
HW #3 Spring 2019 (100 pts) 
EE4523/EE5503 Introduction to Micro/Nano technology 

Instructor: Dr. Ethan Ahn 
 

Released on Mar. 5, 2017 (Tuesday) 
Due on 11:30am, Mar. 19, 2017 (Tuesday) 

 
- Submit your homework in hard copies to your instructor at class. 
- Show your work to get the full credit. 
- You can do your own search (websites, books, articles, etc.), but should include the source your 
answer is referencing. 
- You’re required to submit your MATLAB (or other program) codes with line-by-line comments. 
 
1. Finite Difference Method (100 pts) – Requires Programming 
 
In class, we solved analytically the “particle in a box” (or “quantum well”) problem to get the 
quantized energy levels of electrons in a confining potential. Remember that we first had to guess 
the solution of the differential equation (i.e., Schrödinger equation) with a certain general form 
(e.g., plane or sinusoidal waveforms with some unknown constants) which seemed to satisfy the 
Schrödinger equation. This approach is the simplest and somewhat effective, but if your initial 
guess happens to be not too good, then you are unlikely able to solve it. Now let’s solve the same 
problem numerically at this time by means of finite-difference method that we learned in class.     
 
1-1. (20 pts) Construct a N by N Hamiltonian matrix by applying the following conditions, in a 
similar way that we did in class. For this problem (1-1), you are not required to run the simulation. 
Just write down your answer. Show your work to get the full credit. 
 
     - Select a one-dimensional discrete lattice with N points spaced by a 
     - Apply the boundary condition of ψ (x = 0) = ψ (x = N+1) = 0 
     - Set U(x) = 0 for 0 < x < N+1  
 
1-2. (60 pts) Use any available mathematical package like MATLAB to find the eigenvalues and 
the corresponding eigenvectors for the “electron in a box” problem that you just modeled in 1-1. 
Because your Hamiltonian is a N by N matrix, you should get N pairs of eigenvalues and 
eigenvectors. Take N (# of mesh) = 100 and a (mesh spacing) = 1e-10 (m) for your simulation. 
 

(a) Plot the numerically obtained eigenvalues (in eV) as a function of eigenvalue number n. n 
is the integer number that ranges from 1 to N. For example, if you obtain N number of 
eigenvalues, n = 1 indicates the first set of eigenvalue and eigenfunction, n = 2 means the 
second eigenvalue and eigenfunction, etc. (20 pts) 
 
(b) Plot the “analytical” eigenvalues (En as a function of n), using the equation, En = 
h_bar2π2n2/2mL2 where L = (N+1)a, together with the result obtained in (a). In other words, 
overlap your answer in (b) with that in (a). h_bar is the reduced Planck constant. (5 pts) 

      
(c) Describe how well your numerical result in (a) matches the analytical result in (b). (5 pts) 

      
(d) Plot ψ2 (squared eigenvector) for eigenvalue numbers n = 1, 2, 10, and 50. (20 pts) 

      
(e) Use the result of (d) to explain any observation you made in (c). (10 pts) 
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1-3. (20 pts) Re-write your Hamiltonian (don’t need to run the simulation again. Just write your 
answer) when  
 

(a) the periodic boundary condition is applied, i.e., ψ (x = 0) = ψ (x = N) and ψ (x = 1) = ψ (x = 
N+1). (10 pts) 

      
(b) What about the potential energy U(x) is not zero any more, i.e. U (x) = U0 for 0<x<N+1? 
What is your new Hamiltonian? (10 pts)  

 


