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Chapter 1

Homework 1

1.1 Problem 1

1. A point particle moves in space under the influence of a force derivable from a
generalized potential of the form:

Ufr,v)=V(r)+o °L

where r is a radius vector from a fixed origin, L is the angular momentum about that point,
and o is a fixed vector in space.

a) Find the components of the generalized force on the particle in both Cartesian and
spherical polar coordinates according to Q; =-dU/dq; + d/dt[0U/d(dq;/dt)].

b) Show that the components in the two coordinate systems are related according to Q;
=JiF;* (0)‘,’/6(]1].

c) Obtain the equations of motion in spherical coordinates.

1.1.1 Part a)

Number of objects N 1
Number of Dimensions D 3
Number of translation D.O.F Nirans = ND 3
Object dimensionality C 0
Number of rotational D.O.F [ Nyt = 3D(D—1)—3(D-C)(D-C—1) [ 0
Number of constraints M 0
Number of D.O.F f = Nirans + Nyot — M 3

e Cartesian Coordinates

Since there are 3 D.O.F and no constraints, I will choose X, Y, Z as the
G.Cs. First, focus on getting the potential. Let

R = (&X+$/Y+QZ)
be the position of the particle relative to the origin O.Let

o= (fcom +yo, + ioz)

5
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Now, the momentum of the particle is just.
- m(f(X LYY +zz')
The angular momentum is about the origin; thus,

L; = € X;pr

This is the ith component of the angular momentum given X is the jth
component of the position of the particle relative to the origin and py is
the kth component of the linear momentum of the particle.

Li = msiijij
L1 = ’I’)’L|:X2X3 — X3X2:|
We can permute indices in order to get both L, and Ls.
LQ = m|:X3X1 — X1X3i|

L3 = m{Xng - X2X1:|

So, )
L,=m|yZz— ZY]
Ly =m|ZX - XZ|
L.=m|XV — YX}
Now,

o-L=o0,L; =0, X;pk

Thus, the potential becomes

U=V(X,Y,2)) +m<om [YZ - ZY] +o, [ZX . XZ] Yo, [XY - YXD

U=V(X,Y,Z)+ m([oyZ oYX + [0.X — 0, 2]V + [0,Y — oyX]Z)

Now using

0 = oU d(@U)

"¢, at\ag,
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Qx = —% + m{UzY - UyZ'} + m% (ayZ - ozY>

Assuming o is a constant vector, since it is fixed in space

RQx = v m[UzY - UyZ:| —&—m{ayZ - O‘ZY}

0X

Permuting indices

ov [o’xZ. - O'ZX} + m[ozX - axZ.}

=gy "
QZ = —g—‘; — m{ayX — o'xY} —|—m[O'xY — O'yX}
Equivalently
ov :
QX:—37+2m[UXR]X

Thus, in cartesian coordinates

Q; =90V + Qmeipqaqu

In Vector form

Q=-VV+2mo xR

e Spherical coordinates
This time choose R, ®, © as the G.Cs and again focus on getting the

potential

And, choose

From part a)
Q=-VV+2mo xR
Since V(R) is a function of only R, then from A.9 we know that

- dV
—VV = _Rﬁ

Now,
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moxR = mo [R cos(®) sin(0)— R sin(®) sin(0)+R cos() cos(@)@} (w)

+mo [R sin(®) sin(©) + R cos(®)P sin(O©) + Rsin(®) cos(@)@] (zxy)
——

—X

From A.11 and A.10
mo x R =mo [R cos(®) sin(©) — Rsin(®)dsin(O) + }
[R sin(®) sin(©) + & cos(®) + O sin(®) cos(@)}

—i—ma[—R sin(®) sin(©)— R cos(P) P sin(O) }

[lf{ cos(®) sin(©) — ® sin(P) + O cos(P) cos(@)}

moxR = mo {—RR sin’(0)d+d (R sin?(©)+Rsin(0) cos(@)@) —ORd sin(0) cos(O)
So, we now have

av 9
Qr = i 2cmRsin“(©)®

Qo = 20mRsin(0) 4+ 20mR cos(0)O

Qo = —20mRd sin(O) cos(O)

1.1.2 Part b)

We want to show

(L.1) Qj = ZFZ : 5‘7(13

is true.
Compare to the expression from cartesian coordinates with o, = oy, = 0 and

o, =o0.

H Cartesian H Spherical H
Qx = —5% —20mY Qr = —%% — 20mRsin’(0)®
Qy = —% +20mX || Qo =20mRsin(0) + 20mR cos(6)O
Qz=-92 Qo = —20mRP sin(O) cos(O)
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Homework Adam Aker
Starting with Qg
ov N\ 0X oV .\ 0Y AN
= (- gx ~2mV) 5 + (= 5y +2mX) 55+ (- 52) om
on_ OVOX L0 ovoy oy ovoz
"TT9xor "™ OR over """ BR 0Z0R
av - 0X .Y
QR = _ﬁ — 20mYﬁ + 20'mX@
dv Y . . : . -\ 0X
Qr = —Z5—20m (Rsm(cp) $in(0) + R cos(®) sin(0)d + R sin(®) cos(@)@) o
: . . : . -\ 0Y
+20m (R cos(P) sin(0) — Rsin(P) sin(0)P + R cos(P) cos(@)@) 3R
Q——ﬂ—2(}?'q>'(~)3 ®) sin(0)d 3)sin(©
R=—om—20m > sin (@) sin(O)+R cos(P) sin(O) ) (cos( ) sin( )>

+20m (R cos(®) sin(©)—Rsin(®) sin(©) ) (sin((ID) sin(@))

av :
1.2 = 2
(1.2) Qr R 20mRsin(©)P

Continuing with Qg

ov -\ 0X oV \ OY v\ 07
Qo= (- 5 ~2m¥) g + (~ gy +2mX) 5 + (- 57) 38
oV 0X . 0X OV Y _9Y 0V oZ
Go="9x9e ™ % “ovos " o 9700
dV - 0X .Y
However, since V(R) is independent of ®, then
- 0X .Y
Now
- . . : . -\ 0X
Qs = —20m (R sin(®) sin(O) + R cos(P) sin(O)P + Rsin(P) cos(@)@) 2%
: . . . . -\ Y
+20m (R cos(P) sin(0) — Rsin(P) sin(0)P + R cos(P) cos(©)O 7%

)
Qo = —20m (R sin(®) sin(©)+R cos(P) sin(Q)d ) (—R sin(®) sin(@))

+20m (R cos(®) sin(0)—Rsin(P) sin(O)d ) (R cos(P) sin(@))
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Homework
(1.3) Qo = 20mRsin?(0) + 20mRsin(O) cos(0)O
Finally, Qo
ov -\ 0X ov -\ OY oV o0z
Qo= (- 5x ~20m¥) 55 + (- g7 +2¥) 55 + (- 37) 0
ol VOX X ovoy | ov ovor
°©7 79X 00 96 dY 90 00 07 00
dv L 0X .Y
However, V(R) does not depend on ©; thus,
0X . 0Y
Now
I . . . . -\ 0X
Qo = —20m (R sin(®) sin(O) + R cos(P) sin(O)P + Rsin(P) cos(@)@) 20

+2om (R cos(®) sin(©) — Rsin(P) sin(@)d) + Rcos(D) COS(@)@) %

Qo = —20m (R sin(®) sin(©)+R cos(®) sin(©)d ) (R cos(®) cos(@))
+20m (R cos(®) sin(O)— R sin(®) sin(©)d ) (R sin(®) cos(@))
(1.4) Qo = —20mRd sin(O) cos(O)

We can see that 1.1 holds from 1.2, 1.3, and 1.4

1.1.3 Part c)
Next, the kinetic energy.
T = Ttyans + Trot
From A.4
Tirans = %mqﬂ = %m(z%‘s2 + R?sin*(0)¢? + RQG)Q)
Since there are no rotational D.O.F for the particle, then

Trot =0

10
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Thus,
1 52 2 .2 12 22
L= im(R + R*sin®(0)¢” + RO )
~V(R) — m([UyZ — oYX + [0.X — 0, 2)Y + [o,Y — ayX]Z>

More compactly, since o, = 0, =0 and 0, = 0.
1 52 2 2 ) 22 y ;
L= 5m(R + R?sin?(0)$2 + R?O ) ~V(R) - am(XY - YX)

L= %m(RQ + R%sin?(0)$2 + 3292) —V(R)
—om (R cos(P) sin(O) [R sin(®) sin(©) + R cos(®) sin(0)P + Rsin(P) cos(@)@}

—Rsin(®) sin(O) {R cos(®) sin(©) — Rsin(®)sin(0)® + R cos(P) cos(@)@D

L= %m(z'%? + R?sin2(0)9? + 3292) ~V(R)
—mo (RR sin(®) cos(®) sin?(0©)+R? cos?(®) sin(Q) D+ R cos(®) sin(®) cos(O) sin(0)O

—RRsin(®) cos(®) sin?(©)+R? sin?(®) sin?(©)d— R? sin(®) cos(P) sin(O) cos(@)@)

L= %m(RQ + R%sin*(©)9? + R2@2> — V(R) — omR?sin?(©)d

d /0L oL
(1.5) it Rl
For R:
9L _ ok
OR

£(05) -
oL

) AV .
— 2 2 2 )
R mRsin®(0)®* + mRO- — R 20mRsin”(©)d

(1.6) mR — mRsin?(©)®? — mRO? = —% — 20mRsin*(©)d

11
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For @
8—4 = mR?sin*(0)® — omR? sin*(O)
oP
4 (%) = 2mRRsin*(0)®d + 2mR?sin(O) cos(0)OP + mR? sin(0)d
dt \ 9P
—20mRRsin?(0) — 20mR? sin(O) cos(0©)O
oL
7% 0
So,
(w7 2mRsin?(0)® + 2mR sin(O) cos(0)O® + mRsin?(0)d =
. 20mR sin?(0) 4+ 20mRsin(O) cos(0)O
For ©
% = mR?©
00
d oLy - 0
Z (%) = 2mRRO + mR*6
g—g = mR?sin(0) cos(0)d? — 20mR?sin(O) cos(O)d

(1.8) 2mRO + mRO — mRsin(0) cos(0)d? = —20mRsin(O) cos(0)d

1.2 Problem 2

2. Two particles of mass m are joined by a rigid massless rod of length J, the center of which
is constrained to move on a circle of radius a. How many degrees of freedom does the
system have if the particles can move in three dimensions? Express the kinetic energy in
generalized coordinates.

First consider that there are two particles each in 3 dimensions. Since the
particles are attached by a rod, this is one constraint; however, there is a second
constraint since the center of the rod is constrained to move on a circle of radius
a. Furthermore, the final constraint is that the circle is confined to the z-y
plane. So, there are three constraints.

12
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Number of objects N 2
Number of Dimensions D 3
Number of translation D.O.F Nirans = ND 6
Object dimensionality C 0
Number of rotational D.O.F | Nyot =3D(D—1)—3(D—-C)(D—-C—1) [ 0
Number of constraints M 3
Number of D.O.F f = Nrans + Nrot — M 3
Alternatively, consider a rod (1 dimensional object) whose center is con-
strained to move on a circle of radius a.Furthermore, the circle is confined to
the z-y plane. This rod sits in 3 dimensions and there are two constraints.
Number of objects N 1
Number of Dimensions D 3
Number of translation D.O.F Nirans = ND 3
Object dimensionality C 1
Number of rotational D.O.F | Ny = %D(D -1) - %(D -O)(D-C-1) |2
Number of constraints M 2
Number of D.O.F f = Nirans + Nyot — M 3

Let the center of the circle of radius a be the origin. Then choose ¥, 6, ¢ be
the G.Cs: v is the angular displacement of the center of mass around the circle
of radius a. Picturing a sphere with the origin at the center of mass of rod and
of radius %, then 0 is the latitudinal angle and ¢ is the longitudinal angle just
like in spherical coordinates.

T= Ttrans + Trot

From A.4 we know what the velocity on the surface of a sphere with a
constant radius of é is; thus, for the kinetic energy we have:

(1.9) 7= Lua2? 4 1(wﬁ)(s,ir12(e))¢'>2 n 9'2)
2 2"y
Where
m2 m
(1.10) e m+m ™ 2
So,
_ M oo Mol . 20y 32
(1.11) T = 2o + (sm (9)¢>+9)

13
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1.3 Problem 3

3. A particle of mass m moves in one dimension such that it has the Lagrangian:
L =m?(dx/dt)*/12 + m(dx/dt)?V(x) - V?(x)

where V(x) is some differentiable function of x. Find the equation of motion for x(t) and
describe the physical nature of this system on the basis of this equation.

Using the E.L equation

i(aj)_aj_

dt \ 0% or
2,3

oL _ m7d +2miV(x)

FIE
d 0L\ 45 5. , o dV
%(%> =m & L + 2miV(z) + 2ma o

OL _  odV . dV

- ey
d (OL\ OL .. . LdV  dV dv
dt(asb) ey = E 4 2mzV (z) + 2mi L + 2V (x) T
P S 1, av
—me(imﬂc +V(:v)) +2<§mx +V(gc))%

58~ s+ ) st ) o

So we can have

1%
(1.12) mi + — =0

or (disjunction)
1
(1.13) §m9'c2 +V(x)=0

Choose equation 1.12 and set %m:’ﬁ + V(z) = E where E is some constant;
thus, we have a particle in an inertial frame. Equation 1.12 is just a statement
of newton’s second law with no external forces acting on the particle and

(1.14) %ma’cQ +V(z)=E

is just the statement of conservation of energy.

14



Chapter 2

Homework 2

2.1 Problem 1

1. A point mass is constrained to move on a massless hoop of radius a in a vertical plane
that rotates about the vertical direction with constant speed w. Obtain the Lagrange
equations of motion assuming that gravity is the only external force acting on the point
mass. Show that if w is greater than a critical value wo, there can be a solution in which the
particle remains stationary at a point other than the bottom, but that if w < wo, the only
stationary point is at the bottom of the hoop. What is the value of wo?

We have a particle of mass m which is constrained to move on a hoop of
radius a; further more, the angular velocity of the hoop is a constant w. So,
there are two constraints on a point particle

Number of objects N 1
Number of Dimensions D 3
Number of translation D.O.F Nirans = ND 3
Object dimensionality C 0
Number of rotational D.O.F [ Nyt = 3D(D—-1)—3(D-C)(D-C—-1) [ 0
Number of constraints M 2
Number of D.O.F f = Nirans + Nyot — M 1

Suppose that the pendulum is attached at the origin such that at rest, the
particle rests at the bottom of the hoop. The most appropriate G.C for this
problem is the polar angle from the —z axis, 6 where 0 < 0 <7

The kinetic energy is

1 2 o2 2 22
(2.1) T= Zm {a sin®(0)w* + a6

The potential energy is
(2.2) U = —mgacos(d)

Thus, the lagrangian of the system is simply

15
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1 .
(2.3) L= §m[a2 sin?(0)w? + a?0?| + mga cos(h)

Now using the Euler-Lagrange Equation for

oL

(2.4) 5% ma
d oLy o
oL 2 . 2 .
(2.6) 39 = Mma sin(f) cos(8)w” — mgasin(6)

Thus, the equation of motion for 6 is just

(2.7) ma?6 — ma? sin(0) cos(#)w? + mgasin(f) = 0
From (2.7)
(2.8) § = sin(0) cos()w? — < sin(0)
a
We seek a (t.) = 6, which makes §| = 0 other than the trivial solution

tic
of 6. = . Since by hypothesis 6. # 7, then sin(d.) # 0.
At time t. (2.8) becomes

(2.9) 9‘ = sin(f,.) cos(fe)w? — g sin(0..)

t=t.

Suppose furthermore that 6 =0, for w = Kwy where K > 0 then

t=t.

sin(6..) cos(f.) (Kwp)? — %sin(Qc) =0

cos(0.) K?ws — 9_9
a

g
(210) COS(GC) = m

Let

(2.11) wy = \/g

16
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Now (2.10) becomes

1
T K?
If K <1, then (2.12) has no solutions; thus, violating the hypothesis that a
solution other than 6. = 7 for 9‘ = 0 exists; however, if K > 1, then (2.12)
t=t

(2.12) cos(0.)

has solutions and the exact value of 6. depends on the K.

1
_ -1
b = cos” (3

2.2 Problem 2

2. A particle of mass m is suspended by a massless string of length L. It hangs, without
initial motion, in a gravitational field of strength g. It is struck by an impulsive horizontal
blow, which introduces an angular velocity w. If w is sufficiently small, it is obvious that the
mass moves as a simple pendulum. If w is sufficiently large, the mass will rotate about the
support. Use a Lagrange multiplier to determine the conditions under which the string
becomes slack at some point in the motion.

Once the particle of mass m is imparted with angular velocity w

Number of objects N 1
Number of Dimensions D 2
Number of translation D.O.F Nirans = ND 2
Object dimensionality C 0
Number of rotational D.O.F | Nyoy = 3D(D—1)—3(D—-C)(D—-C—1) [ 0
Number of constraints M 1
Number of D.O.F f = Nirans + Nyot — M 1

Let the particle be attached at the origin. Choose polar coordinates r and
¢ as the 2 generalized coordinates for the particle.
Now from (A.4) with ¢ =0

1 .2 242
(2.13) T = 2m(7“ + 70 )
(2.14) U = —mgr cos(0)
And the holonomic constraint is
(2.15) fry=r—-1=0

The forces of constraint (); are given by

_ Ofa
(216) Q=Y

17
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The lagrangian is

(2.17) L= %m(i‘2 + 7“292) + mgr cos(0)
For r
2.18 % =mr
(2.18) or
d /oL
(2.19) = (E) = mi
(2.20) %f = mr6? + mg cos(6)
_\9f _
(2.21) Q=5 =)
(2.22) mit — mrf? — mg cos(f) = A
For 0
(2.23) % = mr?0
(2.24) % (%) = 2mrif + mr2f
(2.25) % = —mgrsin(6)
_\91 _
(2.26) Qo =A55 =0
(2.27) 2mrif + mr26 + mgrsin(f) = 0

18
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Apply the contraint (2.15) to (2.27)

(2.28) mi?0 + mglsin(g) = 0
Now multiply both sides by 6

66 + %sin(&)é =0

(")~ 1 () =0

DN | =

Upon integration

(2.29) %eﬁ - %Cos(ﬂ) ~C

Where C is a constant. At ¢t =0, @ = 0 and §y = w; thus,
Ly g _
52 2, 29
(2.31) 0% =w®+ = {cos(@) - 1}
Using (2.15) and (2.31) in (2.22)
(2.32) —ml {w2 + 279((305(0) - 1)} —mgcos(f) = A

(2.33) — mlw? —mg {3 cos(f) — 2} =

Now, in order for the string to go slack, the tension in the string needs to
be 0; thus, we require A = 0 (The tension pushes rather than pulls). This will
occur when

lw?
3cos(f) —2=——
(0) ;
2
cos(f) = 2l
3 39
(2.34) 0,(w) = cos™! (g - E)
' S 3 3¢

Above 6, the string will be slack and the constraint will no longer apply.
Suppose A > 0, then we would need.

19
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(2.35) 6 > cos™! (g - —)

(2.36) cos ™! (2 - %) <f<m

Based on (2.36) and the symmetry in the plane of rotation, if

(2.37) w> /2

then the particle will just rotate around the point of attachement. Thus, for
the string to go slack we must have

ot
<

(2.38) O<w< /=

if w < 0, then we will just be kicking the particle in the opposite direction;
thus, (2.38) gives the allowed values for w in order for a slack string to occur
for some range of values for § above 6;(w). Finally, plugging in the bounds on
w into (2.34)

(2.39) cos ™! (;) <Os(w)<m

20



Homework Adam Aker 2019-09-23

2.3 Problem 3

3. A carriage runs along rails on a rigid beam, as shown in the figure below. The carriage is
attached to one end of a spring of equilibrium length ry and force constant k, whose other
end is fixed on the beam. On the carriage, another set of rails is perpendicular to the first
along which a particle of mass m moves, held by a spring fixed on the beam, of force
constant k (the same as the first spring) and zero equilibrium length. Beam, rails, springs,
and carriage area assumed to have zero mass. The whole system is forced to move in a
plane about the point of attachment of the first spring, with a constant angular speed w.
The length of the first spring is at all times considered small compared to ro.

a) What is the energy of the system? Is it conserved?

b) Using generalized coordinates in the laboratory frame, what is the Jacobi integral for
the system? Is it conserved?

c) Interms of the generalized coordinates relative to a system rotating with the
angular speed w, what is the Lagrangian? What is the Jacobi integral? Is it
conserved? Discuss the relationship between the two Jacobi integrals?

2.3.1 Part a)

Number of objects N 1
Number of Dimensions D 2
Number of translation D.O.F Nirans = ND 2
Object dimensionality C 0
Number of rotational D.O.F | Nyot = %D(D —-1) - %(D -C)(D-C-1) 10
Number of constraints M 0
Number of D.O.F f = Ntrans + Nyot — M 2

Choose G.Cs 7/, 3/ as G.Cs. Now 6 = wt is the angle between the z-axis
and the rail containing the cart; furthermore, let 2’ be the length of the spring
of the attached from the origin to the cart and gy’ be the length of the sping
attach from the cart to the particle. The prime coordinates are the G.Cs in the
rotating frame.

The position vector of the particle in the rotating frame is

(2.40) v=a'% +y'y

21
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The primed frame is rotating clock-wise relative to the lab frame; thus,

(2.41) %' = cos(wt)x — sin(wt)y
(2.42) ¥’ = sin(wt)x + cos(wt)y
So
(2.43) v = (2’ cos(0) + v/ sin(0))X + (v cos() — 2’ sin(9))y

Differentiating (2.43) with respect to time
t= (:i:’ cos(0) — 2’ sin(0)6 + ¢ sin(6) + o/ cos(&)é)f(

+(y/ cos(0) — y' sin(0)0 — i’ sin(0) — 2’ cos(@)é)fr

22
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t-t =i cos?(0) + 2'? sin?(0)0% + ' sin?(0) + y' cos*(0)6?
242" cos(0) sin(0)6 + 22"y cos() sin(0) + 24"y cos?(0)0
—22'y/ sin?(0)0 — 22"y cos(0) sin(0)6?

429"y cos(6) sin(0)6
+5% cos?(0) + y? sin(0)0% + &' sin?(0) + 22 cos?(0)6?
—2/y/ cos() sin(0)0 — 2y i’ cos(0) sin(0) — 24z’ cos*(0)0
+2y/i" sin?(0)0 + 2y’ cos(0) sin (0 )

+2i' 2" cos(6) sin(0)6

(2.44) -t = &%+ + (22 4+y?)0>+2i"y 0 — 22" 0+2(5'y/ +3'2") cos(0) sin(H)6
Thus, the kinetic energy is
Lo(m, 22y 2
Tzim(m +9°+ (2™ +y*)w )
(245) 1 -1 ! A4 : N /!
—|—§m(w(y y +d'c )sm(2wt)) + mw(x y —z'y )

Now let tg = z(%’, then

(2.46) T = ) ( cos(f)x — sin(ﬁ)y)
So

(2.47) v —rv9 = ((z' — z() cos(0) + y'sin(0))%x + (v cos(0) — (z' — zp) sin(6))y

(2.48) (t—10)- (vt —19) = (z/ —a()? + ¢
The potential is

1
(2.49) U= §m92 ((a:’ —xp)* + y’z)

Thus, the lagrangian in this frame is

1
L= §m(a'7’2 + 9%+ (2 + Yy +w(@y + i'2) sin(2wt))
(2.50) )

mw (a’:’y’ _ x/y/) _ imQQ ((JZ, _ x/O)Z T y/2>

Furthermore, the total energy is

1
E = im(i”z + 9%+ (@? + ) Fu@y + ') sin(th))
(2.51) )
+mw(dc'y’ —.’[Iy/> + me2 ((CUI _ x6)2 +y/2)

From (2.51), it is evident that the total energy is not conserved since dt L £
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2.3.2 Part b)
Now for h

1
h = {mjc’—l—wm’ sin(2wt)—|—mwy'} '+ [my’—l—wy' sin(2wt)—mwx’} y’—5771(@"’2—|—y'2)(,u2

1 1
—im(9‘3’2+y’2+(m’2+y’2)w2+w(y"y’+9b'x’) sin(2wt))—mw(:’c’y’—x’y’)+§m92((x’—xf])2+y’2)

em) g (i +37) + gm0 (@ —at)? +47)

1
—§m(x'2 +9y?)w? + émw(y’y’ + 2'z") sin(2wt)

From (2.50) the lagrangian does explicitly depend on time; thus, h is not
conserved.

We can also see upon comparing (2.52) to (2.51) that h is not the total
energy.

2.3.3 Part c)

Now the position vector in the fixed frame is

(2.53) t=aX+yy

Where

/ / ™

(2.54) x = ' cos(wt) + 3 cos (wt + 5)
(2.55) y = 2’ sin(wt) + ¢’ sin (wt + g)

So
(2.56) x =z’ cos(wt) — y' sin(wt)
(2.57) y = 2’ sin(wt) + v’ cos(wt)

Taking the time derivatives of (2.56) and (2.57)
(2.58) & = 2’ cos(wt) — 2’ sin(wt)w — ' sin(wt) — 3 cos(wt)w
(2.59) y = o' sin(wt) + 2’ cos(wt)w + Y cos(wt) — y' sin(wt)w
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Squaring the velocities

2 = 5% cos? (wt) + 2% sin? (wt)w? + v sin (wt) + "% cos? (wt)w?

—22%" cos(wt) sin(wt)w — 22y’ cos(wt) sin(@) — 2Rr cos?(0)0
422"y sin? (wt)wt + 22"y’ cos(wt) sin(wt )w?

x

+2y"y cos(wt) sin(wt)w
= 7 sin? (wt) 4 2% cos® (wt)w? + y"2 cos? (wt) + y'? sin? (wt)w?
+2x'2" cos(wt) sin(wt)w + 22"y’ cos(wt) sin(w) — 22"y’ sin® (wt)w
422"y’ cos? (wt)w — 22"y’ cos(wt) sin(wt )w?
—2y/y/ cos(wt) sin(wt)w
Thus

1 /. . . )
(2.60) T = §m<x’2 + y’2 + (2% + y’z)LuQ) + m(x’y’w — a:’y'w)

The potential energy is simply

1
(2.61) U= QmQ2 ((x’ —xp)* + y’2)
Where
(2.62) mQ? =k

The Lagrangian is

1 /. )
L= 7m($'2 + y/2 + (x/2 + y/2)w2>
(2.63) 2
+mw (m’y/ - :c/y’) - imﬂz ((x’ —xp)% + y/2>
The total energy of the system is just
/ 1 -/2 ./2 12 12 2

E:fm(x +y + (2 +y )w)
(2.64) 2 .
+mw (:c’y’ - x’y') + imﬁz ((x’ —x})? + y’2>

Now, the energy function is
(2.65) h =

So

W= [mw’ - mwy’] T+ [my’ + mwx’} Y

1 . . . . 1
—§m<m’2 L y'2 ¥ (2 4 y/2>w2) _ mw(x'y’ _ x’y’) 4 §m(22<(x’ )2+ y/2>
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1 5 0 1 1
(2.66) h' = Em(x’z + y’2) + §m§22((a:’ — z()? +y'2) - ém(ac'2 +y?)w?

From (2.63) notice that %= = 0; thus %’ is conservered. However we see that

(2.64) and (2.66) are different; thus, h’ is not the total energy of the system.

Furthermore, notice that h and h’ are related via:

1
(2.67) h= I+ Smuw (3y +'«") sin(2wt)
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Chapter 3

Homework 3

3.1 Problem 1

1. Two thin rods, each of mass m and length /, are connected to an ideal (frictionless) hinge
and a horizontal thread. The system rests on a smooth surface as shown in the figure. At
time t = 0, the thread is cut. Neglect the mass of the hinge and the thread and consider only
the motion in the xy plane.

(a) Find the speed with which the hinge hits the floor.

(b) Find the time it takes for the hinge to hit the floor.

3.1.1 Part a)

Number of objects N 2
Number of Dimensions D 2
Number of translation D.O.F Nirans = ND 4
Object dimensionality C 1
Number of rotational D.O.F | Ny = ¥D(D—-1) - F(D-C)(D-C—1) | 2
Number of constraints M 5
Number of D.O.F f = Nirans + Nyot — M 1

Let 6 be the angle between the y-axis and one of the rods

L 9) 42
(3.1) T=§(ml )6
(3.2) U = mgl cos(6)
(3.3) mi?0 + mglsin(f) = 0
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(3.4) mi?66 — mgl sin(0)0 = 0
mi2 d /., d
(3.5) 7£(9 ) +mgla<cos(ﬁ)> =0
ml? .
(3.6) 792 + mglcos(f) =C

Initially, 6(0) = % and 0 = 0; thus,
t=0

mgl

(3.7) mgl _ ¢
2
Now,
2 .
(3.8) %92 + mglcos(f) = ——

When the rods hit the ground at ¢z, then 6(t;) = 7; thus,

(3.9) il [9‘ t:tf} *_myl

(3.10) [g‘tth]z _9

So the final velocity of the hinge will be

(3.11) vp = l\/g: Vgl

3.1.2 Part b)

1
A0 = wot + ~at?
(3.12) wobT o«

w? = wi + 200

Since wg =0

1
A0 = —at?
(3.13) 2%
w? = 2a/\0
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w? at?
3.14 — = —
( ) 2« 2
(3.15) w? = a?t?
From (3.3)
.. g . ™
(3.16) H‘t:tf + 7 sin (7) =0
(3.17) il =-2
t=t; l
Now
2 _ (W 2
(3.18) £ = (a)
2_9(_1y?
(3.19) = ( g)
l
3.20 t=4/—
(320) P

3.2 Problem 2

2. (a) Express in terms of Euler’s angles and the Cartesian coordinates of the center of mass
the constraint conditions for a uniform sphere rolling without slipping on a flat horizontal
surface. Show that they are nonholonomic.

(b) Set up the Lagrange equations for this problem (Hint: take a look at p. 47 of the 31
edition of Goldstein on semi-holonomic constraints) by the method of Lagrange multipliers.
You do NOT need to solve these equations. Are there any other constants of motion besides
the rotational and translational components of the kinetic energy?

3.2.1 Part a)

Number of objects N 1
Number of Dimensions D 3
Number of translation D.O.F Nivans = ND 3
Object dimensionality C 3
Number of rotational D.O.F | Niow = SD(D-1)-Z(D-C)(D-C-1) | 3
Number of constraints M 3

3

Number of D.O.F

f - Ntrans + Nrot - M
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There are 3 constraints: we require that vgeeq = 0 which means that
0 = Vpody +w x r at the point of the sphere which has contact with the plane.

Let X, Y, and Z be the center of mass coordinates of the sphere with radius

R; furthermore, let 6, ¢, and 1 be the respective rotations about the és, p;,
and €4 axes. Now, from (A.28) for w

(3.21)
Vbody = X)A( + Yy + ZZ
w= (qf) cos(6) — 1 sin(e) sin(@))fc + ((b sin() + 1 sin(¢) cos(&))ff + (0 + ¢ cos(qﬁ))i
r =Rz

0=X+ R(q's sin(0) + 4 sin(¢) cos(o))
(3.22) 0=Y - R(¢2 cos(8) — 1) sin(o) sin(e))
0=2+(0)

W is some constant.

Clearly, (3.22) are non-holonomic since we can’t write them them as f,(g;) =
0

3.2.2 Part b)
_1 c2 2, 2
(3.23) Tivans = 2M(X +Y +Z)

(3.24) Thot = %(wTIw)

From (A.43) we have that I = 2M R*1; thus, the rotational kinetice energy
is just

2
(3.25) Trot = M 5R w?
From (A.22)
2
(3.26) Tt = @ ((92 + ¢ + 9% + 2)¢ COs(gZS))

So the kinetic energy is just

(3.27) T = %M(X2 +Y2+ 2'2) + M?RQ ((92 + %+ + 248 cos(¢))
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The potential energy of the sphere is just

(3.28) U=MgZ

Thus, the lagrangian is simply

2
(3.29) £ = éM(XQ +YV2 4 2'2) + @ (92 +¢% + 9% + 296 COS(¢)) — MgZ

From Goldstein (2.25) and (2.27) respectively

n
foz = Zaaqu + ag
k=1

(3:30) d oLy oL = of,
@(87%) "o *;#a(t)aiqj
For X:
(3.31) MX = —py(t)
For Y:
(3.32) MY = —pus(t)
For Z:
(3.33) MZ+ Mg = —ps(t)
For 0:
(3.34) 2M5 6+ cos(e) — b sin(6)) = 0
For ¢:
2 . ..
(3.35) 2M R ((b + 90 sin(gb)) = —R[,ul (t) sin(6) — pa(t) 005(9)}
For :
(3.36)
2 . . . .
2]\/[5R (w + 6 cos(¢) — Qsin(¢)¢) = —Rsin(¢) [,ul(t) cos(0) — pa(t) sin(ﬁ)}
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From (3.33) we can see that

2M R?
5

(3.37) (9 + 9 Cos(cb)) = const

3.3 Problem 3

3. Consider a symmetric top (11 = Iz # I3) with constant charge-to-mass ratio q/m and hence
constant gyromagnetic ratio y = q¢/2m. As discussed in lecture, such an object will have a
Lagrangian:

L=T-V=T-w L
where w; = -yB is the Larmor frequency and L is the angular momentum.
(a) Show that the kinetic energy T is constant and find the other constants of motion.

(b) Under the assumption that w; is much less than the initial component of the angular
velocity along the symmetry axis, obtain expressions for the frequency and amplitude of
nutation and the average precession frequency.

3.3.1 Part a)

For a symmetric top

(3.38) L=0L#I

Using the body frame, the kinetic energy is using ¢, 6, and ¥ as the 3 Euler
angles.

(3.39) T= %Il (9‘2 + ¢ sin2(9)) + %Ig(zz} + deos(8))?

The potential energy is

(3.40) V=w- L

(3.41) L =Iw

where I is the inertia tensor: in the body frame

L 0 0
(3.42) I=|0 I, 0
0 0 I

So, using w in the body frame:
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L= 1Leé] (¢ sin() sin(v)) + 9005(1/)))
(3.43) 1,8, (d;sin(@) cos(4h) — ésin(w))
+1e} (w + écos(@))

Since I; = I,

L=1¢] (qﬁ sin(#) sin(¢y)) + 9005(1/}))

(3.44) A (Q'ssin(a) cos(1h) — ésin(¢))
VI8, (1/} + gi)cos(@))
(3.45) w; =—B

Suppose that B is oriented along the fixed z axis

(3.46) B = Be,

expressed in the body frame.

(3.47) B=2B ( sin(0) sin(w))éll + B ( sin(f) cos(w))é/z + Bcos(0)é;

Now the potential energy is simply

V=-9B-L
(3.48) V =—~B (Ilq'bsinzw) + I3 cos(6) (w + (bCOS(G)))

So the Lagrangian is just

= L (I 4+ 8 5in%0)) + ST+ beos(0)?
(3.49) . o
+vB (Ilqﬁ sin?(#) 4 I5 cos() (1/1 + ¢COS(9)))

Since ¢ and v are not present in the lagrangian: they are cyclic coordinates;
thus, there are two conserved quantitities

For ¢

Lipsin®(0) + Is(¢ + ¢ cos(6)) cos(0)
(3.50) 4B (11 sin?(0) + I cos2(9)> = Iib

where b is a constant
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For

I3(¢ + pcos(h)) + yBIs cos(9) = I1a

(3.51) .
where a is a constant

Solving for ¢

(3.52) L¢sin?(0) +vBI sin?(#) = I, (b — acos(6))

b — acos(f) — yBsin?()

(3.53) ¢ = 7 (0)
And )
-2
(3.54) = Ijl—: - [b — acos(:ilz—(e’;B sin (6) + WB} cos(0)
From (3.48)

(3.55) V=-+B (11 {b —acos(f) —yB sinz(ﬁ)} + Liacos(6) —yI3B cosQ(G))

(3.56) V =-+B (Il [b — B sin2(9)} —~I3B 0052(9))
(3.57) V = —yBIb+ ~*I, B*sin?(0) + 7?13 B? cos*(0)
(3.58) V = —yBIib 4?1, B* + v*(I3 — I,) B? cos?(0)

Now making the same substitutions into the kinetic energy:

(3.59) T = %Il (92 + {b_sii;z;)(a) - ’yB}2 sin2(9)) + %I;;(III—; —-4B cos(9)>2

I2a?
3
I3

2
. — 1
7= 10 (02 O O) g 0)) 4 1

232 2 0
sin?(0) 7B cos’(0))

113a> 1. 5. 5 1 1
=_ “Ly?B*—~LbyB+=1,0
571, Tt g1y B gt

IiyB(b — acos(f))?
25in’(0)

1
—1—572(13—[1)32 cos? (9)
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Since we have constant terms in both T and V' we can redefine the kinetic
and potential energies as

(3.62) V' =~42B?*(I3 — 1) cos?()
and
1., I©LiyB(b— L |
(363) T — 71192 + 17 (b 20’ COS(Q)) + 7,}/232(13 _ Il) COSQ<9)
2 sin”(0) 2
L’:/ — T/ _ V/
3.64 . _ 2
( ) E/ _ 11192 + II'YB(b 2a COS(G)) + §’Y2BZ(I3 o 11)0082(9)
2 sin” () 2
For 0
(3.65)

21, vBa(b — acos(f))sin?(0) — 2I,vB(b — a cos(6))

2
—3 +372B?(I3—1,) cos(6) sin(f) = 0
sin” ()

16—

Taking the full time derivative of the kinetic energy because we wish to show
that 7" is a constant.

(3.66)
1’ _ o1, OT', 0T

dt %Jraa o

2I,vBa(b — acos(f))sin?(0) — 21,vB(b — a cos(#))

16— :
! sin®(0)

i +~2B?(I3 — I) cos(6) Sin(e)}é =0

From (3.65) we can add subtract 2¢y2B2(I3 — I1) cos(f) sin(#) to (3.66), then

(3.67) [— 292 B%(I; — I,) cos(8) sin(e)}e' —0

3.3.2 Part b)
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Appendix

A.1 Spherical Coordinates

A.1.1  Velocity in Spherical Coordinates

x = rcos(¢) sin(6)
y = rsin(¢) sin()
z =rcos(f)

So
(A1) i = 7 cos(¢) sin(0) — rsin(¢p) ¢ sin(f) + r cos(¢) cos(h)f
(A.2) § = 7sin(@) sin() + r cos(¢)dsin(0) + rsin(p) cos(0)d
(A.3) % = i cos(f) — rsin(6)d

A.1.2 Square of Velocity in Spherical Coordinates

i = 72 cos?(¢) sin?(0) + r? sin?(¢)$? sin?(0) + 72 cos?(¢) cos?(0)6>

—27 cos(¢) sin(0)r sin(¢) d sin(6) ) sin(6 )r cos(¢) cos(6)0
—2r sin(¢)dsin(0)r cos(¢) cos(h)6

5?2 = 2 sin?(¢) sin?(0) + 2 cos?(¢)¢? sin?(0) + r? sin’(¢) cos>(0)6?

+27 sin(¢) sin(0)r cos(¢)dsin(0) + 27 sin(¢) sin(#)r sin(¢p) cos(#)f
+2r cos(¢) ¢ sin(0)r sin(¢) cos(0)
32 =12 cos?(0) + 12 sin?(0)6 — 27 cos(0)r sin(0)6

+ 27 cos

(¢
)
%
(¢

i 4 5% + 22 = % sin?(0) + 1% sin?(0)d? + 12 cos?(0)6?
+72 cos? () + % sin?(0)6?
21 cos? (¢) sin(0)r cos(0)6 + 27 sin?(¢) sin(0)r cos(0)0 — 27 cos(8)r sin ()0
(A.4) & 497 + 22 =% 4 1% sin?(0)9” + 1267
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A.1.3 Time Derivative of the Position Vector in Spherical

Coordinates
R = Ri(®,0)
: o or or
R = R+ R[5od+ 250
Now
I = % cos(®)sin(O) + y sin(P) sin(O) + z cos(O)
or .
7%= sin(®) sin(O) + y cos(P) sin(O)
or .
8—@’ = sin(O)
So,
1 or -
sin(©) 0 ¢
or . .
26 = x cos(P) cos(0) + ¥ sin(P) cos(O) — zsin(O)
=1
or
00 0
Thus,
(A.5) R = iR+ ¢Rsin(0)d + RO

A.1.4 Gradient in Spherical Coordinates

1 or of
vi= Zh i 9 94

&;

% = %X cos(¢) sin(0) + y sin(¢) sin(#) + z cos(0)

So,

(A.6) é, = xcos(¢)sin(f) + y sin(¢) sin(f) + z cos(6)

or

9 = —xrsin(¢) sin(0) + yr cos(¢) sin(6)
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hg = '2—;‘ = rsin(0)

(A7) &, = —xsin(¢) + y cos(o)
o _; 0) + yrsi 0) — arsin(0
20 = X" cos(¢) cos(0) + yrsin(¢) cos(f) — zr sin(h)
Or
ho = 55| =7
(A.8) &9 = x cos(¢) cos(f) + ¥y sin(¢) cos(#) — zsin(0)

Thus, in spherical coordinates

. Of e Of e 0f

(A.9) Vi=e gt rm@as v o0

A.1.5 Relation between Spherical and Cartesian

&, cos(¢)sin(f) sin(¢)sin(f)  cos(d) | [x]
é¢] = [ — sin(¢) cos(¢) 0 ] y
K cos(¢) cos(f) sin(e) cos(f) —sin(f)| |z ]
[cos(¢) sin(f) —sin(¢) cos(d)cos(d)] [e. [%]
sin(¢)sin(d)  cos(¢) sin(p)cos(d) | |és| = |¥
cos(6) 0 — sin(h) &y | Z ]
(A.10) X = &, cos(¢) sin(f) — &, sin(¢p) + &g cos(¢) cos(h)
(A.11) ¥ = &, sin(¢) sin() + &, cos(¢p) + &g sin(¢) cos(h)
(A.12) z = €, cos(0) — éy sin(6)

A.2 Euler Angles

Suppose 6 is the rotation about the €3, ¢ is the rotation about the p; axis, and

. . ~t
1 is the rotatation about the ps

39



Homework Adam Aker 2019-09-23

A.2.1 Angular Velocity in the body frame

Now

(A.13) w = 083 + dpy + )Pl

Body Frame
Between the fixed frame and the p frame.

&1 = cos(f)p; — sin(6) py

(A.14) éo = sin(0)p, + cos(0)py
€3 = p3
Thus,
(A.15) w = 0ps + 0Py + VP

Between the p frame and the p’ frame

p1 =P
(A.16) Py = cos(6)ph, — sin(¢) P}
Py = sin(¢)p) + cos(6) P}
So,
(A.17) w = 0( sin(6)ph + cos(@)ph ) + i) + Ui}

Or Equivalently

(A.18) w = sin(@)p} + 6p) + (¥ + feos(@) )

Between the p’ frame and the body frame

p1 = cos(1h)é] — sin(v)e)
(A.19) Py = sin()&] + cos(1))&,
Py = €;

(A.20)

w = Osin(9) (sin(1)8] +cos(¥)&} )+ cos(1)e] —sin(1)éh ) + (v+0 cos() )
Or Equivalently

(A.21)
w= (9 sin(¢) sin(y)+¢ cos(w)) &)+ (9 sin(¢) cos(1))—¢ sin(w)) &5+ (1&—1—9 cos(c/)))ég
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Angular velocity squared in the body frame
(A.22) w? = 602 + ¢% + % + 290 cos()
A.3 Angular velocity in the fixed frame

(A.23) w = 0&3 + dpy + )P

Between the p’ and p frames

ﬁ'll = bl
(A.24) Pl = cos(6)p, — sin(6)py
ply = sin(@)py + cos(#)py
So,
(A.25) w = 083 + dpy + ¢(sm(¢)p2 + cos(¢)p3)

Between the p and the fixed frame

p1 = cos(0)é; + sin(0)é,

(A.26) Py = —sin(0)éy + cos(0)é,
pPs =€
Now,
(A.27)

w = fés —l—(b( cos(f)é, —i—sin(@)ég) +1) sin(¢p) (— sin(6)é; +cos(0)é2) +1) cos(¢p)és
Or Equivalently

(A.28)
w= (¢ cos(6)—1) sin(¢) sin(@))él—I— ((b sin(6)41) sin(¢) cos(&))ég—l—(é—i-z/) cos(qb))ég

It can be checked that (A.22) holds true for w in the fixed frame as well.

A.4 Moments of Inertia

The inertia tensor at some point P is given by

2
Jpg = § mg (rképq - mk,pxk,q)
k

Ipg = /p(r) (r25pq — xpxq>d7'

\%

(A.29)
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The first is for a discrete set of particles and the latter is the continuous case.
If we wish to get the inertia tensor at the center of mass, then suppose the

separation vector between the center of mass and the original point P is given
by a; thus, by Steiner’s parallel axis theorem.

(A.30) Ipg = Jpq + M(a26pq — apaq)

For a solid sphere with constant mass density p about the center of mass:

2r m R
(A.31) Ipq:p/ / / (rzépq xpmq)r sin(6)drdfde
$=00=07r=0
When p =g¢q
2r ™ R
(A.32) Ipx :p/ / / (r2—x2)r sin(6)drdfd¢
$=00=07r=0

72 — (1 cos( )s1n(0))2)r sin(0)drdfd¢

o\m

(A33) L= / /
$=0 =0 r=

27w

(A.34) Low=p / /
¢=00=0r

(7“4 — 1% cos?(¢) sin? (0)) sin(6)drdfdg¢

L5

(A.35) sm — cos?(¢) sin?(#) sin(0 ))d9d¢

b
:Eq
o\
o\

o 7
(A.36) I, = '05i5 / / (sin(G) — cos*(¢) (1 - c082(9)> sin(9))d0d¢
060=0

/ 1 — cos? ) sin(#) 4 cos?(¢) cos?(6) sin(9))d0d¢>
=0
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2m
_ e Lo 2o
(A.39) Lo = & / (2 sin?(¢) +  cos (¢)>d¢>
¢=0
PR, 2
(A.40) I, = e (27T—|— 37r)
2
(A.41) I, = ME
)
By symmetry
2
(A.42) Lw=1I,, =I. = 2M5 R
Next I,
2t m™ R
(A.43) Loy = p / / / (—a:y)r2 sin(0)drdfde
¢=060=0r=0
2r  ® R
(Add) Iy =p / ( — r2sin?(6) sin(¢) cos(qS))r sin(0)drdfde = 0
$=00=0r=0
Next I,
2r  m™ R
(A.45) I..=p / / (— xz)r sin(0)drdfdg¢
$=00=0r=0
2r ™ R
(A46) I, =p / / / (— 2 sin(6) cos() cos(¢)>r sin(0)drdfd¢ = 0
$=00=07=0
Next I,
2r  m R
(A.47) I.=p / / / ( yz)r sin(0)drdfde
$=00=07=0
2t m R
(A48) I, :p/ / / (—r2 sin(#) cos(0) sin(d)))r sin(f)drdfd¢ = 0
$=00=07=0
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Since Ipq is symmetric, then

(A.49) I = MR?

O Ouln
Sualn O
aln O O
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