to the north pole as before. It is clear that the vector, parallel transported

along two paths, arrived at the same destination with two different values (rotated by θ).

It therefore appears as if there is no natural way to uniquely move a vector from one

tangent space to another; we can always parallel transport it, but the result depends on the
path, and there is no natural choice of which path to take. Unlike some of the problems we

have encountered, there is no solution to this one — we simply must learn to live with the

fact that two vectors can only be compared in a natural way if they are elements of the same

tangent space. For example, two particles passing by each other have a well-defined relative

velocity (which cannot be greater than the speed of light). But two particles at different

points on a curved manifold do not have any well-defined notion of relative velocity — the
concept simply makes no sense. Of course, in certain special situations it is still useful to talk

as if it did make sense, but it is necessary to understand that occasional usefulness is not a

substitute for rigorous definition. In cosmology, for example, the light from distant galaxies

is redshifted with respect to the frequencies we would observe from a nearby stationary

source. Since this phenomenon bears such a close resemblance to the conventional Doppler

effect due to relative motion, it is very tempting to say that the galaxies are “receding away
from us” at a speed defined by their redshift. At a rigorous level this is nonsense, what

Wittgenstein would call a “grammatical mistake” — the galaxies are not receding, since the

notion of their velocity with respect to us is not well-defined. What is actually happening

is that the metric of spacetime between us and the galaxies has changed (the universe has
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expanded) along the path of the photon from here to there, leading to an increase in the

wavelength of the light. As an example of how you can go wrong, naive application of the
Doppler formula to the redshift of galaxies implies that some of them are receding faster than

light, in apparent contradiction with relativity. The resolution of this apparent paradox is

simply that the very notion of their recession should not be taken literally.

Enough about what we cannot do; let’s see what we can. Parallel transport is supposed to

be the curved-space generalization of the concept of “keeping the vector constant” as we move

it along a path; similarly for a tensor of arbitrary rank. Given a curve xµ(λ), the requirement
of constancy of a tensor T along this curve in flat space is simply dT

dλ = dxµ

dλ
∂T
∂xµ = 0. We

therefore define the covariant derivative along the path to be given by an operator

D

dλ
=

dxµ

dλ
∇µ . (3.30)

We then define parallel transport of the tensor T along the path xµ(λ) to be the require-

ment that, along the path,
(

D

dλ
T

)µ1µ2···µk

ν1ν2···νl
≡ dxσ

dλ
∇σT

µ1µ2···µk
ν1ν2···νl

= 0 . (3.31)

This is a well-defined tensor equation, since both the tangent vector dxµ/dλ and the covariant
derivative ∇T are tensors. This is known as the equation of parallel transport. For a

vector it takes the form
d

dλ
V µ + Γµ

σρ

dxσ

dλ
V ρ = 0 . (3.32)

We can look at the parallel transport equation as a first-order differential equation defining

an initial-value problem: given a tensor at some point along the path, there will be a unique

continuation of the tensor to other points along the path such that the continuation solves

(3.31). We say that such a tensor is parallel transported.

The notion of parallel transport is obviously dependent on the connection, and different
connections lead to different answers. If the connection is metric-compatible, the metric is

always parallel transported with respect to it:

D

dλ
gµν =

dxσ

dλ
∇σgµν = 0 . (3.33)

It follows that the inner product of two parallel-transported vectors is preserved. That is, if

V µ and W ν are parallel-transported along a curve xσ(λ), we have

D

dλ
(gµνV

µW ν) =
(

D

dλ
gµν

)
V µW ν + gµν

(
D

dλ
V µ

)
W ν + gµνV

µ
(

D

dλ
W ν

)

= 0 . (3.34)

This means that parallel transport with respect to a metric-compatible connection preserves

the norm of vectors, the sense of orthogonality, and so on.
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One thing they don’t usually tell you in GR books is that you can write down an explicit

and general solution to the parallel transport equation, although it’s somewhat formal. First
notice that for some path γ : λ → xσ(λ), solving the parallel transport equation for a vector

V µ amounts to finding a matrix P µ
ρ(λ, λ0) which relates the vector at its initial value V µ(λ0)

to its value somewhere later down the path:

V µ(λ) = P µ
ρ(λ, λ0)V

ρ(λ0) . (3.35)

Of course the matrix P µ
ρ(λ, λ0), known as the parallel propagator, depends on the path

γ (although it’s hard to find a notation which indicates this without making γ look like an

index). If we define

Aµ
ρ(λ) = −Γµ

σρ

dxσ

dλ
, (3.36)

where the quantities on the right hand side are evaluated at xν(λ), then the parallel transport

equation becomes
d

dλ
V µ = Aµ

ρV
ρ . (3.37)

Since the parallel propagator must work for any vector, substituting (3.35) into (3.37) shows

that P µ
ρ(λ, λ0) also obeys this equation:

d

dλ
P µ

ρ(λ, λ0) = Aµ
σ(λ)P σ

ρ(λ, λ0) . (3.38)

To solve this equation, first integrate both sides:

P µ
ρ(λ, λ0) = δµ

ρ +
∫ λ

λ0

Aµ
σ(η)P

σ
ρ(η, λ0) dη . (3.39)

The Kronecker delta, it is easy to see, provides the correct normalization for λ = λ0.

We can solve (3.39) by iteration, taking the right hand side and plugging it into itself

repeatedly, giving

P µ
ρ(λ, λ0) = δµ

ρ +
∫ λ

λ0

Aµ
ρ(η) dη +

∫ λ

λ0

∫ η

λ0

Aµ
σ(η)A

σ
ρ(η

′) dη′dη + · · · . (3.40)

The nth term in this series is an integral over an n-dimensional right triangle, or n-simplex.



3 CURVATURE 67

∫ λ

λ0

A(η1) dη1

∫ λ

λ0

∫ η2

λ0

A(η2)A(η1) dη1dη2

∫ λ

λ0

∫ η3

λ0

∫ η2

λ0

A(η3)A(η2)A(η1) d3η

η

η

η

1

3

2

η

η

2

1

η1

It would simplify things if we could consider such an integral to be over an n-cube

instead of an n-simplex; is there some way to do this? There are n! such simplices in each
cube, so we would have to multiply by 1/n! to compensate for this extra volume. But we

also want to get the integrand right; using matrix notation, the integrand at nth order

is A(ηn)A(ηn−1) · · ·A(η1), but with the special property that ηn ≥ ηn−1 ≥ · · · ≥ η1. We

therefore define the path-ordering symbol, P, to ensure that this condition holds. In

other words, the expression

P[A(ηn)A(ηn−1) · · ·A(η1)] (3.41)

stands for the product of the n matrices A(ηi), ordered in such a way that the largest value

of ηi is on the left, and each subsequent value of ηi is less than or equal to the previous one.

We then can express the nth-order term in (3.40) as
∫ λ

λ0

∫ ηn

λ0

· · ·
∫ η2

λ0

A(ηn)A(ηn−1) · · ·A(η1) dnη

=
1

n!

∫ λ

λ0

∫ λ

λ0

· · ·
∫ λ

λ0

P[A(ηn)A(ηn−1) · · ·A(η1)] d
nη . (3.42)

This expression contains no substantive statement about the matrices A(ηi); it is just nota-

tion. But we can now write (3.40) in matrix form as

P (λ, λ0) = 1 +
∞∑

n=1

1

n!

∫ λ

λ0

P[A(ηn)A(ηn−1) · · ·A(η1)] d
nη . (3.43)

This formula is just the series expression for an exponential; we therefore say that the parallel

propagator is given by the path-ordered exponential

P (λ, λ0) = P exp

(∫ λ

λ0

A(η) dη

)

, (3.44)
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where once again this is just notation; the path-ordered exponential is defined to be the right

hand side of (3.43). We can write it more explicitly as

P µ
ν(λ, λ0) = P exp

(

−
∫ λ

λ0

Γµ
σν

dxσ

dη
dη

)

. (3.45)

It’s nice to have an explicit formula, even if it is rather abstract. The same kind of ex-
pression appears in quantum field theory as “Dyson’s Formula,” where it arises because the

Schrödinger equation for the time-evolution operator has the same form as (3.38).

As an aside, an especially interesting example of the parallel propagator occurs when the

path is a loop, starting and ending at the same point. Then if the connection is metric-

compatible, the resulting matrix will just be a Lorentz transformation on the tangent space

at the point. This transformation is known as the “holonomy” of the loop. If you know
the holonomy of every possible loop, that turns out to be equivalent to knowing the metric.

This fact has let Ashtekar and his collaborators to examine general relativity in the “loop

representation,” where the fundamental variables are holonomies rather than the explicit

metric. They have made some progress towards quantizing the theory in this approach,

although the jury is still out about how much further progress can be made.

With parallel transport understood, the next logical step is to discuss geodesics. A
geodesic is the curved-space generalization of the notion of a “straight line” in Euclidean

space. We all know what a straight line is: it’s the path of shortest distance between

two points. But there is an equally good definition — a straight line is a path which

parallel transports its own tangent vector. On a manifold with an arbitrary (not necessarily

Christoffel) connection, these two concepts do not quite coincide, and we should discuss

them separately.
We’ll take the second definition first, since it is computationally much more straight-

forward. The tangent vector to a path xµ(λ) is dxµ/dλ. The condition that it be parallel

transported is thus
D

dλ

dxµ

dλ
= 0 , (3.46)

or alternatively
d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0 . (3.47)

This is the geodesic equation, another one which you should memorize. We can easily

see that it reproduces the usual notion of straight lines if the connection coefficients are the

Christoffel symbols in Euclidean space; in that case we can choose Cartesian coordinates in

which Γµ
ρσ = 0, and the geodesic equation is just d2xµ/dλ2 = 0, which is the equation for a

straight line.
That was embarrassingly simple; let’s turn to the more nontrivial case of the shortest

distance definition. As we know, there are various subtleties involved in the definition of
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distance in a Lorentzian spacetime; for null paths the distance is zero, for timelike paths

it’s more convenient to use the proper time, etc. So in the name of simplicity let’s do the
calculation just for a timelike path — the resulting equation will turn out to be good for any

path, so we are not losing any generality. We therefore consider the proper time functional,

τ =
∫ (

−gµν
dxµ

dλ

dxν

dλ

)1/2

dλ , (3.48)

where the integral is over the path. To search for shortest-distance paths, we will do the

usual calculus of variations treatment to seek extrema of this functional. (In fact they will
turn out to be curves of maximum proper time.)

We want to consider the change in the proper time under infinitesimal variations of the

path,

xµ → xµ + δxµ

gµν → gµν + δxσ∂σgµν . (3.49)

(The second line comes from Taylor expansion in curved spacetime, which as you can see

uses the partial derivative, not the covariant derivative.) Plugging this into (3.48), we get

τ + δτ =
∫ (

−gµν
dxµ

dλ

dxν

dλ
− ∂σgµν

dxµ

dλ

dxν

dλ
δxσ − 2gµν

dxµ

dλ

d(δxν)

dλ

)1/2

dλ

=
∫ (

−gµν
dxµ

dλ

dxν

dλ

)1/2


1 +

(

−gµν
dxµ

dλ

dxν

dλ

)−1

×
(

−∂σgµν
dxµ

dλ

dxν

dλ
δxσ − 2gµν

dxµ

dλ

d(δxν)

dλ

)]1/2

dλ . (3.50)

Since δxσ is assumed to be small, we can expand the square root of the expression in square

brackets to find

δτ =
∫ (

−gµν
dxµ

dλ

dxν

dλ

)−1/2 (

−1

2
∂σgµν

dxµ

dλ

dxν

dλ
δxσ − gµν

dxµ

dλ

d(δxν)

dλ

)

dλ . (3.51)

It is helpful at this point to change the parameterization of our curve from λ, which was

arbitrary, to the proper time τ itself, using

dλ =

(

−gµν
dxµ

dλ

dxν

dλ

)−1/2

dτ . (3.52)

We plug this into (3.51) (note: we plug it in for every appearance of dλ) to obtain

δτ =
∫ [

−1

2
∂σgµν

dxµ

dτ

dxν

dτ
δxσ − gµν

dxµ

dτ

d(δxν)

dτ

]

dτ
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=
∫ [

−1

2
∂σgµν

dxµ

dτ

dxν

dτ
+

d

dτ

(

gµσ
dxµ

dτ

)]

δxσ dτ , (3.53)

where in the last line we have integrated by parts, avoiding possible boundary contributions
by demanding that the variation δxσ vanish at the endpoints of the path. Since we are

searching for stationary points, we want δτ to vanish for any variation; this implies

− 1

2
∂σgµν

dxµ

dτ

dxν

dτ
+

dxµ

dτ

dxν

dτ
∂νgµσ + gµσ

d2xµ

dτ 2
= 0 , (3.54)

where we have used dgµσ/dτ = (dxν/dτ)∂νgµσ. Some shuffling of dummy indices reveals

gµσ
d2xµ

dτ 2
+

1

2
(−∂σgµν + ∂νgµσ + ∂µgνσ)

dxµ

dτ

dxν

dτ
= 0 , (3.55)

and multiplying by the inverse metric finally leads to

d2xρ

dτ 2
+

1

2
gρσ (∂µgνσ + ∂νgσµ − ∂σgµν)

dxµ

dτ

dxν

dτ
= 0 . (3.56)

We see that this is precisely the geodesic equation (3.32), but with the specific choice of

Christoffel connection (3.21). Thus, on a manifold with metric, extremals of the length func-

tional are curves which parallel transport their tangent vector with respect to the Christoffel
connection associated with that metric. It doesn’t matter if there is any other connection

defined on the same manifold. Of course, in GR the Christoffel connection is the only one

which is used, so the two notions are the same.

The primary usefulness of geodesics in general relativity is that they are the paths fol-

lowed by unaccelerated particles. In fact, the geodesic equation can be thought of as the

generalization of Newton’s law f = ma for the case f = 0. It is also possible to introduce
forces by adding terms to the right hand side; in fact, looking back to the expression (1.103)

for the Lorentz force in special relativity, it is tempting to guess that the equation of motion

for a particle of mass m and charge q in general relativity should be

d2xµ

dτ 2
+ Γµ

ρσ

dxρ

dτ

dxσ

dτ
=

q

m
F µ

ν
dxν

dτ
. (3.57)

We will talk about this more later, but in fact your guess would be correct.
Having boldly derived these expressions, we should say some more careful words about

the parameterization of a geodesic path. When we presented the geodesic equation as the

requirement that the tangent vector be parallel transported, (3.47), we parameterized our

path with some parameter λ, whereas when we found the formula (3.56) for the extremal of

the spacetime interval we wound up with a very specific parameterization, the proper time.

Of course from the form of (3.56) it is clear that a transformation

τ → λ = aτ + b , (3.58)
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for some constants a and b, leaves the equation invariant. Any parameter related to the

proper time in this way is called an affine parameter, and is just as good as the proper
time for parameterizing a geodesic. What was hidden in our derivation of (3.47) was that

the demand that the tangent vector be parallel transported actually constrains the parameter-

ization of the curve, specifically to one related to the proper time by (3.58). In other words,

if you start at some point and with some initial direction, and then construct a curve by

beginning to walk in that direction and keeping your tangent vector parallel transported,

you will not only define a path in the manifold but also (up to linear transformations) define
the parameter along the path.

Of course, there is nothing to stop you from using any other parameterization you like,

but then (3.47) will not be satisfied. More generally you will satisfy an equation of the form

d2xµ

dα2
+ Γµ

ρσ

dxρ

dα

dxσ

dα
= f(α)

dxµ

dα
, (3.59)

for some parameter α and some function f(α). Conversely, if (3.59) is satisfied along a curve

you can always find an affine parameter λ(α) for which the geodesic equation (3.47) will be

satisfied.

An important property of geodesics in a spacetime with Lorentzian metric is that the

character (timelike/null/spacelike) of the geodesic (relative to a metric-compatible connec-

tion) never changes. This is simply because parallel transport preserves inner products, and
the character is determined by the inner product of the tangent vector with itself. This

is why we were consistent to consider purely timelike paths when we derived (3.56); for

spacelike paths we would have derived the same equation, since the only difference is an

overall minus sign in the final answer. There are also null geodesics, which satisfy the same

equation, except that the proper time cannot be used as a parameter (some set of allowed

parameters will exist, related to each other by linear transformations). You can derive this
fact either from the simple requirement that the tangent vector be parallel transported, or

by extending the variation of (3.48) to include all non-spacelike paths.

Let’s now explain the earlier remark that timelike geodesics are maxima of the proper

time. The reason we know this is true is that, given any timelike curve (geodesic or not), we

can approximate it to arbitrary accuracy by a null curve. To do this all we have to do is to

consider “jagged” null curves which follow the timelike one:
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null

timelike

As we increase the number of sharp corners, the null curve comes closer and closer to the

timelike curve while still having zero path length. Timelike geodesics cannot therefore be

curves of minimum proper time, since they are always infinitesimally close to curves of zero

proper time; in fact they maximize the proper time. (This is how you can remember which
twin in the twin paradox ages more — the one who stays home is basically on a geodesic,

and therefore experiences more proper time.) Of course even this is being a little cavalier;

actually every time we say “maximize” or “minimize” we should add the modifier “locally.”

It is often the case that between two points on a manifold there is more than one geodesic.

For instance, on S2 we can draw a great circle through any two points, and imagine travelling

between them either the short way or the long way around. One of these is obviously longer
than the other, although both are stationary points of the length functional.

The final fact about geodesics before we move on to curvature proper is their use in

mapping the tangent space at a point p to a local neighborhood of p. To do this we notice

that any geodesic xµ(λ) which passes through p can be specified by its behavior at p; let us

choose the parameter value to be λ(p) = 0, and the tangent vector at p to be

dxµ

dλ
(λ = 0) = kµ , (3.60)

for kµ some vector at p (some element of Tp). Then there will be a unique point on the

manifold M which lies on this geodesic where the parameter has the value λ = 1. We define

the exponential map at p, expp : Tp → M , via

expp(k
µ) = xν(λ = 1) , (3.61)

where xν(λ) solves the geodesic equation subject to (3.60). For some set of tangent vectors

kµ near the zero vector, this map will be well-defined, and in fact invertible. Thus in the
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M

x  (  )

k

T

p

µ

p

λ

λ=1

ν

neighborhood of p given by the range of the map on this set of tangent vectors, the the

tangent vectors themselves define a coordinate system on the manifold. In this coordinate

system, any geodesic through p is expressed trivially as

xµ(λ) = λkµ , (3.62)

for some appropriate vector kµ.
We won’t go into detail about the properties of the exponential map, since in fact we

won’t be using it much, but it’s important to emphasize that the range of the map is not

necessarily the whole manifold, and the domain is not necessarily the whole tangent space.

The range can fail to be all of M simply because there can be two points which are not

connected by any geodesic. (In a Euclidean signature metric this is impossible, but not in

a Lorentzian spacetime.) The domain can fail to be all of Tp because a geodesic may run
into a singularity, which we think of as “the edge of the manifold.” Manifolds which have

such singularities are known as geodesically incomplete. This is not merely a problem

for careful mathematicians; in fact the “singularity theorems” of Hawking and Penrose state

that, for reasonable matter content (no negative energies), spacetimes in general relativity

are almost guaranteed to be geodesically incomplete. As examples, the two most useful

spacetimes in GR — the Schwarzschild solution describing black holes and the Friedmann-
Robertson-Walker solutions describing homogeneous, isotropic cosmologies — both feature

important singularities.

Having set up the machinery of parallel transport and covariant derivatives, we are at last

prepared to discuss curvature proper. The curvature is quantified by the Riemann tensor,

which is derived from the connection. The idea behind this measure of curvature is that we

know what we mean by “flatness” of a connection — the conventional (and usually implicit)
Christoffel connection associated with a Euclidean or Minkowskian metric has a number of

properties which can be thought of as different manifestations of flatness. These include the

fact that parallel transport around a closed loop leaves a vector unchanged, that covariant

derivatives of tensors commute, and that initially parallel geodesics remain parallel. As we



3 CURVATURE 74

shall see, the Riemann tensor arises when we study how any of these properties are altered

in more general contexts.
We have already argued, using the two-sphere as an example, that parallel transport

of a vector around a closed loop in a curved space will lead to a transformation of the

vector. The resulting transformation depends on the total curvature enclosed by the loop;

it would be more useful to have a local description of the curvature at each point, which is

what the Riemann tensor is supposed to provide. One conventional way to introduce the

Riemann tensor, therefore, is to consider parallel transport around an infinitesimal loop. We
are not going to do that here, but take a more direct route. (Most of the presentations in

the literature are either sloppy, or correct but very difficult to follow.) Nevertheless, even

without working through the details, it is possible to see what form the answer should take.

Imagine that we parallel transport a vector V σ around a closed loop defined by two vectors

Aν and Bµ:

(0, 0)

B

(  a, 0)

(  a,   b)
(0,   b)δ

ν

Aµ

Bν

δ

δ
Aµ

δ

The (infinitesimal) lengths of the sides of the loop are δa and δb, respectively. Now, we know

the action of parallel transport is independent of coordinates, so there should be some tensor

which tells us how the vector changes when it comes back to its starting point; it will be

a linear transformation on a vector, and therefore involve one upper and one lower index.

But it will also depend on the two vectors A and B which define the loop; therefore there
should be two additional lower indices to contract with Aν and Bµ. Furthermore, the tensor

should be antisymmetric in these two indices, since interchanging the vectors corresponds

to traversing the loop in the opposite direction, and should give the inverse of the original

answer. (This is consistent with the fact that the transformation should vanish if A and B

are the same vector.) We therefore expect that the expression for the change δV ρ experienced

by this vector when parallel transported around the loop should be of the form

δV ρ = (δa)(δb)AνBµRρ
σµνV

σ , (3.63)

where Rρ
σµν is a (1, 3) tensor known as the Riemann tensor (or simply “curvature tensor”).
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It is antisymmetric in the last two indices:

Rρ
σµν = −Rρ

σνµ . (3.64)

(Of course, if (3.63) is taken as a definition of the Riemann tensor, there is a convention that

needs to be chosen for the ordering of the indices. There is no agreement at all on what this

convention should be, so be careful.)

Knowing what we do about parallel transport, we could very carefully perform the nec-
essary manipulations to see what happens to the vector under this operation, and the result

would be a formula for the curvature tensor in terms of the connection coefficients. It is much

quicker, however, to consider a related operation, the commutator of two covariant deriva-

tives. The relationship between this and parallel transport around a loop should be evident;

the covariant derivative of a tensor in a certain direction measures how much the tensor

changes relative to what it would have been if it had been parallel transported (since the
covariant derivative of a tensor in a direction along which it is parallel transported is zero).

The commutator of two covariant derivatives, then, measures the difference between parallel

transporting the tensor first one way and then the other, versus the opposite ordering.

ν

µ

Δ
Δ

Δ

µ

Δ

ν

The actual computation is very straightforward. Considering a vector field V ρ, we take

[∇µ,∇ν ]V
ρ = ∇µ∇νV

ρ −∇ν∇µV
ρ

= ∂µ(∇νV
ρ) − Γλµν∇λV

ρ + Γρµσ∇νV
σ − (µ ↔ ν)

= ∂µ∂νV
ρ + (∂µΓ

ρ
νσ)V

σ + Γρνσ∂µV σ − Γλµν∂λV ρ − ΓλµνΓ
ρ
λσV

σ

+Γρµσ∂νV
σ + ΓρµσΓ

σ
νλV

λ − (µ ↔ ν)
= (∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + ΓρµλΓ

λ
νσ − Γ

ρ
νλΓ

λ
µσ)V

σ − 2Γλ[µν]∇λV
ρ . (3.65)

In the last step we have relabeled some dummy indices and eliminated some terms that

cancel when antisymmetrized. We recognize that the last term is simply the torsion tensor,

and that the left hand side is manifestly a tensor; therefore the expression in parentheses

must be a tensor itself. We write

[∇µ,∇ν ]V
ρ = Rρ

σµνV
σ − Tµν

λ∇λV
ρ , (3.66)
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where the Riemann tensor is identified as

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + ΓρµλΓ

λ
νσ − Γ

ρ
νλΓ

λ
µσ . (3.67)

There are a number of things to notice about the derivation of this expression:

• Of course we have not demonstrated that (3.67) is actually the same tensor that ap-

peared in (3.63), but in fact it’s true (see Wald for a believable if tortuous demonstra-

tion).

• It is perhaps surprising that the commutator [∇µ,∇ν], which appears to be a differential

operator, has an action on vector fields which (in the absence of torsion, at any rate)

is a simple multiplicative transformation. The Riemann tensor measures that part of
the commutator of covariant derivatives which is proportional to the vector field, while

the torsion tensor measures the part which is proportional to the covariant derivative

of the vector field; the second derivative doesn’t enter at all.

• Notice that the expression (3.67) is constructed from non-tensorial elements; you can

check that the transformation laws all work out to make this particular combination a

legitimate tensor.

• The antisymmetry of Rρ
σµν in its last two indices is immediate from this formula and

its derivation.

• We constructed the curvature tensor completely from the connection (no mention of

the metric was made). We were sufficiently careful that the above expression is true

for any connection, whether or not it is metric compatible or torsion free.

• Using what are by now our usual methods, the action of [∇ρ,∇σ] can be computed on

a tensor of arbitrary rank. The answer is

[∇ρ,∇σ]X
µ1···µk

ν1···νl
= − Tρσ

λ∇λX
µ1···µk

ν1···νl

+Rµ1
λρσX

λµ2···µk
ν1···νl

+ Rµ2
λρσX

µ1λ···µk
ν1···νl

+ · · ·
−Rλ

ν1ρσX
µ1···µk

λν2···νl
− Rλ

ν2ρσX
µ1···µk

ν1λ···νl
− · · · .(3.68)

A useful notion is that of the commutator of two vector fields X and Y , which is a third

vector field with components

[X, Y ]µ = Xλ∂λY
µ − Y λ∂λX

µ . (3.69)

Both the torsion tensor and the Riemann tensor, thought of as multilinear maps, have elegant
expressions in terms of the commutator. Thinking of the torsion as a map from two vector

fields to a third vector field, we have

T (X, Y ) = ∇XY −∇Y X − [X, Y ] , (3.70)



3 CURVATURE 77

and thinking of the Riemann tensor as a map from three vector fields to a fourth one, we

have
R(X, Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z . (3.71)

In these expressions, the notation ∇X refers to the covariant derivative along the vector field

X; in components, ∇X = Xµ∇µ. Note that the two vectors X and Y in (3.71) correspond

to the two antisymmetric indices in the component form of the Riemann tensor. The last
term in (3.71), involving the commutator [X, Y ], vanishes when X and Y are taken to be

the coordinate basis vector fields (since [∂µ, ∂ν ] = 0), which is why this term did not arise

when we originally took the commutator of two covariant derivatives. We will not use this

notation extensively, but you might see it in the literature, so you should be able to decode

it.

Having defined the curvature tensor as something which characterizes the connection, let
us now admit that in GR we are most concerned with the Christoffel connection. In this

case the connection is derived from the metric, and the associated curvature may be thought

of as that of the metric itself. This identification allows us to finally make sense of our

informal notion that spaces for which the metric looks Euclidean or Minkowskian are flat.

In fact it works both ways: if the components of the metric are constant in some coordinate

system, the Riemann tensor will vanish, while if the Riemann tensor vanishes we can always
construct a coordinate system in which the metric components are constant.

The first of these is easy to show. If we are in some coordinate system such that ∂σgµν = 0

(everywhere, not just at a point), then Γρµν = 0 and ∂σΓρµν = 0; thus Rρ
σµν = 0 by (3.67).

But this is a tensor equation, and if it is true in one coordinate system it must be true

in any coordinate system. Therefore, the statement that the Riemann tensor vanishes is a

necessary condition for it to be possible to find coordinates in which the components of gµν

are constant everywhere.

It is also a sufficient condition, although we have to work harder to show it. Start by

choosing Riemann normal coordinates at some point p, so that gµν = ηµν at p. (Here we

are using ηµν in a generalized sense, as a matrix with either +1 or −1 for each diagonal

element and zeroes elsewhere. The actual arrangement of the +1’s and −1’s depends on the

canonical form of the metric, but is irrelevant for the present argument.) Denote the basis
vectors at p by ê(µ), with components êσ(µ). Then by construction we have

gσρê
σ
(µ)ê

ρ
(ν)(p) = ηµν . (3.72)

Now let us parallel transport the entire set of basis vectors from p to another point q; the

vanishing of the Riemann tensor ensures that the result will be independent of the path taken
between p and q. Since parallel transport with respect to a metric compatible connection

preserves inner products, we must have

gσρê
σ
(µ)ê

ρ
(ν)(q) = ηµν . (3.73)
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We therefore have specified a set of vector fields which everywhere define a basis in which

the metric components are constant. This is completely unimpressive; it can be done on any
manifold, regardless of what the curvature is. What we would like to show is that this is

a coordinate basis (which can only be true if the curvature vanishes). We know that if the

ê(µ)’s are a coordinate basis, their commutator will vanish:

[ê(µ), ê(ν)] = 0 . (3.74)

What we would really like is the converse: that if the commutator vanishes we can find

coordinates yµ such that ê(µ) = ∂
∂yµ . In fact this is a true result, known as Frobenius’s

Theorem. It’s something of a mess to prove, involving a good deal more mathematical

apparatus than we have bothered to set up. Let’s just take it for granted (skeptics can
consult Schutz’s Geometrical Methods book). Thus, we would like to demonstrate (3.74) for

the vector fields we have set up. Let’s use the expression (3.70) for the torsion:

[ê(µ), ê(ν)] = ∇ê(µ)
ê(ν) −∇ê(ν)

ê(µ) − T (ê(µ), ê(ν)) . (3.75)

The torsion vanishes by hypothesis. The covariant derivatives will also vanish, given the

method by which we constructed our vector fields; they were made by parallel transporting

along arbitrary paths. If the fields are parallel transported along arbitrary paths, they are

certainly parallel transported along the vectors ê(µ), and therefore their covariant derivatives

in the direction of these vectors will vanish. Thus (3.70) implies that the commutator
vanishes, and therefore that we can find a coordinate system yµ for which these vector fields

are the partial derivatives. In this coordinate system the metric will have components ηµν ,

as desired.

The Riemann tensor, with four indices, naively has n4 independent components in an

n-dimensional space. In fact the antisymmetry property (3.64) means that there are only

n(n−1)/2 independent values these last two indices can take on, leaving us with n3(n−1)/2
independent components. When we consider the Christoffel connection, however, there are a

number of other symmetries that reduce the independent components further. Let’s consider

these now.

The simplest way to derive these additional symmetries is to examine the Riemann tensor

with all lower indices,

Rρσµν = gρλR
λ
σµν . (3.76)

Let us further consider the components of this tensor in Riemann normal coordinates es-

tablished at a point p. Then the Christoffel symbols themselves will vanish, although their

derivatives will not. We therefore have

Rρσµν = gρλ(∂µΓ
λ
νσ − ∂νΓ

λ
µσ)
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=
1

2
gρλg

λτ(∂µ∂νgστ + ∂µ∂σgτν − ∂µ∂τgνσ − ∂ν∂µgστ − ∂ν∂σgτµ + ∂ν∂τgµσ)

=
1

2
(∂µ∂σgρν − ∂µ∂ρgνσ − ∂ν∂σgρµ + ∂ν∂ρgµσ) . (3.77)

In the second line we have used ∂µgλτ = 0 in RNC’s, and in the third line the fact that

partials commute. From this expression we can notice immediately two properties of Rρσµν ;

it is antisymmetric in its first two indices,

Rρσµν = −Rσρµν , (3.78)

and it is invariant under interchange of the first pair of indices with the second:

Rρσµν = Rµνρσ . (3.79)

With a little more work, which we leave to your imagination, we can see that the sum of

cyclic permutations of the last three indices vanishes:

Rρσµν + Rρµνσ + Rρνσµ = 0 . (3.80)

This last property is equivalent to the vanishing of the antisymmetric part of the last three
indices:

Rρ[σµν] = 0 . (3.81)

All of these properties have been derived in a special coordinate system, but they are all

tensor equations; therefore they will be true in any coordinates. Not all of them are inde-

pendent; with some effort, you can show that (3.64), (3.78) and (3.81) together imply (3.79).

The logical interdependence of the equations is usually less important than the simple fact

that they are true.

Given these relationships between the different components of the Riemann tensor, how
many independent quantities remain? Let’s begin with the facts that Rρσµν is antisymmetric

in the first two indices, antisymmetric in the last two indices, and symmetric under inter-

change of these two pairs. This means that we can think of it as a symmetric matrix R[ρσ][µν],

where the pairs ρσ and µν are thought of as individual indices. An m × m symmetric ma-

trix has m(m + 1)/2 independent components, while an n × n antisymmetric matrix has

n(n − 1)/2 independent components. We therefore have

1

2

[
1

2
n(n − 1)

] [
1

2
n(n − 1) + 1

]
=

1

8
(n4 − 2n3 + 3n2 − 2n) (3.82)

independent components. We still have to deal with the additional symmetry (3.81). An

immediate consequence of (3.81) is that the totally antisymmetric part of the Riemann tensor
vanishes,

R[ρσµν] = 0 . (3.83)
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In fact, this equation plus the other symmetries (3.64), (3.78) and (3.79) are enough to imply

(3.81), as can be easily shown by expanding (3.83) and messing with the resulting terms.
Therefore imposing the additional constraint of (3.83) is equivalent to imposing (3.81), once

the other symmetries have been accounted for. How many independent restrictions does this

represent? Let us imagine decomposing

Rρσµν = Xρσµν + R[ρσµν] . (3.84)

It is easy to see that any totally antisymmetric 4-index tensor is automatically antisymmetric

in its first and last indices, and symmetric under interchange of the two pairs. Therefore

these properties are independent restrictions on Xρσµν , unrelated to the requirement (3.83).

Now a totally antisymmetric 4-index tensor has n(n−1)(n−2)(n−3)/4! terms, and therefore

(3.83) reduces the number of independent components by this amount. We are left with

1

8
(n4 − 2n3 + 3n2 − 2n) − 1

24
n(n − 1)(n − 2)(n − 3) =

1

12
n2(n2 − 1) (3.85)

independent components of the Riemann tensor.
In four dimensions, therefore, the Riemann tensor has 20 independent components. (In

one dimension it has none.) These twenty functions are precisely the 20 degrees of freedom

in the second derivatives of the metric which we could not set to zero by a clever choice of

coordinates. This should reinforce your confidence that the Riemann tensor is an appropriate

measure of curvature.

In addition to the algebraic symmetries of the Riemann tensor (which constrain the
number of independent components at any point), there is a differential identity which

it obeys (which constrains its relative values at different points). Consider the covariant

derivative of the Riemann tensor, evaluated in Riemann normal coordinates:

∇λRρσµν = ∂λRρσµν

=
1

2
∂λ(∂µ∂σgρν − ∂µ∂ρgνσ − ∂ν∂σgρµ + ∂ν∂ρgµσ) . (3.86)

We would like to consider the sum of cyclic permutations of the first three indices:

∇λRρσµν + ∇ρRσλµν + ∇σRλρµν

=
1

2
(∂λ∂µ∂σgρν − ∂λ∂µ∂ρgνσ − ∂λ∂ν∂σgρµ + ∂λ∂ν∂ρgµσ

+∂ρ∂µ∂λgσν − ∂ρ∂µ∂σgνλ − ∂ρ∂ν∂λgσµ + ∂ρ∂ν∂σgµλ

+∂σ∂µ∂ρgλν − ∂σ∂µ∂λgνρ − ∂σ∂ν∂ρgλµ + ∂σ∂ν∂λgµρ)

= 0 . (3.87)

Once again, since this is an equation between tensors it is true in any coordinate system,

even though we derived it in a particular one. We recognize by now that the antisymmetry
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Rρσµν = −Rσρµν allows us to write this result as

∇[λRρσ]µν = 0 . (3.88)

This is known as the Bianchi identity. (Notice that for a general connection there would

be additional terms involving the torsion tensor.) It is closely related to the Jacobi identity,

since (as you can show) it basically expresses

[[∇λ,∇ρ],∇σ] + [[∇ρ,∇σ],∇λ] + [[∇σ,∇λ],∇ρ] = 0 . (3.89)

It is frequently useful to consider contractions of the Riemann tensor. Even without the
metric, we can form a contraction known as the Ricci tensor:

Rµν = Rλ
µλν . (3.90)

Notice that, for the curvature tensor formed from an arbitrary (not necessarily Christoffel)

connection, there are a number of independent contractions to take. Our primary concern is

with the Christoffel connection, for which (3.90) is the only independent contraction (modulo
conventions for the sign, which of course change from place to place). The Ricci tensor

associated with the Christoffel connection is symmetric,

Rµν = Rνµ , (3.91)

as a consequence of the various symmetries of the Riemann tensor. Using the metric, we can

take a further contraction to form the Ricci scalar:

R = Rµ
µ = gµνRµν . (3.92)

An especially useful form of the Bianchi identity comes from contracting twice on (3.87):

0 = gνσgµλ(∇λRρσµν + ∇ρRσλµν + ∇σRλρµν)

= ∇µRρµ −∇ρR + ∇νRρν , (3.93)

or
∇µRρµ =

1

2
∇ρR . (3.94)

(Notice that, unlike the partial derivative, it makes sense to raise an index on the covariant

derivative, due to metric compatibility.) If we define the Einstein tensor as

Gµν = Rµν −
1

2
Rgµν , (3.95)

then we see that the twice-contracted Bianchi identity (3.94) is equivalent to

∇µGµν = 0 . (3.96)
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The Einstein tensor, which is symmetric due to the symmetry of the Ricci tensor and the

metric, will be of great importance in general relativity.
The Ricci tensor and the Ricci scalar contain information about “traces” of the Riemann

tensor. It is sometimes useful to consider separately those pieces of the Riemann tensor

which the Ricci tensor doesn’t tell us about. We therefore invent the Weyl tensor, which is

basically the Riemann tensor with all of its contractions removed. It is given in n dimensions

by

Cρσµν = Rρσµν −
2

(n − 2)

(
gρ[µRν]σ − gσ[µRν]ρ

)
+

2

(n − 1)(n − 2)
Rgρ[µgν]σ . (3.97)

This messy formula is designed so that all possible contractions of Cρσµν vanish, while it

retains the symmetries of the Riemann tensor:

Cρσµν = C[ρσ][µν] ,

Cρσµν = Cµνρσ ,

Cρ[σµν] = 0 . (3.98)

The Weyl tensor is only defined in three or more dimensions, and in three dimensions it

vanishes identically. For n ≥ 4 it satisfies a version of the Bianchi identity,

∇ρCρσµν = −2
(n − 3)

(n − 2)

(

∇[µRν]σ +
1

2(n − 1)
gσ[ν∇µ]R

)

. (3.99)

One of the most important properties of the Weyl tensor is that it is invariant under confor-

mal transformations. This means that if you compute Cρσµν for some metric gµν , and then
compute it again for a metric given by Ω2(x)gµν , where Ω(x) is an arbitrary nonvanishing

function of spacetime, you get the same answer. For this reason it is often known as the

“conformal tensor.”

After this large amount of formalism, it might be time to step back and think about what

curvature means for some simple examples. First notice that, according to (3.85), in 1, 2, 3

and 4 dimensions there are 0, 1, 6 and 20 components of the curvature tensor, respectively.
(Everything we say about the curvature in these examples refers to the curvature associated

with the Christoffel connection, and therefore the metric.) This means that one-dimensional

manifolds (such as S1) are never curved; the intuition you have that tells you that a circle is

curved comes from thinking of it embedded in a certain flat two-dimensional plane. (There is

something called “extrinsic curvature,” which characterizes the way something is embedded

in a higher dimensional space. Our notion of curvature is “intrinsic,” and has nothing to do

with such embeddings.)
The distinction between intrinsic and extrinsic curvature is also important in two dimen-

sions, where the curvature has one independent component. (In fact, all of the information
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identify

about the curvature is contained in the single component of the Ricci scalar.) Consider a

cylinder, R × S1. Although this looks curved from our point of view, it should be clear

that we can put a metric on the cylinder whose components are constant in an appropriate
coordinate system — simply unroll it and use the induced metric from the plane. In this

metric, the cylinder is flat. (There is also nothing to stop us from introducing a different

metric in which the cylinder is not flat, but the point we are trying to emphasize is that it

can be made flat in some metric.) The same story holds for the torus:

identify

We can think of the torus as a square region of the plane with opposite sides identified (in

other words, S1 × S1), from which it is clear that it can have a flat metric even though it

looks curved from the embedded point of view.

A cone is an example of a two-dimensional manifold with nonzero curvature at exactly

one point. We can see this also by unrolling it; the cone is equivalent to the plane with a

“deficit angle” removed and opposite sides identified:
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In the metric inherited from this description as part of the flat plane, the cone is flat every-

where but at its vertex. This can be seen by considering parallel transport of a vector around

various loops; if a loop does not enclose the vertex, there will be no overall transformation,

whereas a loop that does enclose the vertex (say, just one time) will lead to a rotation by an
angle which is just the deficit angle.

Our favorite example is of course the two-sphere, with metric

ds2 = a2(dθ2 + sin2 θ dφ2) , (3.100)

where a is the radius of the sphere (thought of as embedded in R3). Without going through

the details, the nonzero connection coefficients are

Γθφφ = − sin θ cos θ

Γφθφ = Γφφθ = cot θ . (3.101)

Let’s compute a promising component of the Riemann tensor:

Rθ
φθφ = ∂θΓ

θ
φφ − ∂φΓ

θ
θφ + ΓθθλΓ

λ
φφ − ΓθφλΓλθφ
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= (sin2 θ − cos2 θ) − (0) + (0) − (− sin θ cos θ)(cot θ)

= sin2 θ . (3.102)

(The notation is obviously imperfect, since the Greek letter λ is a dummy index which is

summed over, while the Greek letters θ and φ represent specific coordinates.) Lowering an

index, we have

Rθφθφ = gθλR
λ
φθφ

= gθθR
θ
φθφ

= a2 sin2 θ . (3.103)

It is easy to check that all of the components of the Riemann tensor either vanish or are

related to this one by symmetry. We can go on to compute the Ricci tensor via Rµν =

gαβRαµβν . We obtain

Rθθ = gφφRφθφθ = 1
Rθφ = Rφθ = 0

Rφφ = gθθRθφθφ = sin2 θ . (3.104)

The Ricci scalar is similarly straightforward:

R = gθθRθθ + gφφRφφ =
2

a2
. (3.105)

Therefore the Ricci scalar, which for a two-dimensional manifold completely characterizes

the curvature, is a constant over this two-sphere. This is a reflection of the fact that the

manifold is “maximally symmetric,” a concept we will define more precisely later (although it
means what you think it should). In any number of dimensions the curvature of a maximally

symmetric space satisfies (for some constant a)

Rρσµν = a−2(gρµgσν − gρνgσµ) , (3.106)

which you may check is satisfied by this example.

Notice that the Ricci scalar is not only constant for the two-sphere, it is manifestly
positive. We say that the sphere is “positively curved” (of course a convention or two came

into play, but fortunately our conventions conspired so that spaces which everyone agrees

to call positively curved actually have a positive Ricci scalar). From the point of view of

someone living on a manifold which is embedded in a higher-dimensional Euclidean space,

if they are sitting at a point of positive curvature the space curves away from them in the

same way in any direction, while in a negatively curved space it curves away in opposite

directions. Negatively curved spaces are therefore saddle-like.
Enough fun with examples. There is one more topic we have to cover before introducing

general relativity itself: geodesic deviation. You have undoubtedly heard that the defining
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positive curvature
negative curvature

property of Euclidean (flat) geometry is the parallel postulate: initially parallel lines remain

parallel forever. Of course in a curved space this is not true; on a sphere, certainly, initially

parallel geodesics will eventually cross. We would like to quantify this behavior for an

arbitrary curved space.

The problem is that the notion of “parallel” does not extend naturally from flat to curved
spaces. Instead what we will do is to construct a one-parameter family of geodesics, γs(t).

That is, for each s ∈ R, γs is a geodesic parameterized by the affine parameter t. The

collection of these curves defines a smooth two-dimensional surface (embedded in a manifold

M of arbitrary dimensionality). The coordinates on this surface may be chosen to be s and

t, provided we have chosen a family of geodesics which do not cross. The entire surface is

the set of points xµ(s, t) ∈ M . We have two natural vector fields: the tangent vectors to the
geodesics,

T µ =
∂xµ

∂t
, (3.107)

and the “deviation vectors”

Sµ =
∂xµ

∂s
. (3.108)

This name derives from the informal notion that Sµ points from one geodesic towards the

neighboring ones.

The idea that Sµ points from one geodesic to the next inspires us to define the “relative

velocity of geodesics,”
V µ = (∇T S)µ = T ρ∇ρS

µ , (3.109)

and the “relative acceleration of geodesics,”

aµ = (∇T V )µ = T ρ∇ρV
µ . (3.110)

You should take the names with a grain of salt, but these vectors are certainly well-defined.
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t

s

T

S

γ  (  )s tµ

µ

Since S and T are basis vectors adapted to a coordinate system, their commutator van-

ishes:

[S, T ] = 0 .

We would like to consider the conventional case where the torsion vanishes, so from (3.70)

we then have

Sρ∇ρT
µ = T ρ∇ρS

µ . (3.111)

With this in mind, let’s compute the acceleration:

aµ = T ρ∇ρ(T
σ∇σS

µ)

= T ρ∇ρ(S
σ∇σT

µ)
= (T ρ∇ρS

σ)(∇σT
µ) + T ρSσ∇ρ∇σT

µ

= (Sρ∇ρT
σ)(∇σT

µ) + T ρSσ(∇σ∇ρT
µ + Rµ

νρσT
ν)

= (Sρ∇ρT
σ)(∇σT

µ) + Sσ∇σ(T
ρ∇ρT

µ) − (Sσ∇σT
ρ)∇ρT

µ + Rµ
νρσT

νT ρSσ

= Rµ
νρσT

νT ρSσ . (3.112)

Let’s think about this line by line. The first line is the definition of aµ, and the second

line comes directly from (3.111). The third line is simply the Leibniz rule. The fourth

line replaces a double covariant derivative by the derivatives in the opposite order plus the

Riemann tensor. In the fifth line we use Leibniz again (in the opposite order from usual),

and then we cancel two identical terms and notice that the term involving T ρ∇ρT µ vanishes

because T µ is the tangent vector to a geodesic. The result,

aµ =
D2

dt2
Sµ = Rµ

νρσT
νT ρSσ , (3.113)
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is known as the geodesic deviation equation. It expresses something that we might have

expected: the relative acceleration between two neighboring geodesics is proportional to the
curvature.

Physically, of course, the acceleration of neighboring geodesics is interpreted as a mani-

festation of gravitational tidal forces. This reminds us that we are very close to doing physics

by now.

There is one last piece of formalism which it would be nice to cover before we move

on to gravitation proper. What we will do is to consider once again (although much more
concisely) the formalism of connections and curvature, but this time we will use sets of basis

vectors in the tangent space which are not derived from any coordinate system. It will turn

out that this slight change in emphasis reveals a different point of view on the connection

and curvature, one in which the relationship to gauge theories in particle physics is much

more transparent. In fact the concepts to be introduced are very straightforward, but the

subject is a notational nightmare, so it looks more difficult than it really is.
Up until now we have been taking advantage of the fact that a natural basis for the

tangent space Tp at a point p is given by the partial derivatives with respect to the coordinates

at that point, ê(µ) = ∂µ. Similarly, a basis for the cotangent space T ∗
p is given by the gradients

of the coordinate functions, θ̂(µ) = dxµ. There is nothing to stop us, however, from setting up

any bases we like. Let us therefore imagine that at each point in the manifold we introduce

a set of basis vectors ê(a) (indexed by a Latin letter rather than Greek, to remind us that

they are not related to any coordinate system). We will choose these basis vectors to be

“orthonormal”, in a sense which is appropriate to the signature of the manifold we are

working on. That is, if the canonical form of the metric is written ηab, we demand that the
inner product of our basis vectors be

g(ê(a), ê(b)) = ηab , (3.114)

where g( , ) is the usual metric tensor. Thus, in a Lorentzian spacetime ηab represents

the Minkowski metric, while in a space with positive-definite metric it would represent the

Euclidean metric. The set of vectors comprising an orthonormal basis is sometimes known

as a tetrad (from Greek tetras, “a group of four”) or vielbein (from the German for “many

legs”). In different numbers of dimensions it occasionally becomes a vierbein (four), dreibein

(three), zweibein (two), and so on. (Just as we cannot in general find coordinate charts which
cover the entire manifold, we will often not be able to find a single set of smooth basis vector

fields which are defined everywhere. As usual, we can overcome this problem by working in

different patches and making sure things are well-behaved on the overlaps.)

The point of having a basis is that any vector can be expressed as a linear combination

of basis vectors. Specifically, we can express our old basis vectors ê(µ) = ∂µ in terms of the
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new ones:

ê(µ) = ea
µê(a) . (3.115)

The components ea
µ form an n × n invertible matrix. (In accord with our usual practice of

blurring the distinction between objects and their components, we will refer to the ea
µ as

the tetrad or vielbein, and often in the plural as “vielbeins.”) We denote their inverse by

switching indices to obtain eµ
a , which satisfy

eµ
aea

ν = δµ
ν , ea

µe
µ
b = δa

b . (3.116)

These serve as the components of the vectors ê(a) in the coordinate basis:

ê(a) = eµ
a ê(µ) . (3.117)

In terms of the inverse vielbeins, (3.114) becomes

gµνe
µ
aeνb = ηab , (3.118)

or equivalently

gµν = ea
µeb

νηab . (3.119)

This last equation sometimes leads people to say that the vielbeins are the “square root” of

the metric.

We can similarly set up an orthonormal basis of one-forms in T ∗
p , which we denote θ̂(a).

They may be chosen to be compatible with the basis vectors, in the sense that

θ̂(a)(ê(b)) = δa
b . (3.120)

It is an immediate consequence of this that the orthonormal one-forms are related to their

coordinate-based cousins θ̂(µ) = dxµ by

θ̂(µ) = eµ
a θ̂

(a) (3.121)

and

θ̂(a) = ea
µθ̂

(µ) . (3.122)

The vielbeins ea
µ thus serve double duty as the components of the coordinate basis vectors

in terms of the orthonormal basis vectors, and as components of the orthonormal basis

one-forms in terms of the coordinate basis one-forms; while the inverse vielbeins serve as

the components of the orthonormal basis vectors in terms of the coordinate basis, and as

components of the coordinate basis one-forms in terms of the orthonormal basis.

Any other vector can be expressed in terms of its components in the orthonormal basis.
If a vector V is written in the coordinate basis as V µê(µ) and in the orthonormal basis as

V aê(a), the sets of components will be related by

V a = ea
µV µ . (3.123)
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So the vielbeins allow us to “switch from Latin to Greek indices and back.” The nice property

of tensors, that there is usually only one sensible thing to do based on index placement, is
of great help here. We can go on to refer to multi-index tensors in either basis, or even in

terms of mixed components:

V a
b = ea

µV µ
b = eνbV

a
ν = ea

µe
ν
bV

µ
ν . (3.124)

Looking back at (3.118), we see that the components of the metric tensor in the orthonormal

basis are just those of the flat metric, ηab. (For this reason the Greek indices are sometimes

referred to as “curved” and the Latin ones as “flat.”) In fact we can go so far as to raise and
lower the Latin indices using the flat metric and its inverse ηab. You can check for yourself

that everything works okay (e.g., that the lowering an index with the metric commutes with

changing from orthonormal to coordinate bases).

By introducing a new set of basis vectors and one-forms, we necessitate a return to our

favorite topic of transformation properties. We’ve been careful all along to emphasize that

the tensor transformation law was only an indirect outcome of a coordinate transformation;

the real issue was a change of basis. Now that we have non-coordinate bases, these bases can
be changed independently of the coordinates. The only restriction is that the orthonormality

property (3.114) be preserved. But we know what kind of transformations preserve the flat

metric — in a Euclidean signature metric they are orthogonal transformations, while in a

Lorentzian signature metric they are Lorentz transformations. We therefore consider changes

of basis of the form

ê(a) → ê(a′) = Λa′
a(x)ê(a) , (3.125)

where the matrices Λa′
a(x) represent position-dependent transformations which (at each

point) leave the canonical form of the metric unaltered:

Λa′
aΛb′

bηab = ηa′b′ . (3.126)

In fact these matrices correspond to what in flat space we called the inverse Lorentz trans-
formations (which operate on basis vectors); as before we also have ordinary Lorentz trans-

formations Λa′

a, which transform the basis one-forms. As far as components are concerned,

as before we transform upper indices with Λa′

a and lower indices with Λa′
a.

So we now have the freedom to perform a Lorentz transformation (or an ordinary Eu-

clidean rotation, depending on the signature) at every point in space. These transformations

are therefore called local Lorentz transformations, or LLT’s. We still have our usual
freedom to make changes in coordinates, which are called general coordinate trans-

formations, or GCT’s. Both can happen at the same time, resulting in a mixed tensor

transformation law:

T a′µ′

b′ν′ = Λa′

a
∂xµ′

∂xµ
Λb′

b ∂xν

∂xν′
T aµ

bν . (3.127)
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Translating what we know about tensors into non-coordinate bases is for the most part

merely a matter of sticking vielbeins in the right places. The crucial exception comes when
we begin to differentiate things. In our ordinary formalism, the covariant derivative of a

tensor is given by its partial derivative plus correction terms, one for each index, involving

the tensor and the connection coefficients. The same procedure will continue to be true

for the non-coordinate basis, but we replace the ordinary connection coefficients Γλµν by the

spin connection, denoted ωµ
a
b. Each Latin index gets a factor of the spin connection in

the usual way:
∇µXa

b = ∂µXa
b + ωµ

a
cX

c
b − ωµ

c
bX

a
c . (3.128)

(The name “spin connection” comes from the fact that this can be used to take covari-

ant derivatives of spinors, which is actually impossible using the conventional connection
coefficients.) In the presence of mixed Latin and Greek indices we get terms of both kinds.

The usual demand that a tensor be independent of the way it is written allows us to

derive a relationship between the spin connection, the vielbeins, and the Γνµλ’s. Consider the

covariant derivative of a vector X, first in a purely coordinate basis:

∇X = (∇µXν)dxµ ⊗ ∂ν
= (∂µXν + ΓνµλX

λ)dxµ ⊗ ∂ν . (3.129)

Now find the same object in a mixed basis, and convert into the coordinate basis:

∇X = (∇µX
a)dxµ ⊗ ê(a)

= (∂µXa + ωµ
a
bX

b)dxµ ⊗ ê(a)

= (∂µ(ea
νX

ν) + ωµ
a
be

b
λX

λ)dxµ ⊗ (eσa∂σ)
= eσa(ea

ν∂µX
ν + Xν∂µea

ν + ωµ
a
be

b
λX

λ)dxµ ⊗ ∂σ
= (∂µX

ν + eνa∂µea
λX

λ + eνae
b
λωµ

a
bX

λ)dxµ ⊗ ∂ν . (3.130)

Comparison with (3.129) reveals

Γνµλ = eνa∂µea
λ + eνae

b
λωµ

a
b , (3.131)

or equivalently
ωµ

a
b = ea

νe
λ
bΓ

ν
µλ − eλb∂µe

a
λ . (3.132)

A bit of manipulation allows us to write this relation as the vanishing of the covariant
derivative of the vielbein,

∇µea
ν = 0 , (3.133)

which is sometimes known as the “tetrad postulate.” Note that this is always true; we did
not need to assume anything about the connection in order to derive it. Specifically, we did

not need to assume that the connection was metric compatible or torsion free.
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Since the connection may be thought of as something we need to fix up the transformation

law of the covariant derivative, it should come as no surprise that the spin connection does
not itself obey the tensor transformation law. Actually, under GCT’s the one lower Greek

index does transform in the right way, as a one-form. But under LLT’s the spin connection

transforms inhomogeneously, as

ωµ
a′

b′ = Λa′

aΛb′
bωµ

a
b − Λb′

c∂µΛ
a′

c . (3.134)

You are encouraged to check for yourself that this results in the proper transformation of

the covariant derivative.

So far we have done nothing but empty formalism, translating things we already knew

into a new notation. But the work we are doing does buy us two things. The first, which
we already alluded to, is the ability to describe spinor fields on spacetime and take their

covariant derivatives; we won’t explore this further right now. The second is a change in

viewpoint, in which we can think of various tensors as tensor-valued differential forms. For

example, an object like Xµ
a, which we think of as a (1, 1) tensor written with mixed indices,

can also be thought of as a “vector-valued one-form.” It has one lower Greek index, so we

think of it as a one-form, but for each value of the lower index it is a vector. Similarly a
tensor Aµν

a
b, antisymmetric in µ and ν, can be thought of as a “(1, 1)-tensor-valued two-

form.” Thus, any tensor with some number of antisymmetric lower Greek indices and some

number of Latin indices can be thought of as a differential form, but taking values in the

tensor bundle. (Ordinary differential forms are simply scalar-valued forms.) The usefulness

of this viewpoint comes when we consider exterior derivatives. If we want to think of Xµ
a

as a vector-valued one-form, we are tempted to take its exterior derivative:

(dX)µν
a = ∂µXν

a − ∂νXµ
a . (3.135)

It is easy to check that this object transforms like a two-form (that is, according to the
transformation law for (0, 2) tensors) under GCT’s, but not as a vector under LLT’s (the

Lorentz transformations depend on position, which introduces an inhomogeneous term into

the transformation law). But we can fix this by judicious use of the spin connection, which

can be thought of as a one-form. (Not a tensor-valued one-form, due to the nontensorial

transformation law (3.134).) Thus, the object

(dX)µν
a + (ω ∧ X)µν

a = ∂µXν
a − ∂νXµ

a + ωµ
a
bXν

b − ων
a
bXµ

b , (3.136)

as you can verify at home, transforms as a proper tensor.
An immediate application of this formalism is to the expressions for the torsion and

curvature, the two tensors which characterize any given connection. The torsion, with two

antisymmetric lower indices, can be thought of as a vector-valued two-form Tµν
a. The



3 CURVATURE 93

curvature, which is always antisymmetric in its last two indices, is a (1, 1)-tensor-valued

two-form, Ra
bµν . Using our freedom to suppress indices on differential forms, we can write

the defining relations for these two tensors as

T a = dea + ωa
b ∧ eb (3.137)

and
Ra

b = dωa
b + ωa

c ∧ ωc
b . (3.138)

These are known as the Maurer-Cartan structure equations. They are equivalent to

the usual definitions; let’s go through the exercise of showing this for the torsion, and you

can check the curvature for yourself. We have

Tµν
λ = eλaTµν

a

= eλa(∂µeν
a − ∂νeµ

a + ωµ
a
beν

b − ων
a
beµ

b)

= Γλµν − Γλνµ , (3.139)

which is just the original definition we gave. Here we have used (3.131), the expression for

the Γλµν ’s in terms of the vielbeins and spin connection. We can also express identities obeyed

by these tensors as
dT a + ωa

b ∧ T b = Ra
b ∧ eb (3.140)

and

dRa
b + ωa

c ∧ Rc
b − Ra

c ∧ ωc
b = 0 . (3.141)

The first of these is the generalization of Rρ
[σµν] = 0, while the second is the Bianchi identity

∇[λ|Rρ
σ|µν] = 0. (Sometimes both equations are called Bianchi identities.)

The form of these expressions leads to an almost irresistible temptation to define a
“covariant-exterior derivative”, which acts on a tensor-valued form by taking the ordinary

exterior derivative and then adding appropriate terms with the spin connection, one for each

Latin index. Although we won’t do that here, it is okay to give in to this temptation, and

in fact the right hand side of (3.137) and the left hand sides of (3.140) and (3.141) can be

thought of as just such covariant-exterior derivatives. But be careful, since (3.138) cannot;

you can’t take any sort of covariant derivative of the spin connection, since it’s not a tensor.
So far our equations have been true for general connections; let’s see what we get for the

Christoffel connection. The torsion-free requirement is just that (3.137) vanish; this does

not lead immediately to any simple statement about the coefficients of the spin connection.

Metric compatibility is expressed as the vanishing of the covariant derivative of the metric:

∇g = 0. We can see what this leads to when we express the metric in the orthonormal basis,

where its components are simply ηab:

∇µηab = ∂µηab − ωµ
c
aηcb − ωµ

c
bηac
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= −ωµab − ωµba . (3.142)

Then setting this equal to zero implies

ωµab = −ωµba . (3.143)

Thus, metric compatibility is equivalent to the antisymmetry of the spin connection in its

Latin indices. (As before, such a statement is only sensible if both indices are either upstairs

or downstairs.) These two conditions together allow us to express the spin connection in
terms of the vielbeins. There is an explicit formula which expresses this solution, but in

practice it is easier to simply solve the torsion-free condition

ωab ∧ eb = −dea , (3.144)

using the asymmetry of the spin connection, to find the individual components.

We now have the means to compare the formalism of connections and curvature in Rie-

mannian geometry to that of gauge theories in particle physics. (This is an aside, which is
hopefully comprehensible to everybody, but not an essential ingredient of the course.) In

both situations, the fields of interest live in vector spaces which are assigned to each point

in spacetime. In Riemannian geometry the vector spaces include the tangent space, the

cotangent space, and the higher tensor spaces constructed from these. In gauge theories,

on the other hand, we are concerned with “internal” vector spaces. The distinction is that

the tangent space and its relatives are intimately associated with the manifold itself, and
were naturally defined once the manifold was set up; an internal vector space can be of any

dimension we like, and has to be defined as an independent addition to the manifold. In

math lingo, the union of the base manifold with the internal vector spaces (defined at each

point) is a fiber bundle, and each copy of the vector space is called the “fiber” (in perfect

accord with our definition of the tangent bundle).

Besides the base manifold (for us, spacetime) and the fibers, the other important ingre-
dient in the definition of a fiber bundle is the “structure group,” a Lie group which acts

on the fibers to describe how they are sewn together on overlapping coordinate patches.

Without going into details, the structure group for the tangent bundle in a four-dimensional

spacetime is generally GL(4,R), the group of real invertible 4 × 4 matrices; if we have a

Lorentzian metric, this may be reduced to the Lorentz group SO(3, 1). Now imagine that

we introduce an internal three-dimensional vector space, and sew the fibers together with
ordinary rotations; the structure group of this new bundle is then SO(3). A field that lives

in this bundle might be denoted φA(xµ), where A runs from one to three; it is a three-vector

(an internal one, unrelated to spacetime) for each point on the manifold. We have freedom

to choose the basis in the fibers in any way we wish; this means that “physical quantities”

should be left invariant under local SO(3) transformations such as

φA(xµ) → φA′

(xµ) = OA′

A(xµ)φA(xµ) , (3.145)
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where OA′

A(xµ) is a matrix in SO(3) which depends on spacetime. Such transformations

are known as gauge transformations, and theories invariant under them are called “gauge
theories.”

For the most part it is not hard to arrange things such that physical quantities are

invariant under gauge transformations. The one difficulty arises when we consider partial

derivatives, ∂µφA. Because the matrix OA′

A(xµ) depends on spacetime, it will contribute an

unwanted term to the transformation of the partial derivative. By now you should be able

to guess the solution: introduce a connection to correct for the inhomogeneous term in the
transformation law. We therefore define a connection on the fiber bundle to be an object

Aµ
A

B, with two “group indices” and one spacetime index. Under GCT’s it transforms as a

one-form, while under gauge transformations it transforms as

Aµ
A′

B′ = OA′

AOB′
BAµ

A
B − OB′

C∂µO
A′

C . (3.146)

(Beware: our conventions are so drastically different from those in the particle physics liter-

ature that I won’t even try to get them straight.) With this transformation law, the “gauge

covariant derivative”

Dµφ
A = ∂µφ

A + Aµ
A

Bφ
B (3.147)

transforms “tensorially” under gauge transformations, as you are welcome to check. (In

ordinary electromagnetism the connection is just the conventional vector potential. No

indices are necessary, because the structure group U(1) is one-dimensional.)

It is clear that this notion of a connection on an internal fiber bundle is very closely

related to the connection on the tangent bundle, especially in the orthonormal-frame picture

we have been discussing. The transformation law (3.146), for example, is exactly the same
as the transformation law (3.134) for the spin connection. We can also define a curvature or

“field strength” tensor which is a two-form,

F A
B = dAA

B + AA
C ∧ AC

B , (3.148)

in exact correspondence with (3.138). We can parallel transport things along paths, and

there is a construction analogous to the parallel propagator; the trace of the matrix obtained

by parallel transporting a vector around a closed curve is called a “Wilson loop.”

We could go on in the development of the relationship between the tangent bundle and
internal vector bundles, but time is short and we have other fish to fry. Let us instead finish

by emphasizing the important difference between the two constructions. The difference

stems from the fact that the tangent bundle is closely related to the base manifold, while

other fiber bundles are tacked on after the fact. It makes sense to say that a vector in the

tangent space at p “points along a path” through p; but this makes no sense for an internal

vector bundle. There is therefore no analogue of the coordinate basis for an internal space —



3 CURVATURE 96

partial derivatives along curves have nothing to do with internal vectors. It follows in turn

that there is nothing like the vielbeins, which relate orthonormal bases to coordinate bases.
The torsion tensor, in particular, is only defined for a connection on the tangent bundle, not

for any gauge theory connections; it can be thought of as the covariant exterior derivative

of the vielbein, and no such construction is available on an internal bundle. You should

appreciate the relationship between the different uses of the notion of a connection, without

getting carried away.


