
We now consider the propagation of a wave packet in a dispersive medium.
The time development of the wave packet is given by the integral over k in
Eq. (2). The angular frequency ω in the integral is a function of k given by

ω(k) =
ck

n(k)
, (6)

where we have considered the index refraction n as a function of k. Then,
the integral in Eq. (2) is

f(x, t) =
∫ +∞

−∞
dkA(k)ei[kx−ω(k)t]. (7)

If the medium is non-dispersive, n is a constant and the integral becomes

f(x, t) =
∫ +∞

−∞
dkA(k)eik[x−(c/n)t]. (8)

Comparing this integral with that in Eq. (2), for t = 0 in that integral, we
see that Eq. (8) results in

f(x, t) = f
[
k

(
x − c

n
t
)

, 0
]
. (9)

This shows that, in a non-dispersive medium, the wave packet retains its
original shape, while moving with velocity v = c/n.

In a dispersive medium, we expand the function ω(k) about the value k0

at which the distribution in k of the wave packet peaks:

ω(k) = ω0 + (k − k0)ω
′
0 + ..., (10)

where ω0 = ω(k0) and ω′
0 = dω

dk
|k0 . We have expanded ω(k) up to first order

in (k−k0). With this approximation, the wave packet integral can be written
as

f(x, t) = e−i(ω0−k0ω′
0)t

∫ +∞

−∞
dk A(k)eik(x−ω′

0t) (11)

Comparison of this with Eqs. (2) and (4) now gives

f(x, t) = e−i(ω0−k0ω′
0)tf [(x− ω′

0t), 0]

= g(x − ω′
0t)e

i(k0x−ω0t). (12)
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This shows that, in a dispersive medium, the envelope of a wave packet will
retain its original shape [to first order in the expansion of ω(k)], and move
with a group velocity

vg = ω′
0 =

dω

dk
, (13)

with the understanding that the derivative is taken at a central wave number
k0. The velocity at which the waves within the packet move, called the phase
velocity, is given by

vp =
ω0

k0
=

c

n
. (14)
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