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Abstract

Most people justify the form of the E-H action by saying that it is the simplest scalar possible. But
simplicity, one can argue, is a somewhat subjective and ill-defined criterion. Also, simplicity does not shed
light on the axiomatic structure of general relativity. Instead, we use the principles of general relativity (
i.e. the equivalence principle and the principle of general covariance) plus one more natural asumptiom to
derive the E-H action.

1 Introduction

Let us assume that all dynamical properties of our space-time are comprised in the metric tensor
gab(x) which, at the same time, characterizes the behaviour of measuring apparatus. Thus, in
a field-like theory, the metric tensor together with its derivatives to finite order can be taken as
dynamical type variables provided an appropriate scalar Lagrangian can be constructed out of
them:

L(x) = L(gab, ∂cgab, ∂c∂dgab, · · · ). (1.1)

We always have in mind the group of general coordinate transformations subject to appropriate
differentiability conditions (the manifold mapping group of diffeomorphisms). Since tensors form
representations of this group, they are natural objects to serve as the building blocks of a generally
covariant physical theory. To ensure the general covariance of the resulting theory, we need to form
an invariant action integral, so that the statement δS[g] = 0 is generally covariant, and so also is
the dynamics derived from this statement. However, the integral

´
D
d4xL(x), over an invariantly

fixed domain D, would not be an invariant as long as L(x) is a scalar quantity, because

ˆ
D

d4xL(x) =

ˆ
D̄

d4x̄ (
∂x

∂x̄
)L̄(x̄) 6=

ˆ
D̄

d4x̄ L̄(x̄), (1.2)

when the Jacobian ∂x
∂x̄ 6= 1. So we need some quantity a(x) such that

ˆ
D

d4x a(x)L(x) =

ˆ
D̄

d4x̄ ā(x̄) L̄(x̄), (1.3)

holds, i.e., a(x) needs to be a scalar density transforming as

ā(x̄) =
∂x

∂x̄
a(x) (1.4)
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Since the metric, which transforms as

ḡab(x̄) =
∂xc

∂x̄a
∂xd

∂x̄b
gcd(x), (1.5)

is the only quantity at our disposal, we must construct the scalar density a(x), out of it. By taking
the determinants of both sides of the transformation law of the metric tensor, we find

ḡ(x̄) =

(
∂x

∂x̄

)2

g(x) (1.6)

Since Lorentz signature implies g = det(gab) < 0 , hence

√
−ḡ =

∂x

∂x̄

√
−g (1.7)

Thus, if we take a(x) =
√
−g our invariant action becomes,

S[gab] =

ˆ
D

d4x
√
−gL(x). (1.8)

By varying this action with respect to the metric tensor, we get the following E-L equation of
motion;

∂L̂
∂gab

− ∂c

(
∂L̂

∂(∂cgab)

)
+ ∂c∂d

(
∂L̂

∂(∂c∂dgab)

)
− · · · = 0, (1.9)

where L̂(x) =
√
−gL(x).

2 Deriving the form of the Lagrangian

This will be based on the following principles;

1. The principle of equivalence: At every point in an arbitrary curved space-time, we can choose
a locally inertial frame in which the laws of physics take the same form as in a global inertial
frame of flat space-time: at any point p, one can choose a coordinate system such that
gab(p) = ηab and ∂cgab(p) = 0 . The principle states that in the neighbourhood of this point,
the physics is Lorentzian.

2. The assumption: Since almost all of the differential equations of physics are second order,
it seems natural to assume that the metric tensor obeys a second order partial differential
equation.

3. The principle of general covariance: The form of physical laws is invariant under the group
of general coordinate transformations. The covariance (form invariance) means that the laws
of physics must be tensorial. To apply the principle, we need a mathematical representation
of it. The obvious choice is;

ηab → gab(x), ∂a → ∇a = ∂a + Γa, (2.1)
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where Γa is a frame-dependent object.

This way the so called metricity requirements, ∇agbc = 0, follow from the trivial flat space relations,
∂aηbc = 0. If one defines the action of covariant derivative on the metric tensor by,

∇agbc = ∂agbc − Γeab gec − Γeac geb,

then the torsionless condition, Γab = Γba, can be used to solve the metricity conditions. So, the
principle of general covariance represents a technical way to express the transition from flat space
Lorentzian physics to the curved space of GR. Notice that we have already used the principle of
general covariance when we assumed that L(x) is some unspecified scalar.

Ok, we are ready to do the job. First notice that gab(x) would obey a second order differential
equation if L(x) were a function of gab and ∂cgab only. But, the principle of equivalence makes it
impossible to have a non-trivial scalar function L(gab, ∂cgab) ; any such function can be made equal
to the constant L(ηab, 0), because it is always possible to set gab = ηab and gab,c = 0 at any point
by coordinate transformation. The only way out of this is to let L to depend on gab and its first
(gab,c) and second (gab,cd) derivatives but demand that ∂L

∂gab,cd
be a function of gab only. According

to Eq (1.9), gab(x) will then satisfy a second order differential equation. So, we may write L in the
form;

L(gab, gab,c, gab,cd) = gab,cd(x)Aabcd(gab) +B(gab, gab,c). (2.2)

Let us evaluate this Lagrangian in a locally inertial system; At the point xa = 0, we choose
coordinates such that gab(0) = ηab and gab,c(0) = 0. Hence,

L (ηab, 0, gab,cd(x)) = gab,cd(x)Aabcd(ηab) + b, (2.3)

where b = B(ηab, 0) . In a new coordinate system related to the x-system by the Lorentz transfor-
mation xa = Λabx̄

b, we still have ḡab = ηab, and ḡab,c = 0, but

ḡab,cd = Λma Λnb Λpc Λqd gmn,pq. (2.4)

Since L is a Lorentz scalar, we must have

ḡab,cdA
abcd = gab,cdA

abcd. (2.5)

Eq (2.4) and Eq (2.5) imply that Aabcd(ηnm) is an invariant Lorentz tensor. In flat space-time, the
most general rank-4 invariant tensor is

Aabcd = aηab ηcd + a1 η
ac ηbd + a2 η

ad ηbc + a3 ε
abcd. (2.6)

Using the symmetry of gab,cd in a and b and in c and d, we can write Eq(2.3) in the form

L = gab,cd
(
aηabηcd + cηacηbd

)
+ b, (2.7)
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where a and c are constants. Next, we go to yet another (locally inertial) coordinate system related
to the x-system by

xa = x̄a +
1

6
ηae Cebcdx̄

b x̄c x̄d, (2.8)

where the constant Cebcd is symmetric in b, c and d. With some boring calculation (see Appendix
A), at x̄a = 0, one finds that,

ḡab,cd = gab,cd + Cabcd + Cbacd. (2.9)

Now, it is easy to see that the invariance of L(x) under this transformation;

L(ηab, 0, ḡab,cd) = L(ηab, 0, gab,cd),

implies a = −c (see Appedix A). Thus, our Lagrangian becomes

L(x) = cgab,cd(x)
(
ηac ηbd − ηab ηcd

)
+ b. (2.10)

Now comes the most difficult part, we play with the indices and rewrite the first term in (2.10) as
(see Appendix A)

c

2
ηbc ηae ∂a (gbe,c + gce,b − gbc,e)−

c

2
ηae ηbc ∂c (gbe,a + gae,b − gba,e) , (2.11)

and, after introducing the “connection coefficients”,

Γ̂abc =
1

2
ηae (gce,b + gbe,c − gbc,e),

we conclude that in a locally inertial frame our Lagrangian has the form

L(x) = c ηbc
(
∂aΓ̂abc − ∂cΓ̂aba

)
+ b. (2.12)

Finally, we are in good position to use the principle of general covariance;(2.1), and write an
expression for L(x) which holds true in any, completely arbitrary, reference frame,

L(x) = cR+ b, (2.13)

where,
R = gab (∇cΓcab −∇bΓcac) , (2.14)

is the scalar curvature and[1],

Γabc =
1

2
gae(gce,b + gbe,c − gbc,e).

The values of c and b must be determined by experiment. For b = 0 , the value of c can be
determined by comparing the Newtonian limit of the theory with Newton’s gravity, this gives
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c = 1
16πG . Thus, for b = Λ

16 6= 0, we arrive at the H-E action[2]:

S[gab] =
1

16πG

ˆ
d4x
√
−g (R+ Λ) . (2.15)

3 Conclusion

We have shown that the H-E action follows from the two principles of general relativity and the
assumption that the field satisfies a second order diferential equation. Thus, there must be a room
for this assumption in the set of axioms of general relativity. We have also seen that the principle
of general covariance played a crucial part in the derivation. So, in spite of all the fuss about
its “physical content”, general covariance seems to be a powerful and important principle which
determines acceptable forms of physical laws.

A Proof of equation (2.9) and other stuff

By differentiating the coordinate transformation, (2.8), and substituing the result in the right hand
side of (1.5) we find

ḡab(x̄) = gab(x) +
1

2
gae η

en Cnbpqx̄
q x̄p +

1

2
geb η

en Cnapq x̄
p x̄q +O(x̄4),

Now we differentiate with respect to x̄c, we find,

ḡab,c = gab,c + gae η
en Cnbpc x̄

p + geb η
en Cnapc x̄

p + F,

where F represents a collection of some junk that will vanish when we evaluate the final expression
at x̄a = 0 ;

F = O(x̄2) ∂̄g + · · ·

Now we take the second derivative and collect more junk;

ḡab,cd = gab,cd + gae η
en Cnbcd + geb η

en Cnacd +G(x̄),

where G represents some thing of order;

G = ∂̄F +O(x̄) ∂̄g

At x̄ = 0 we can put gab = ηab, and since the junk G(0) vanish, we find our result

ḡab,cd = gab,cd + δna Cnbcd + δnb Cnacd.

Alternatively, write the transformation law as

ḡab(x̄) = Tma (x̄)Tnb (x̄) gmn(x),
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where (for the transformation defined by 2.8)

Tma (x̄) ≡ ∂xm

∂x̄a
= δma +

1

2
ηmq Cqars x̄

r x̄s,

∂

∂x̄c
Tma (x̄) = ηmq Cqacr x̄

r,
∂2

∂x̄c∂x̄d
Tma (x̄) = ηmq Cqacd.

Note that
Tma (x̄)|x̄=0 = δma ,

∂

∂x̄c
Tma (x̄)|x̄=0 ≡ Tma,c(0) = 0.

In other words, the transformation xm = Xm(x̄), defined by Eq(2.8), solves the following initial
value problem:

∂3

∂x̄a∂x̄c∂x̄d
Xm(x̄) = ηmq Cqacd, X

m(0) = 0, Xm
,a (0) = δma , and X

m
,ab(0) = 0.

Now, differentiating the transformation law of the metric with respect to x̄c, we obtain

ḡab,c(x̄) = (Tma T
n
b ),c gmn(x) + Tma T

n
b T

l
c gmn,l(x).

Differentiating this expression with respect to x̄d , we get

ḡab,cd(x̄) = (Tma T
n
b ),cd gmn(x) + Tma T

n
b T

l
cT

p
d gmn,lp(x) +Rabcd,

where
Rabcd = (Tma T

n
b ),c T

p
d gmn,p(x) +

(
Tma T

n
b T

l
c

)
,d
gmn,l(x).

At x̄ = 0, we have T rs (0) = δrs , T
m
a,c(0) = 0, leading to Rabcd(0) = 0, and (taking gab(0) = ηab)

ḡab,cd = gab,cd + (Tma T
n
b ),cd |x̄=0 ηmn.

Again, this leads to our equation (2.9): Since

∂2

∂x̄c∂x̄d
(Tma T

n
b ) |x̄=0 =

(
∂2

∂x̄c∂x̄d
Tma

)
x̄=0

Tnb (0) + Tma (0)

(
∂2

∂x̄c∂x̄d
Tnb

)
x̄=0

,

we find
(Tma T

n
b ),cd (0) = ηmq Cqacd δ

n
b + δma ηnq Cqbcd,

and, therefore
ḡab,cd = gab,cd + Cabcd + Cbacd.

Using this in L(η, 0, ḡab,cd) we find

L(η, 0, ḡab,cd) = L(η, 0, gab,cd) + (Cabcd + Cbacd)
(
aηabηcd + cηacηbd

)
.
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Thus, the Lagrangian is invariant if and only if

(Cabcd + Cbacd)
(
aηabηcd + cηacηbd

)
= 0.

Since Cabcd = Cacbd = Cabdc = Cadcb, the above invariance condition becomes

2(a+ c)Cabcd η
ab ηcd = 0, ⇐⇒ a+ c = 0.

Finally, let us write

gab,cdη
acηbd =

1

2
gce,baη

bcηae +
1

2
gba,ecη

aeηbc,

and
gab,cdη

abηcd =
1

2
gbc,eaη

bcηae +
1

2
gae,bcη

aeηbc.

Using these expressions, our Lagrangian Eq(2.10) becomes

L(x)− b =
c

2
ηbcηae (gce,ba − gbc,ea)− c

2
ηaeηbc (gae,bc − gba,ec) .

Now to the first term, we add c
2η
bcηaegbe,ca, and from the second, we subtract the equal number

c
2η
aeηbcgbe,ac to obtain Eq(2.12)

L(x)− b =
c

2
ηbcηae∂a (gbe,c + gce,b − gbc,e)−

c

2
ηaeηbc∂c (gbe,a + gae,b − gba,e) .

Exercise. consider the linear transformation,

xa = x̄a + ηan Cnm x̄
m.

Show that,
ḡab = gab + Cab + Cba.

Now, consider

xa = x̄a +
1

2
ηan Cnpq x̄

p x̄q,

then show, at x̄ = 0, that
ḡab,c = gab,c + Cabc + Cbac.
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