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1 Introduction

1.1 Basic recalls on the standard cosmological model

In the standard cosmological model and at the level of background quantities (i.e., averaging over spatial
fluctuations), the universe is described by the Friedmann-Lemâıtre-Robertson-Walker metric

ds2 = dt2 − a(t)2
[

dr2

1 − k r2
+ r2(dθ2 + sin2 θdϕ2)

]

(1)

where k is a constant related to the spatial curvature (positive for closed models, negative for open ones,
zero for a flat universe) and t is the proper time measured by a free-falling observer, that we will call
cosmological time. Throughout this course, we adopt units such that c = h̄ = 1.

The Einstein equation relates curvature to matter. In the case of a homogeneous, isotropic universe,
described by the Friedmann metric, the Einstein equation yields the Friedmann equation, which relates
the total energy density ρ to the space-time curvature: on the one hand, the spatial curvature radius
Rk ≡ a |k|−1/2, and on the other hand the Hubble radius RH ≡ H−1 = a/ȧ. The Friedmann equation
reads

3

R2
H

± 3

R2
k

= 8πGρ (2)

where G is the Newton constant. The Friedmann equation is more commonly written as

(

ȧ

a

)2

+
k

a2
=

8πG
3
ρ . (3)

The Einstein equations also lead, through Bianchi identities, to the energy conservation equation

ρ̇ = −3
ȧ

a
(ρ+ p) (4)

which applies to the total cosmological density ρ and pressure p (actually, this conservation equation can
be derived by variation of the action for each individual homogeneous component in the universe).

Non-relativistic matter has vanishing pressure and gets diluted according to ρm ∝ a−3, while ultra-
relativistic matter has pr = 1

3ρr and follows ρr ∝ a−4. These dilution laws can be derived more intuitively
by considering a comoving sphere of fixed comobile radius. The number of particles (ultra-relativistic or
non-relativistic) is conserved inside the sphere (although non-relativistic particles are still in the comobile
coordinate frame, while ultra-relativistic particles flow in and out). The individual energy E ≃ m of a
non-relativistic particle is independent of the expansion. Instead the energy of a photon is inversely
proportional to its wavelength and is redshifted like a−1. The volume of the sphere scales like a3.
Altogether these arguments lead to the above dilution laws. The curvature of the universe contributes to
the expansion in the same way as an effective curvature density

ρeff
k ≡ − 3

8πG
k

a2
(5)

which scales like a−2. Finally, the vacuum energy can never dilute, ρ̇v = 0 and pv = −ρv. This is valid
for the energy of a quantum scalar field in its fundamental state, as well as for a classical field in a state
of equilibrium (its energy density density ρv is then given by the scalar potential V (ϕ) at the equilibrium
point). The vacuum energy is formally equivalent to a cosmological constant Λ which can be added to
the Einstein equation without altering the covariance of the theory,

Gν
µ + Λδν

µ = 8πGT ν
µ , (6)

with the identification ρv = −pv = Λ/(8πG). The critical density is defined for any given value of the
Hubble parameter H = ȧ/a as the total energy density that would be present in the universe if the spatial
curvature was null,

H2 =
8πG
3
ρcrit . (7)

With such a definition, the Friedmann equation reads

ρcrit − ρeff
k = ρtot . (8)
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The contribution of spatial curvature to the expansion of the universe is parametrized by

Ωk ≡ ρeff
k

ρcrit
= − k

(aH)2
=
R2

H

R2
k

. (9)

Whenever |Ωk| ≪ 1, the universe can be seen as effectively flat.

Let us summarize very briefly how the cosmological model was built step by step:

• Einstein first proposed a solution for a static universe with RH = 0, based on a non-zero cosmo-
logical constant, which was proved later to be unstable. The idea of a static (or even stationary)
universe was then abandoned in favor of a nearly homogeneous, isotropic, expanding universe, corre-
sponding in first approximation to the Friedmann-Lemâıtre-Robertson-Walker metric. This picture
was sustained by the discovery of the homogeneous expansion by Hubble in 1929.

• the minimal assumption concerning the composition of the universe is that its energy density is
dominated by the constituent of visible objects like stars, planets and inter-galactic gas: namely,
non-relativistic matter. This is the Cold Big Bang scenario, in which the Friedmann equation

H2 =
8πG
3
ρm ∝ a−3 (10)

describes the expansion between some initial singularity (a → 0) and now, caused by non-relativistic,
pressureless matter (“cold matter”) at a rate a ∝ t2/3. Gamow, Zel’dovitch, Peebles and others
worked on scenarios for Nucleosynthesis in the Cold Big Bang scenario, and concluded that it was
ruled out by the fact that the universe contains a significant amount of hydrogen.

• the next level of complexity is to assume that a radiation component (ultra-relativistic photons and
neutrinos) dominated the universe expansion at early times. Nucleosynthesis taking place during
radiation domination, when a ∝ t1/2, is in agreement with observations. Structure formation
started after the time of equality between radiation and matter, when ρr = ρm. The detection of
the Cosmic microwave background by Penzias and Wilson in the lated 60’s beautifully confirmed
this scenario cold the Hot Big Bang, due to the role of ultra-relativistic matter (“hot matter”) after
the initial singularity.

• for many years, people wondered whether this scenario should be completed with a recent stage
of curvature and/or vacuum domination, starting after most structure have formed. It is now
established that the current curvature fraction Ωk should be very small, so the present universe is
exactly or at least nearly flat. In addition, various recent experiments (and in particular supernovae
observations) have settled since 1998 that a form of vacuum energy recently took over the matter
density. Today, the ratio Ωv ≡ ρv/ρcrit ≃ ρv/(ρv + ρm) is measured to be close to 0.7.

• finally, some pioneers like Starobinsky and Guth suggested around 1979 that this scenario should
be completed with a stage of early vacuum domination taking place much before Nucleosynthesis.
After some time, this vacuum would decay mainly into ultra-relativistic particles, and the universe
would enter into the radiation dominated phase. The purpose of this course is to explain this
scenario, called inflation, and to review its motivations, its most important mechanisms and its
observable consequences. As we shall see, the existence of inflation is established nowadays on a
rather firm basis.

1.2 Motivations for inflation

1.2.1 Flatness problem

Today, Ωk is measured to be at most of order 10−2, possibly much smaller, while Ωr ≡ ρr/ρcrit ≃
ρr/(ρv + ρm) is of order 10−4. Since ρeff

k scales like a−2, while radiation scales like a−4, the hierarchy

between ρr and ρeff
k increases as we go back in time. If ti is some initial time, t0 is the time today, and

we assume for simplicity that the ratio ρeff
k /ρr is at most equal to one today, we obtain

ρeff
k (ti)

ρr(ti)
≤
(

a(ti)

a(t0)

)2

=

(

ρr(t0)

ρr(ti)

)1/2

. (11)
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Today, the radiation energy density ρr(t0) is of the order of (10−4eV )4. If the early universe reached the
order of the Planck density (1018GeV )4 at the Planck time tP , then at that time the ratio was

ρeff
k (tP )

ρr(tP )
=

(10−4eV )2

(1018GeV )2
∼ 10−62 . (12)

Even if the universe never reached such an energy, the hierarchy was already huge when ρr was of order,
for instance, of (1 TeV )4.

If we try to build a mechanism for the birth of the classical universe (when it emerges from a quantum
gravity phase), we will be confronted to the problem of predicting an initial order of magnitude for the
various terms in the Friedmann equation: matter, spatial curvature and expansion rate. The Friedmann
equation gives a relation between the three, but the question of the relative amplitude of the spatial
curvature with respect to the total matter energy density, i.e. of the hierarchy between ρeff

k and ρr, is an
open question. We could argue that the most natural assumption is to start from contributions sharing
the same order of magnitude; this is actually what one would expect from random initial conditions at
the end of a quantum gravity stage. The flatness problem can therefore be formulated as: why should we
start from initial conditions in the very early universe such that ρeff

k should be fine-tuned to a fraction
10−62 of the total energy density in the universe?

The whole problem comes from the fact that the ratio ρeff
k /ρr (or more generally Ωk ≡ ρeff

k /ρcrit)
increases with time: i.e., a flat universe is an unstable solution of the Friedmann equation. Is this a
fatality, or can we choose a framework in which the flat universe would become an attractor solution?
The answer to this question is yes, even in the context of ordinary general relativity. We noticed earlier
that |Ωk| is proportional to (aH)−2, i.e. to ȧ−2. So, as long as the expansion is decelerated, ȧ decreases
and |Ωk| increases. If instead the expansion is accelerated, ȧ increases and |Ωk| decreases: the curvature
is diluted and the universe becomes asymptotically flat.

Inflation is precisely defined as an initial stage during which the expansion is accelerated. One of the
motivations for inflation is simply that if this stage is long enough, |Ωk| will be driven extremely close to
zero, in such way that the evolution between the end of inflation and today does not allow to reach again
|Ωk| ∼ 1.

We can search for the minimal quantity of inflation needed for solving the flatness problem. For
addressing this issue, we should study a cosmological scenario where inflation takes place between times
ti and tf such that |Ωk| ∼ 1 at ti, and |Ωk| ∼ 1 again today at t0. Let us compute the duration of
inflation in this model. This will give us an absolute lower bound on the needed amount of inflation in
the general case. Indeed, we could assume |Ωk| ≫ 1 at ti (since there could be a long stage of decelerated
expansion before inflation); this would just require more inflation. Similarly, we could assume |Ωk| ≪ 1
today at t0, requiring again more inflation.

So, we assume that between ti and tf the scale factor grows from ai to af , and for simplicity we will
assume that the expansion is exactly De Sitter (i.e., exponential) with a constant Hubble rate Hi, so
that the total density ρv is constant between ti and tf . We assume that at the end of inflation all the
energy ρv is converted into a radiation energy ρr, which decreases like a−4 between tf and t0. Finally,

we assume that ρeff
k (which scales like a−2) is equal to ρv at ti and to ρr at t0. With such assumptions,

we can write
ρeff

k (a0)

ρeff
k (ai)

=

(

ai

a0

)2

=
ρr(a0)

ρv(ai)
=
ρr(a0)

ρv(af )
=
ρr(a0)

ρr(af )
=

(

af

a0

)4

(13)

and we finally obtain the relation
af

ai
=
a0

af
. (14)

In the general case, the condition becomes

af

ai
≥ a0

af
, (15)

which can be summarized in one sentence: there should be as much expansion during inflation as after
inflation. A convenient measure of expansion is the so-called e-fold number defined as

N ≡ ln a . (16)

The scale factor is physically meaningful up to a normalization constant, so the e-fold number is defined
modulo a choice of origin. The amount of expansion between two times t1 and t2 is specified by the
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number of e-folds δN = N2 − N1 = ln(a2/a1). So, the condition on the absolute minimal duration of
inflation reads

(Nf −Ni) ≥ (N0 −Nf ) (17)

i.e., the number of inflationary e-folds should greater or equal to the number of post-inflationary e-folds
∆N ≡ N0 −Nf . There is no upper bound on (Nf −Ni): for solving the flatness problem, inflation could
be arbitrarily long.

It is easy to compute ∆N as is a function of the energy density at the end of inflation, ρr(af ). We
know that today ρr(a0) is of the order of (10−4eV )4, and we will see in subsection 3.3 that the inflationary
energy scale is at most of the order of (1016GeV )4, otherwise current observations of CMB anisotropies
would have detected primordial gravitational waves. This gives

∆N = ln
a0

af
= ln

(

ρr(af )

ρr(a0)

)1/4

≤ ln 1029 ∼ 67 . (18)

We conclude that if inflation takes place around the 1016GeV scale, it should last for a minimum of 67
e-folds. If it takes place at lower energy, the condition is weaker. The lowest scale for inflation considered
in the literature (in order not to disturb too much the predictions of the standard inflationary scenario)
is of the order of 1 TeV. In this extreme case, the number of post-inflationary e-folds would be reduced
to

∆N ∼ ln 1016 ∼ 37 (19)

and the flatness problem can be solved with only 37 e-folds of inflation.

1.2.2 Horizon problem

The horizon dH(t1, t2) is defined as the physical distance at time t2 between two particles emitted at
the same point but in opposite directions at time t1, and traveling at the speed of light. If the origin
of spherical comobile coordinates is chosen to coincide with the point of emission, the physical distance
at time t2 can be computed by integrating over small distance elements dl between the origin and the
position r2 of one particle, and multiplying by two,

dH(t1, t2) = 2

∫ r2

0

dl = 2

∫ r2

0

a(t2)
dr√

1 − k r2
. (20)

In addition, the geodesic equation for ultra-relativistic particles gives ds = 0, i.e., dt = a(t)dr/
√

1 − k r2,
which can be integrated along the trajectory of the particles,

∫ t2

t1

dt

a(t)
=

∫ r2

0

dr√
1 − k r2

. (21)

We can now replace in the expression of dH and get

dH(t1, t2) = 2a(t2)

∫ t2

t1

dt

a(t)
. (22)

Usually, the result is presented in this form. However, for the following discussion, it is be particularly
useful to eliminate the time from the integral by noticing that dt = da/(aH),

dH(a1, a2) = 2a2

∫ a2

a1

da

a2H(a)
, (23)

where the Hubble parameter is seen now as a function of a. Let us assume that t1 and t2 are two times
during Radiation Domination (RD). We know from the Friedmann equation that during RD on has
H ∝ a−2, so we can parametrize the Hubble rate as H(a) = H2 (a2/a)

2. We obtain

dH(a1, a2) = 2a2

∫ a2

a1

da

a2
2H2

=
2

H2

(a2 − a1)

a2
. (24)

If the time t2 is much after t1 so that a2 ≫ a1, the expression for the horizon does not depend on a1,

dH(a1, a2) ≃
2

H2
. (25)
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So, the horizon equals twice the Hubble radius at time t2,

dH(t1, t2) = 2RH(t2) . (26)

The horizon represents the causal distance in the universe. Suppose that a physical mechanism is
turned on at time t1. Since no information can travel faster than light, the physical mechanism cannot
affect distances larger than dH(t1, t2) at time t2. So, the horizon provides the coherence scale of a given
mechanism. For instance, if a phase transition creates bubbles or patches containing a given vacuum
phase, the scale of homogeneity (i.e., the maximum size of the bubble, or the scale on which a patch is
nearly homogeneous) is given by dH(t1, t2) where t1 is the time at the beginning of the transition.

Before photon decoupling, the Planck temperature of photons at a given point depends on their local
density. A priori, we can expect that the universe will emerge from a quantum gravity stage with random
values of the local density. The coherence length, or characteristic scale on which the density is nearly
homogeneous, is given by dH(t1, t2). We have seen that if t1 and t2 are two times during radiation
domination, this quantity cannot exceed 2RH(t2), even in the most favorable limit in which t1 is chosen
to be infinitely close to the initial singularity. We conclude that at time t2, the photon temperature
should not be homogeneous on scales larger than 2RH(t2).

CMB experiments map the photon temperature on our last-scattering-surface at the time of photon
decoupling, which roughly coincides with the time of equality between radiation and matter (actually
decoupling takes place a bit after equality, but this is unimportant for our purpose). So, we expect CMB
maps to be nearly homogeneous on a characteristic scale 2RH(tdec). This scale is very easy to compute:
knowing that H(t0) is of the order of (h/3000)Mpc−1 with h ≃ 0.7, we can extrapolate H(t) back to
the time of equality, and find that the distance 2RH(tdec) subtends an angle of order of a few degrees in
the sky - instead of encompassing the diameter of the last scattering surface. So, it seems that the last
scattering surface is composed of several thousands causally disconnected patches. However, the CMB
temperature anisotropies are only of the order of 10−5: in other words, the full last scattering surface is
extremely homogeneous. This appears as completely paradoxical in the framework of the Hot Big Bang
scenario.

What is the origin of this problem? When we computed the horizon, we integrated (a2H)−1 over da
and found that the integral was converging with respect to the boundary a1: so, even by choosing the
initial time to be infinitely early, the horizon is bounded by a function of a2. If the integral was instead
divergent, we could obtain an infinitely large horizon at time t2 simply by choosing a1 to be small enough.
The convergence of the integral

∫ a2

a1

da

a2H(a)
=

∫ a2

a1

da

aȧ
(27)

with respect to a1 → 0 depends precisely on the fact that the expansion is accelerated or decelerated.
For linear expansion, the integrand is 1/a, the limiting case between convergence and divergence. If it
is decelerated, ȧ decreases and the integral converges. If it is accelerated, ȧ increases and the integral
diverges in the limit a1 → 0.

So, if the radiation dominated phase is preceded by an infinite stage of accelerated expansion, one can
reach an arbitrarily large value for the horizon at the time of decoupling. In fact, in order to explain the
homogeneity of the last scattering surface, we only need to boost the horizon by a factor of ∼ 103 with
respect to the Hubble radius at that time. This can be fulfilled with a rather small amount of accelerated
expansion.

In order to determine the minimum number of inflationary e-folds, we assume a cosmological scenario
in which two photons are emitted at a time ti which coincides with the beginning of inflation. We then
assume that the expansion is exactly exponential (i.e., with a constant Hubble parameter Hi) until tf ,
and then we switch back to radiation domination. During inflation, the horizon will grow like

dH(ti, tf ) = 2af

∫ a2

a1

da

a2Hi
=

2

Hi

(

af

ai
− 1

)

, (28)

and later on it goes on increasing as we already computed before in Eqs. (24,25), so that

dH(ti, t) = dH(ti, tf) + 2RH(t) . (29)

The horizon problem can be solved if the comoving scale (i.e. the physical scale divided by a) corre-
sponding to the horizon at the end of inflation is at least equal to the comoving scale corresponding to
the diameter of the last scattering surface. This will ensure that the last scattering surface is entirely
in causal contact. What is the physical diameter of the last scattering surface, or in other words, of the
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largest wavelength that we can observe today? In order to compute it, we must assume that two photons
are emitted at the decoupling time tdec, both in the direction of earth, but from opposite directions; we
then assume that they reach us today. If the origin of comobile coordinates is chosen to coincide with
our position, the goal is simply to compute the comobile coordinate rdec of the photons at the time of
emission and to express the comobile distance 2rdec in physical units today. This calculation is similar
to that of dH(t1, t2) in Eqs. (20-22), excepted that the integral in r space is performed between rdec and
0, the time integral between tdec and t0, and dr is replaced by (−dr) in the equation of propagation
of photons. So, the physical diameter of the last scattering surface (expressed in the units of today) is
nothing but dH(tdec, t0). If we neglect the recent stage of cosmological constant (or dark energy) domi-
nation, we can integrate dH(tdec, t0) using the fact that a ∝ t2/3 during matter domination, and find that
dH(tdec, t0) ∼ RH(t0) modulo a numerical factor of order one. Even if we were taking into account the
recent Dark Energy (DE) domination, we would not find a significant difference between dH(tdec, t0) and
RH(t0). So, the current value of the Hubble radius provides the order of magnitude of the largest scale
observable today, i.e. the diameter of the last scattering surface expressed in units of today.

We just showed that the horizon problem can be solved if the comoving horizon at the end of inflation
is at least equal to the comoving diameter of the last scattering surface. We can now write this as

dH(ti, tf )

af
≥ RH(t0)

a0
. (30)

Using the fact that Hi = Hf (the Hubble parameter is still assumed to be constant during inflation), and
omitting numerical factors, this condition reads

1

afHf

(

af

ai
− 1

)

≥ 1

a0H0
. (31)

In the limit af ≫ ai, we obtain
af

ai
≥ afHf

a0H0
. (32)

In order to evaluate the right hand-side, we can us the fact that during radiation domination (aH) scales
like a−1. This is not true anymore during matter and dark energy domination, but the number of e-folds
during these two periods equals respectively seven and one, while we have seen that radiation domination
lasts between thirty and sixty e-folds. So, we can neglect matter and DE domination and approximate
the ratio (afHf )/(a0H0) by simply a0/af . We finally obtain

af

ai
≥ a0

af
. (33)

This condition is the same as for the flatness problem: the number of inflationary e-fold should be at
least equal to that of post-inflationary e-folds. If it is larger, then the size of the observable Universe is
even smaller with respect to the causal horizon.

1.2.3 Origin of perturbations

Since our universe is inhomogeneous, one should find a physical mechanism explaining the origin of
cosmological perturbations. Inhomogeneities can be expanded in comoving Fourier space. Their physical
wavelength

λ(t) =
2πa(t)

k
(34)

is stretched with the expansion of the universe. During radiation domination, a(t) ∝ t1/2 and RH(t) ∝ t.
So, the Hubble radius grows with time faster than the perturbation wavelengths. We conclude that ob-
servable perturbations were originally super-Hubble fluctuations (i.e., λ > RH ⇔ k < 2πaH). Actually,
the discussion of the horizon problem already showed that at decoupling the largest observable fluctu-
ations are super-Hubble fluctuations. Even if we take a smaller scale, e.g. the typical size of a galaxy
cluster λ(t0) ∼ 1 Mpc, we find that the corresponding fluctuations were clearly super-Hubble fluctuations
for instance at the time of Nucleosynthesis. We have seen that in the Hot Big Bang scenario (without
inflation) the Hubble radius RH(t2) gives an upper bound on the causal horizon dH(t1, t2) for whatever
value of t1. So, super-Hubble fluctuations are expected to be out of causal contact. The problem is that
it is impossible to find a mechanism for generating coherent fluctuations on acausal scales. There are two
possible solutions to this issue:
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• we can remain in the framework of the Hot Big Bang scenario and assume that perturbations are
produced causally when a given wavelength enters into the horizon. In this case, there should be not
coherent fluctuations on super-Hubble scales, i.e. the power spectrum of any kind of perturbation
should fall like white noise in the limit k ≪ aH . This is exactly what happens if cosmological
fluctuations are assumed to be generated by topological defects (e.g. cosmic strings). This scenario
is now ruled out for at least two reasons. First, the observation of CMB anisotropies on angular
scales greater than one degree (i.e., super-Hubble scales at that time) is consistent with coherent
fluctuations rather than white noise. Second, we shall see in subsection 3.2.4 that the observations
of acoustic peaks in the power spectrum of CMB anisotropies is a clear proof that cosmological
perturbations are generated much before Hubble crossing.

• we can modify the cosmological scenario in such way that all cosmological perturbations observable
today were inside the causal horizon when they were generated at some early time (we will study
a concrete generation mechanism in section 2).

So, our goal is to find a paradigm such that the largest wavelength observable today, which is λmax(t0) ∼
RH(t0) (see subsection 1.2.2), was already inside the causal horizon at some early time ti. If before ti the
universe was in decelerated expansion, then the causal horizon at that time was of order RH(ti). How
can we have λmax ≤ RH at ti and λmax ∼ RH today? If between ti and t0 the Universe is dominated by
radiation or matter, it is impossible since the Hubble radius grows faster than the physical wavelengths.
However, in general,

λ(t)

RH(t)
=

2πa(t)

k

ȧ(t)

a(t)
=

2πȧ(t)

k
, (35)

so that during accelerated expansion the physical wavelengths grow faster than the Hubble radius. So, if
between some time ti and tf the universe experiences some inflationary stage, it is possible to have λmax <
RH at ti: the scale λmax can then exit the Hubble radius during inflation and re-enter approximately
today (see Figure 1).

In order to find a condition for the needed amount of inflation, let us assume that λmax ∼ RH both at
ti and t0. This will provide an estimate of the number of inflationary e-folds, which should be regarded
as a lower bound. Indeed, if we were assuming instead that λmax(ti) < RH(ti), we would find that more
inflation is needed. So, we can write

kmax = 2πa(ti)/RH(ti) = 2πa(t0)/RH(t0) ⇔ ai

a0
=
H0

Hi
, (36)

where kmax is the comoving wavenumber associated to λmax. Now, let us assume that during ti and
tf the universe experiences inflation, and for simplicity let us suppose again that the expansion is De
Sitter (exponential) with a constant Hubble parameter. In this case we can notice that Hi = Hf ,
and that between tf and t0 the Friedmann equation gives H ∝ a−2 during radiation domination or
H ∝ a−3/2 during matter domination. Actually, if we want a rough estimate of H0/Hf , we can do
as if radiation domination was holding until today, since the universe experiences many more e-folds of
radiation domination than matter (and dark energy) domination. So, we get (H0/Hf) ∼ (af/a0)

2 and
equation (36) becomes

ai

a0
=

(

af

a0

)2

⇔ af

ai
=
a0

af
. (37)

So, once again, we find that the number of inflationary e-folds should be at least equal to that of post-
inflationary e-folds.

One could argue that the argument on the origin of fluctuations is equivalent to that of the horizon
problem, reformulated in a different way. Anyway, for understanding inflation it is good to be aware of
the two arguments, even if they are not really independent from each other.

1.2.4 Monopoles

We will not enter here into the details of the monopole problem. Just in a few words, some phase
transitions in the early universe are expected to create “dangerous relics” like magnetic monopoles, with
a very large density which would dominate the total density of the universe. These relics are typically
non-relativistic, with an energy density decaying like a−3: so, they are not diluted, and the domination
of radiation and ordinary matter can never take place.

Inflation can solve the problem provided that it takes place after the creation of dangerous relics.
During inflation, monopoles and other relics will decay like a−3 (a−4 in the case of relativistic relics)
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while the leading vacuum energy is nearly constant: so, the energy density of the relics is considerably
diluted, typically by a factor (af/ai)

3, and today they are irrelevant. The condition on the needed amount
of inflation is much weaker than the condition obtained for solving the flatness problem, since dangerous
relics decay faster than the effective curvature density (ρeff

k ∝ a−2).

Let us conclude this section by a rather useless but fun discussion concerning the following question:
should we summarize inflation as a mechanism producing more expansion or less expansion?

Usually people would say more expansion. The reason is that if we fix some initial conditions, and say
that at time ti the universe has given values of Hi and ai, we can check that the universe will experience
more expansion after ti if the following stage is inflationary. This is obvious: the expansion rate will
maintain itself to a nearly constant value instead of falling like H = n/t for a ∝ tn; in the meantime the
scale factor will accelerate, so at a given time t > ti it will have a larger value if there is inflation than if
expansion is decelerated.

However, one can easily argue that the opposite answer (less expansion) makes a lot of sense. In
cosmology, what is fixed is not the initial condition but the current expansion rate: we do not measure
any Hi, but we do measure H0, and given this we try to extrapolate back in time. Without inflation,
the extrapolation gives H(a) ∝ a−2 when a → 0 (assuming radiation domination at early times). So,
back in time, the expansion rate grows to infinity. With inflation, it stops at a nearly constant value
Hi. In this sense, the early universe experiences less expansion. If we assume that between ti and tf
the universe is experiencing either inflation or radiation domination, and if we pick up any time t < tf ,
we can easily check that H(t) is smaller in the inflationary case, while a(t) (normalized today to some
arbitrary value, e.g. a(t0) = 1) is larger. In other words, if we assume inflation, we see that our observable
universe (corresponding to the comobile scale kmax equating the comobile Hubble radius today) is larger

at early times if we assume inflation1. It is worth stressing this point, since many people have the opposite
intuition.

1.3 Quick overview of scalar field inflation

We reviewed many cosmological problems which can be solved by an early stage of accelerated expansion.
The Einstein equation should tell us which kind of matter can lead to such a stage. Let us start from the
Friedmann equation in a flat universe, which can be written as

ȧ =

√

8πG
3
aρ1/2 . (38)

Taking the time derivative of this equation and replacing ρ̇ according to the energy conservation equation,
we obtain

ä = −
√

8πG
3

ȧ

2ρ1/2
(ρ+ 3p) . (39)

As long as the universe is expanding, ȧ is positive. So, the condition for accelerated expansion is simply

ρ+ 3p < 0 . (40)

We conclude that during inflation the pressure should be negative and smaller than −ρ/3. Which type of
matter could fulfill this requirement? A cosmological constant could do the job since it has p = −ρ. During
a fully Λ-dominated stage, the Hubble parameter remains constant: one has De Sitter (exponential)
inflation. The problem is that a cosmological constant never decays, so inflation will be indefinite. If
we want inflation to end, “something must happen”, so there must be an arrow of time. Therefore the
type of matter responsible for inflation cannot be exactly in equilibrium. The most simple possibility is
to consider a scalar field (called the inflaton) slow-rolling in a very flat valley. Because it is rolling, there
is an arrow of time, and something can happen that will end inflation. But because the valley is very
flat and the rolling is very slow, the field can be seen at any time as in an “instantaneous vacuum state”
sharing almost the properties of a true vacuum state: in particular, the energy of the field is diluted very
slowly, and the pressure is very close to −ρ (see subsection 2.1).

In the rest of this course, we will review this scenario, in which one can distinguish various interesting
phases. The numbers below correspond to those of Figure 1, which summarizes in a sketchy way the
evolution of perturbation wavelengths as a function of time in our universe.

1However, it is also true that in presence of inflation our observable universe is initially very small in units of the Hubble

radius.
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Figure 1: Evolution of a set of observable cosmological wavelengths as a function of time, during inflation,
radiation domination, matter domination and cosmological constant (or dark energy) domination. The
largest wavelength displayed is equal to the Hubble radius today, so it is the largest scale accessible to
observations (it defines the size of the observable universe). We show at the end of subsection 1.3 that this
scale exits the Hubble radius 37 to 67 e-folds before the end of inflation, depending on the inflationary
energy scales. The numbers 1 to 5 refer to the five epochs described in subsection 1.3.

1. Inflation starts at some time ti when the potential energy of a slow-rolling scalar field (the inflaton)
starts to dominate the total energy density in the universe. At that time the curvature fraction
Ωk is either of order one, or eventually larger (due to a stage of decelerated expansion between the
quantum gravity epoch and inflation). In any case, the curvature gets rapidly diluted and after a
few e-folds one has |Ωk| ≪ 1. In the next section we will always start studying inflation after that
time, so we will only employ the metric of a flat Friedmann-Lemâıtre universe.

2. Assuming that the previously derived constraints on the minimal number of inflationary e-folds are
satisfied, there exists a time at which all observable cosmological wavelengths are inside the Hubble
radius (see subsection 1.2.3). In particular, the scalar field and the metric have small quantum
fluctuations which can be described like in flat space-time for wavelengths deep inside the Hubble
radius (see subsection 2.4).

3. One after each other, and starting from the largest one, the perturbation wavelengths exit the
Hubble radius. At that time, the quantum fluctuations of the scalar field and of the metric undergo
a semi-classical transition (see subsection 2.4.4).

4. At the end of inflation, the scalar field decays into particles which are either the ones that we observe
today (photons, neutrinos, baryons, cold dark matter) or some intermediate particles which will
decay later on. This stage is called reheating, and its description is beyond the scope of this course.
During reheating, the scalar field decays, so its large wavelength perturbations vanish. However,
metric perturbation survive. In addition, metric perturbations with observable cosmological wave-
lengths have λ≫ RH during reheating. As we shall see in subsections 2.5 and 2.6, this means that
they are frozen, i.e. protected against the micro-physics taking place on much smaller scales.

5. after the decay of the scalar field, the universe is dominated by the energy of relativistic particles pro-
duced during reheating and enters into the usual radiation-dominated stage. The long-wavelength
metric perturbations couple gravitationally to radiation and matter perturbations, which therefore
inherit of the large wavelength perturbation spectrum generated during inflation. The evolution
of all these perturbations during the radiation and matter dominated stages lead to the observed
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CMB anisotropies and to the Large Scale Structure (LSS) of galaxies, clusters of galaxies, etc. A
beautiful aspect of the inflationary paradigm is that these astrophysical observables are supposed
to depend on the physics of quantum perturbations in the very early Universe!

The (linear) scales that we observe today in the CMB and LSS span roughly three decades in the space of
comoving wavenumbers k. The largest observable wavelength λmax, associated to the wavenumber kmax,
corresponds to λmax(t0) ∼ RH(t0) (see subsection 1.2.2). We have seen in 1.2.3 that this scale exits the
Hubble radius when the number of e-folds ∆N before the end of inflation is equal to that between the
end of inflation and today. In subsection 1.2.1 we showed that ∆N lies between 67 and 37, depending on
the energy scale of inflation. We can conclude that observable cosmological wavelengths exit the Hubble
radius typically 60 e-folds before the end of inflation for a maximum inflationary scale of 1016 GeV, or
typically 30 e-folds before the end of inflation for a minimum inflationary scale of 1 TeV (see subsection
1.2.1). This result plays an important role for comparing inflationary models with observations.

2 Inflation with a single scalar field

We recall that the general action for a scalar field in curved space-time

S = −
∫

d4x
√

|g| (Lg + Lϕ) (41)

involves the Lagrangian of gravitation

Lg =
R

16πG (42)

and that of the scalar field

Lϕ =
1

2
∂µϕ∂

µϕ− V (ϕ) =
1

2
gµν∂µϕ∂νϕ− V (ϕ) . (43)

The variation of the action with respect to gµν enables to define the energy-momentum tensor

Tµν = ∂µϕ∂νϕ− Lϕgµν (44)

and the Einstein tensor Gµν , which are related through the Einstein equations

Gµν = 8πG Tµν . (45)

Instead, the variation of the action with respect to ϕ gives Klein-Gordon equation

1
√

|g|
∂µ

[

√

|g|∂µϕ
]

+
∂V

∂ϕ
= 0 . (46)

The same equation could have been obtained using a particular combination of the components of Tµν

and their derivatives, which vanish by virtue of the Bianchi identities (in other word, the Klein-Gordon
equation is contained in the Einstein equations).

2.1 Slow-roll conditions

We assume that the homogeneous Friedmann universe with flat metric

gµν = diag
(

1,−a(t)2,−a(t)2,−a(t)2
)

(47)

is filled by a homogeneous classical scalar field ϕ̄(t) (here x0 = t is the proper time or cosmological time).
Exercise: show that the corresponding energy-momentum tensor is diagonal, T ν

µ = diag(ρ,−p,−p,−p),
with

ρ =
1

2
˙̄ϕ
2

+ V (ϕ) , (48)

p =
1

2
˙̄ϕ
2 − V (ϕ) . (49)

The Friedmann equation reads
G0

0 = 3H2 = 8πG ρ (50)
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and the Klein-Gordon equation

¨̄ϕ+ 3H ˙̄ϕ+
∂V

∂ϕ
(ϕ̄) = 0 . (51)

These two independent equations specify completely the evolution of the system. However it is worth
mentioning that the full Einstein equations provide another relation

Gi
i =

(

2
ä

a
+

(

ȧ

a

)2
)

= −8πG p . (52)

The combination Ġ0
0 +3H(Ġ0

0−Gi
i) vanishes (it is one of the Bianchi identities), and gives a conservation

equation ρ̇+ 3H(ρ+ p) = 0, which is nothing but the Klein-Gordon equation. Finally, the combination
Gi

i −G0
0 provides a very useful relation

Ḣ = −4πG ˙̄ϕ
2

(53)

which is consistent with the fact that the Hubble parameter can only decrease (since ρ + p is positive,
for the scalar field as for any kind of matter respecting the weak energy condition2).

The condition p < −ρ/3 (see subsection 1.3) reads ˙̄ϕ
2
< V : when the potential energy dominates over

the kinetic energy, the universe expansion is accelerated. In the limit of zero kinetic energy, the energy-
momentum tensor would be that of a cosmological constant, and the expansion would be exponential
(this is called “De Sitter expansion”) and everlasting. For a long, finite stage of acceleration we must
require that the first slow-roll condition

1

2
˙̄ϕ
2 ≪ V (ϕ̄) (54)

holds over an extended period. Since the evolution of the scalar field is given by a second-order equation,
the above condition could apply instantaneously but not for an extended stage, in particular in the case
of oscillatory solutions. If we want the first slow-roll condition to hold over an extended period, we must
impose that the time-derivative of this condition also holds (in absolute value). This gives the second

slow-roll condition

| ¨̄ϕ| ≪
∣

∣

∣

∣

∂V

∂ϕ
(ϕ̄)

∣

∣

∣

∣

(55)

which can be rewritten, by virtue of the Klein-Gordon equation, as

|¨̄ϕ| ≪ 3H | ˙̄ϕ| . (56)

When these two conditions hold, the Friedmann and Klein-Gordon equations become

3H2 ≃ 8πG V (ϕ̄) , (57)

˙̄ϕ ≃ − 1

3H

∂V

∂ϕ
(ϕ̄) . (58)

The two slow-roll conditions can be rewritten as conditions either on the slowness of the variation of H ,
or on the flatness of the potential.
Exercise: show that Eqs. (54, 56) are equivalent either to

−Ḣ ≪ 3H2 , |Ḧ | ≪ −6HḢ ≪ 18H3 (59)

or to
(

∂V/∂ϕ

V

)2

≪ 48πG ,

∣

∣

∣

∣

∂2V/∂ϕ2

V

∣

∣

∣

∣

≪ 48πG . (60)

Liddle and Lyth introduced the following dimensionless slow-roll parameters

ǫ =
1

16πG

(

∂V/∂ϕ

V

)2

, η =
1

8πG
∂2V/∂ϕ2

V
. (61)

We see from Eqs. (60) that the slow-roll conditions read

ǫ≪ 1 , |η| ≪ 1 , (62)

with numerical factors are a bit different from those in Eqs. (54, 56, 60).

2or at least the null energy condition.
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2.2 Background evolution

The exact evolution of the background (the homogeneous field and the scale factor) can be found by
solving the Friedmann and Klein-Gordon equations (50, 51). However, if we are sure that the slow-roll
conditions are satisfied, we can solve simply the approximate first-order equation

˙̄ϕ = − 1

3H

∂V

∂ϕ
= − 1

√

24πG V (ϕ̄)

∂V

∂ϕ
. (63)

It is necessary to check that the potential allows for a sufficient number of inflationary e-folds. By
integrating over dN = d ln a and making use of Eqs. (57, 58), it is straightforward to show that the
number of e-folds between the time ti and the time tf is

N =

∫ tf

ti

Hdt = −8πG
∫ ϕf

ϕi

V

∂V/∂ϕ
dϕ . (64)

For a particular form of the potential, one can compute the value of the field ϕf at the end of inflation
(generally, ϕf is such that max[ ǫ, |η| ] = 1). Then, the above relation provides a condition on the initial
value ϕi in order to obtain a sufficient number of e-folds. We will employ this method for many concrete
examples of potentials in section 3.4.

2.3 Perturbations and gauge freedom

We now decompose the metric and field into a homogeneous background plus spatial perturbations:

gµν(t,x) = ḡµν(t) + δgµν(t,x) , ϕ(t,x) = ϕ̄(t) + δϕ(t,x) (65)

where ḡµν is the Friedmann metric. In principle the symmetric 4× 4 tensor δgµν(t,x) has ten degrees of
freedom. They can be classified according to their behavior under (three-dimensional) spatial rotations
as scalars, vectors and tensors. There are four scalar degrees of freedom describing the generalization of
Newtonian gravity; four vector degrees of freedom describing gravito-magnetism; and two tensor degrees
of freedom describing gravitational waves. At first order in perturbation theory, these three sectors are
uncoupled and governed by independent equations of motion. The scalar metric perturbations couple
with the scalar field perturbation δϕ. The vector modes have only decaying solutions: so, they can
be neglected in the present context. The tensor perturbations are uncoupled with the field but their
equations of motion have non-decaying solutions: so, we will include them in our study.

There are more degrees of freedom in the metric than physical modes: some solutions of the equations
of motion are gauge artifacts, which cannot be observed. This subtlety comes from the fact that there is
not a unique way of defining the perturbations at a given point. Let us consider a perturbed quantity
ρ(t,x). Such a quantity is perfectly defined. A change of coordinates will re-map the field ρ but not
change it. This is not true for the perturbation δρ(t,x) = ρ(t,x)−〈ρ(t,x)〉x (here 〈ρ(t,x)〉x is the spatial
average at time t). The definition of the perturbation is non-local since the average is performed along the
hypersurface of simultaneity at time t. If the change of coordinate xµ 7→ x′µ changes the hypersurfaces
of simultaneity, the new quantity δρ(t′,x′) will be defined by comparing the local value ρ(t′,x′) with
different physical points on a different hypersurface of simultaneity. In particular, it is possible that in
one coordinate system δρ(t,x) is null everywhere in space-time, while in another system it is not.

Let us assume that the universe is slightly perturbed, i.e. that there exists one choice of coordinates
such that all perturbations are small with respect to the actual inhomogeneous quantities. There is
an infinite number of gauges, i.e. of ways to define the hypersurfaces of simultaneity, such that the
perturbations remain small. Therefore, the metric perturbations can be changed by a group of gauge
transformation, i.e. coordinate changes mixing space and time but keeping the perturbations small.
Gauge transformations have four degrees of freedom (since there are four space-time coordinates). As a
consequence the number of physical degrees of freedom in metric perturbations is equal to 10 − 4 = 6:
two scalars, two vectors and two tensors (tensors appear to be gauge-invariant).

One way to perform computations is to define gauge-invariant quantities obeying to gauge-invariant
equations of motion. This is rather complicated and not strictly necessary. In fact, physically observable
quantities are always gauge-invariant. So, one can simply fix a gauge, i.e. impose a prescription leading
to a unique slicing of space-time into hypersurfaces of simultaneity. Then, the variables are not gauge-
invariant, but at least their equation of motion have the correct number of independent solutions. In the
Friedmann universe and for the scalar sector, we will use one of these prescriptions which amounts in
requiring that the perturbed metric is diagonal:

gµν = diag
(

(1 + 2φ),−a2(1 − 2ψ),−a2(1 − 2ψ),−a2(1 − 2ψ)
)

. (66)
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This gauge is called the Newtonian or longitudinal gauge. Tensor perturbations are gauge-invariant, and
the gravitational waves are usually defined as the two independent components (or degrees of polarization)
of the traceless transverse 3 × 3 tensor hij such that

δgij = −a(t)2hij , (67)

where by definition hi
i = 0 and ∀j, ∂ih

i
j = 0. It is possible to decompose this tensor as

hij = h1e
1
ij + h2e

2
ij (68)

where h1 and h2 are two independent functions of space and time (the two degrees of polarization of
gravitational waves) and e1ij , e

2
ij are two orthogonal traceless transverse tensors of norm 1/2 each, so that

∑

ijλ

eλ
ije

λ
ij = 1/2 + 1/2 = 1 (69)

(attention: some authors use an orthonormal basis in which
∑

ijλ e
λ
ije

λ
ij = 1 + 1 = 2, and some of the

intermediate results of subsection 2.5 read differently in that case).

2.4 Quantization and semi-classical transition

2.4.1 Basic recalls on quantization of a free scalar field in flat space-time

Let us recall that for a quantum harmonic oscillator with equation of motion ẍ + ω2x = 0, the wave
function of the fundamental state is a Gaussian of variance ω−1/2,

Ψ0(x) = N e−
1
2ωx2

. (70)

So, the probability P(x) = |Ψ0(x)|2 to find the system in a position x is a Gaussian of variance

σ =

√

1

2ω
. (71)

We know that a free massless real scalar field in flat space-time –i.e. with the Minkowski metric gµν =
diag(1,−1,−1,−1)– can be easily quantized, since each Fourier mode is analogous to the above harmonic
oscillator. The Lagrangian

L =
1

2
∂µχ∂

µχ (72)

leads to the Euler equation
χ̈+ ∂i∂

iχ = 0 , (73)

to the definition of the conjugate momentum

p =
∂L
∂χ̇

= χ̇ (74)

and to the Hamiltonian

H =
1

2

∫

d3x
[

χ̇2 + ∂iχ∂
iχ
]

. (75)

The real field χ can be Fourier transformed to the complex field χk = χ∗
−k. In Fourier space the Euler

equation reads
χ̈k + k2χk = 0 (76)

and the Hamiltonian becomes

H =
1

2

∫

d3k
[

χ̇kχ̇
∗
k + k2χkχ

∗
k

]

. (77)

So, each Fourier mode is a harmonic oscillator, and in the fundamental state the wave functional of a
given mode is

Ψ0(χk) = N e−
1
2 k|χk|

2

. (78)

So, the probability P(χk) = |Ψ0(χk)|2 that a Fourier mode of wavenumber k has an amplitude χk is a
Gaussian of variance

σ =

√

1

2k
. (79)
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This picture becomes much more complicated either when one considers non-quadratic self-coupling terms
(due to renormalization issues) or when one goes to curved space-time. In the context of inflation, the
first complication does not appear, because instead of quantizing the field itself one quantizes its small
perturbations. For such perturbations, non-quadratic self-coupling terms are always negligible (they
vanish at first order in perturbation theory). However the curvature of space-time does play a crucial
role.

2.4.2 Definition of the mode function

Quantum field theory (in flat or curved space-time) can be explained and understood in various for-
malisms: Heisenberg, Schrödinger, etc. For the purpose of inflation, it is extremely useful to rely on
one particular quantity: the mode function. Let us recall its definition, first for a free scalar field in flat
space-time. Any solution of the Euler equation

χ̈k + k2χk = 0 (80)

represents a particular classical solution or classical trajectory (in Fourier space). These solutions can be
parametrized as

χk = Ake
−ikt +Bke

ikt . (81)

In quantum field theory (in flat-space time), there is no ambiguity in the definition of time because the
metric is invariant under time translations: then one says that (∂/∂t) is a Killing vector. Eigenfunctions
of this Killing vector obeying to (∂/∂t)fk = −ikfk with k > 0 are called positive frequency solutions,
and are the only physical solutions. In the previous equation, the positive frequency solutions are those
with Bk = 0. Among all possible positive frequency solutions, one plays a particular role, because it is
normalized according to the commutation relation [x, p] = [χ, χ̇] = i (remember that we are using units
with h̄ = 1). In Fourier space this relation gives

χkχ̇
∗
k − χ̇kχ

∗
k = i . (82)

The quantity on the left hand side is the Wronskian, which is always a conserved quantity for a solution
of a second-order differential equation. This normalization condition gives in our case

ik|Ak|2 − (−ik|Ak|2) = i , (83)

and up to an arbitrary phase one finds

Ak =

√

1

2k
. (84)

The positive frequency solution of the classical equation of motion, normalized to the commutation
relation, is called the mode function. It represents a typical solution, i.e. a classical solution corresponding
to one standard deviation for the quantum system in its fundamental state. We can check it explicitly.
We found that for the free field in flat space-time the mode function reads

χk =

√

1

2k
e−ikt . (85)

The modulus of this function is equal to (2k)−1/2, i.e. according to Eq. (79) to one standard deviation
for the probability P(χk).

2.4.3 Free field in curved space-time

In curved space-time, the time derivative is not anymore a Killing vector. It is impossible to build
positive-frequency solutions. The Euler equation and Hamiltonian for each Fourier mode are those of a
harmonic oscillator with a mass explicitly depending on time. At a given time, it is possible to build
annihilation/creation operators and to define an “instantaneous fundamental state” and “instantaneous
N-particle states”. However this construction of a Fock space is not invariant with time. The annihila-
tion/creation operators evolve according to the Bogolioubov transformations, and a state corresponding
to the fundamental state at time t1 will be an excited state at time t2. As a consequence, quantization
in curved space-time is generally ambiguous.

For the purpose of quantizing inflationary perturbations, we can avoid such ambiguities. There is a
simple physical explanation for that. Today, in laboratory experiments, we can treat all quantum fields
as if they where living in flat space-time. However we do leave in an expanding Friedmann universe. The
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reason for which space-time curvature effects can be neglected on small scales is that in everyday life we
deal with distances and wavelengths much smaller than the curvature radius Rk and the Hubble radius
RH .

We have seen that during inflation, observable Fourier modes start inside the Hubble radius. Wave-
lengths grow much faster than RH and at some point λ ∼ RH (in terms of wavenumbers this corresponds
to k ∼ aH). If we define the initial state of the field much before that time, when k ≫ aH , the system
is effectively in flat space-time, exactly like for laboratory experiments today. So, at that time, the def-
inition of the vacuum is not ambiguous3. The system can be assumed to stay in its fundamental state
when k ≫ aH . Later on, this state will evolve and will not be anymore the vacuum state: there will be
particle creation from the vacuum, a usual feature in curved space-time.

It is actually possible to show that near horizon crossing and afterward, the wave function of the
Fourier modes initially in their vacuum state develops an “imaginary squared variance”,

Ψ0(χk) = N e
−

χ2
k

2σ2
k
(t)

[1+iFk(t)]
. (86)

In this parametrization, the real variance σk is equal to (2k)−1/2 well-inside the Hubble radius, and
remains equal to the modulus of the mode function at any later time. The real function Fk(t) is negligible
well-inside the Hubble radius, and then becomes very large. Because of Fk(t), the wave function is not
a Gaussian and does not represent an “instantaneous fundamental state” at late times. However, the
probability P(χk) = |Ψ0(χk)|2 is still a Gaussian with variance σk(t). So, if we are only interested in
P(χk), we just need to compute the mode function in order to know all the properties of the system at
any time.

2.4.4 Quantum to semi-classical transition

The reason for which we are only interested in P(χk) is that the system undergoes a quantum to semi-
classical transition. These words should be understood exactly in the following sense: at late times, the
quantum perturbations are indistinguishable from the perturbations of a classical stochastic system.

This should not be confused with another mechanism called decoherence. When a quantum system
interacts with an environment, it can be shown that generally this system will be effectively classical
after a while. This can happen also in cosmology. However, the quantum to semi-classical transition
during inflation has nothing to do with possible interactions with an environment: it is only an effect of
the space-time dynamics. Even if the inflationary perturbations are a non-interacting system following
a unitary evolution, they become equivalent to classical stochastic variables after Hubble crossing, in an
unavoidable and irreversible way.

A classical stochastic system is described by an equation of motion and an initial distribution of
probability in phase space. The distribution of probability at late time is equal to that at initial time
“transported” by the equation of motion, which provides a mapping between each point in phase-space
at two different time. This mapping is simply given by the solution of the Hamilton-Jacobi equation:

x(t) = α(t)x(t0) + β(t)p(t0) (87)

p(t) = γ(t)x(t0) + δ(t)p(t0) (88)

3An interesting question to study is: how small are the observable cosmological wavelengths with respect to the Hubble
radius at the time when we quantize them, and how good is the approximation consisting in writing the initial fundamental
state as if the fields where in flat space-time? If inflation was infinitely long, we could say that by quantizing the fields early
enough we can have k/(aH) as large as we want, and there would be no problem at all with the definition of the initial
fundamental state. However, if we go back in time, there will be some point at which the physical wavelength is so small
that ordinary quantum field theory does not apply –presumably, this happens when λ is of the order of the Planck length
λP , but in some scenarios with extra dimensions the fundamental scale of gravity can be different.

Quantum perturbations emerge from the quantum gravity regime with a spectrum that we are unable to predict. Is this
a problem for computing the inflationary power spectrum? The answer depends on the ratio between the fundamental scale
of gravity and the Hubble scale during inflation. If this ratio is very large, then a given wavelength starts to be described
by ordinary quantum field theory at a time when it is very deep inside the Hubble radius. At that time, it is legitimate to
apply the ordinary machinery of quantum field theory in flat space-time and to define the vacuum state in the usual way.
However, if this ratio is not so large, we can argue that when the modes emerge from quantum gravity, they will see a slightly
curved space-time in which the definition of the vacuum state has some degree of arbitrariness. As a consequence, some
signature of quantum gravity could survive, and the mode function could depart from Eq. (85) with significant corrections
usually called transplanckian corrections. Such corrections are often considered in the literature, but one should keep in
mind that they are not a generic prediction of inflation, since in usual models the large hierarchy between the Planck scale
and the Hubble radius during inflation ensures that if they exist, they should be vanishingly small. Indeed, the fact that
inflation takes place at most at the 1016 GeV scale implies that RH ≥ 10−6m−1

P
= 10−6λP .
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and the initial phase-space distribution is some properly normalized function P(x, p). There exists a
sub-class of these systems for which the Hamilton-Jacobi equations lead to

lim
t→∞

β(t)/α(t) = lim
t→∞

δ(t)/γ(t) = 0 . (89)

In this case, at late time, the phase-space density concentrates along a line of equation p = (γ(t)/α(t))x,
and along this line it obeys to some probability distribution P(x, t) for the position. Then, if we want to
compute an arbitrary statistical momentum 〈xnpm〉 for this system, we need to compute the integral

〈xnpm〉 =

∫

dxxn

(

γ(t)

α(t)
x

)m

P(x, t) . (90)

There is a class of quantum fields in curved space-time for which the Hamilton-Jacobi equations for
each mode k obey precisely to Eqs. (89). The corresponding Wigner function (a generalization of
the notion of phase-space distribution for quantum systems) does concentrate along a line of equation
pχk = (γ(t)/α(t))χk. Then, the mode is said to be in a squeezed state, and the momenta 〈χn

kp
m
χk〉 are

asymptotically indistinguishable from the classical expression of Eq. (90). This can be shown explicitly.
In principle the quantum momenta should be computed as

〈χn
kp

m
χk〉 =

∫

dχk Ψ∗(χk, t)χ
n
k

(

∂

i∂χk

)m

Ψ(χk, t) (91)

and their semi-classical limit can be defined as

〈χn
kp

m
χk〉cl =

∫

dχk χ
n
k

(

γ(t)

α(t)
χk

)m

|Ψ(χk, t)|2 . (92)

For a squeezed state, one can show that

〈χn
kp

m
χk〉 − 〈χn

kp
m
χk〉cl

〈χn
kp

m
χk〉

−→ 0 (93)

in the limit in which β(t)/α(t) and δ(t)/γ(t) are vanishingly small. This proves that the system becomes
effectively classical stochastic.

Quantum inflationary perturbations fall exactly in this ballpark. It is possible to look for the two
independent analytical solutions of the Euler equation after Hubble crossing: then, one generally finds
a decaying mode and a growing mode. These two solutions can be matched to the positive frequency
solution defined before horizon crossing. The matching provides normalization coefficient for the growing
and decaying mode. Near horizon crossing the two modes have comparable amplitudes, but after a while
the amplitude of the decaying mode becomes vanishingly small. This limit is exactly the one in which, in
the previous notations, β(t)/α(t) and δ(t)/γ(t) are small. In this limit, one can also prove that the term
Fk(t) in the wave function of Eq. (86) becomes much larger than one. Technically, this is the reason for
which Eq. (93) holds.

The condition of semi-classicality of Eq. (93) is a bit heavy to write down and explain. Switching
from the Schrödinger to the Heisenberg representation, one can write down a nearly equivalent condition

〈χk|
{

χ̂k, p̂
†
χ k

}

|χk〉 ≫
∣

∣

∣
〈χk|

[

χ̂k, p̂
†
χ k

]

|χk〉
∣

∣

∣
(94)

where (χ̂k, p̂χ k) are the time-dependent position and momentum operators. Equation (94) says that
the semi-classical transition takes place when, in absolute value, the mean value of the anti-commutator
becomes much larger than that of the commutator, which is equal to one (in units where h̄ = 1). Again,
this condition says that the mean value of a product of operators can be effectively computed as if the
operators did commute. Finally, note that if we introduce the instantaneous number-of-particle operator

N̂ =
∫

d3k â†kâk, where âk is the annihilation operator at a given time, the previous condition is equivalent

to 〈N̂〉 ≫ 1. Hence, in the literature, it is often mentioned that the condition for semi-classicality is to
get a number of particles (created from the vacuum) much larger than one, as is the case for inflationary
perturbations after Hubble crossing.

The result of these considerations is that we can almost forget that we are dealing with quantum
perturbations, excepted when we specify the normalization of the mode function, which is related to the
positive frequency condition and to the canonical commutation relation. However, at late time, we can
consider inflationary perturbations as stochastic, Gaussian variables with variance |χk(t)|, where χk(t) is
the mode function.
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2.5 Tensor perturbations

2.5.1 General equations

We have seen that tensor perturbations are described by the two degrees of polarization h1, h2, with
hij = h1e

1
ij + h2e

2
ij and

∑

ijλ e
λ
ije

λ
ij = 1. At first order in perturbations, the tensor and scalar sectors do

not mix with each other, and the Lagrangian for (h1, h2) is contained in

Lgrav =
√

|g| R

16πG . (95)

In this section and in the next one, we will use conformal time η instead of proper (cosmological) time t.
The two are related by the change of variable dt = adη which renders the metric conformally invariant,
ds2 = a2(η)[dη2 − d~x2]. Then,

√

|g| = a4 and the part of the Lagrangian describing tensor perturbations
reads

Ltensors =
a4

16πG

[

1

4
∂µh1∂

µh1 +
1

4
∂µh2∂

µh2 + div

]

(96)

where “div” stands for irrelevant total divergence terms4. We see from the Lagrangian that h1 and h2

share the same Lagrangian and equations of motion. After quantization and Hubble crossing, they will
be two stochastic Gaussian variables with equal variance. So, we can forget one of them and concentrate
on a single mode hλ, provided that in the final gravitational wave power spectrum we do not forget to
take into account both degrees of freedom. We could try to quantize directly hλ but for pedagogical
purposes we will change variable and introduce a rescaled field

y ≡ a hλ√
32πG (97)

which has a canonically normalized kinetic terms. Indeed, the Lagrangian for y reads

Ly =
1

2

{

(

y′ − a′

a
y

)2

− (∂iy)
2

}

(98)

and starts with the usual term 1
2y

′2 (the prime stands for the derivative with respect to conformal time).
The conjugate momentum reads

py =
∂Ly

∂y′
= y′ − a′

a
y (99)

and the Hamiltonian is found to be

H =
1

2

∫

d3x

[

(

y′ − a′

a
y

)2

+ (∂iy)
2

]

. (100)

In Fourier space the equation of motion reads

y′′k +

(

k2 − a′′

a

)

yk = 0 (101)

and the Hamiltonian becomes

H =
1

2

∫

d3k

[

∣

∣

∣

∣

y′k − a′

a
yk

∣

∣

∣

∣

2

+ k2 |yk|2
]

. (102)

It is not a surprise to see that in the small wavelength limit k ≫ aH the Hamiltonian reduces to its flat
space-time counterpart

H =
1

2

∫

d3k
[

|y′k|
2

+ k2 |yk|2
]

. (103)

This matches our expectation that modes deep inside the Hubble radius do not see the space-time
curvature, and can be quantized in the usual way. In this limit the mode function is the one found in
Eq. (85),

yk≫aH =

√

1

2k
e−ikη . (104)

4Note that the authors who define the polarization tensors as orthonormal,
∑

ijλ
eλ
ijeλ

ij = 2, find a factor 1/2 instead of

1/4 in the brackets of Eq. (96): i.e., they find canonically normalized kinetic terms for h1 and h2 in the Ricci scalar R.
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2.5.2 Solution during De-Sitter stage

In the limit of an exact De Sitter stage with a(t) = eHit, the relation between a and conformal time can
be found by integrating over dη = e−Hitdt: one gets η = −1/(aHi). During the De Sitter stage, a goes
from very small to very large values: this corresponds to η running from −∞ to zero. Hubble crossing
during inflation corresponds to k ≃ aHi, i.e. to kη ≃ −1. Then the equation of motion becomes

y′′k +

(

k2 − 2

η

)

yk = 0 (105)

with two solutions

yk = Ak

(

1 − i

kη

)

e−ikη +Bk

(

1 +
i

kη

)

eikη . (106)

A matching with Eq. (104) shows that the mode function reads

yk =

√

1

2k

(

1 − i

kη

)

e−ikη . (107)

In the large wavelength limit k ≪ aH corresponding to kη → 0, we get

yk≪aH = − i√
2k3η

=
iaH√
2k3

. (108)

For the variable hλ, this gives

hλ k =

√
32πG
a

iaH√
2k3

= iH

√

16πG
k3

. (109)

We have seen that the modulus of the mode function can be interpreted as the Gaussian variance of
the classical stochastic mode after Hubble crossing. So, for k ≪ aH , each degree of polarization has a
squared variance

〈|hλ k|2〉 =
16πGH2

i

k3
. (110)

Finally, the total squared variance of the gravitational wave tensor hij at that time is given by

〈

∣

∣

∣

∣

∣

∣

∑

ij

hij k

∣

∣

∣

∣

∣

∣

2
〉

= 〈|h1 k|2〉
∑

ij

e1ije
1
ij + 〈|h2 k|2〉

∑

ij

e2ije
2
ij = 〈|hλ k|2〉

(

1

2
+

1

2

)

=
16πGH2

i

k3
. (111)

2.5.3 Long-wavelength solution during and after inflation

The background of gravitational waves generated during inflation could be observed through its contri-
bution to CMB anisotropies, or maybe directly in future space-based gravitational wave detectors. The
evolution of gravitational waves after they re-enter inside the Hubble radius during radiation, matter or
dark energy domination can be easily computed. The initial condition which is needed is the amplitude,
or more precisely the Gaussian variance of gravitational waves on super-Hubble scales, for instance during
radiation domination.

The evolution of super-Hubble modes during any stage (inflation, radiation domination, matter dom-
ination, etc.) is actually trivial since in the long-wavelength limit k −→ 0 the equation of motion (101)
reduces to

y′′k − a′′

a
yk = 0 (112)

with an obvious solution yk ∝ a corresponding to a constant hλ k. The other solution yk = a
∫

dη/a2 is
a decaying mode, so we conclude that hλ k is approximately constant on super-Hubble modes during any
stage 5.

5One could fear that this reasoning does not hold during radiation domination, for which a(t) ∝ t1/2, leading to a(η) ∝ η
and a′′ = 0. However in that case the general solutions reads yk = Ak cos kη + Bk sinkη. In the long-wavelength limit this
is equal to yk = Ak + Bkkη and a matching with the solution during inflation gives Ak = 0. So, here again, yk ∝ a and
hλ k is approximately constant.
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2.5.4 Primordial spectrum of tensor perturbations

Since hλ k is constant on super-Hubble scales, the primordial spectrum needed for computing observable
quantities can be evaluated at the end of inflation, and is given by Eq. (111) in the limit of exact De
Sitter inflation with a Hubble parameter equal to Hi (we will study in subsection 2.7 how this result
can be generalized to quasi-De Sitter inflation). Defining the power spectrum as the squared variance
multiplied by k3, we obtain

Ph ≡ k3〈|
∑

ij

hij k|2〉 = 16πGH2
i . (113)

We see that in this approximation Ph does not depend on k: such a power spectrum is called scale-

invariant. For historical reasons, a scale-invariant spectrum is also called a Harrison-Zel’dovitch spectrum.
We can also express this primordial power spectrum in terms of the scalar potential during inflation,

Ph =
2

3
(8πG)2Vi . (114)

Alternative notations. Different authors adopt different definitions for the power spectrum of a
stochastic quantityXk. Throughout the literature, one finds for instance PX = 〈|Xk|2〉, PX = (2π)−3〈|Xk|2〉
(as for instance in some Bertschinger and collaborator papers) or PX = k3〈|Xk|2〉 (as in this course).
However, one of the most popular conventions for defining the tensor power spectrum is that of Liddle
and Lyth (that we will note with a tilde)

P̃h ≡ 2k3

2π2
〈|
∑

ij

hij k|2〉 =
1

π2
Ph =

16GH2
i

π
. (115)

2.6 Scalar perturbations

2.6.1 General equations

In the tensor case, we quantized two degrees of freedom – the two degrees of polarization. For scalar
perturbations and in the longitudinal (Newtonian) gauge we have three scalar variables: the diagonal
metric perturbations φ and ψ, and the inflaton field perturbation δϕ. Do we need to quantize these three
fields independently from each other? The answer is suggested by the equations of motion. The Einstein
equations provide a relation

δGj
i = ∂i∂

j(φ− ψ) = 8πG ∂iδϕ ∂jδϕ (116)

for i 6= j. The right hand-side vanishes at first order in perturbations. So φ − ψ is either null or a
quadratic function of the spatial coordinate. The latter is impossible: far from the origin φ − ψ would
become arbitrarily large, and the metric perturbations would not be small anymore. We conclude that
at first order in perturbation theory there is an identity φ = ψ. We are left with only two variables φ
and δϕ evolving according to the Klein Gordon equation and Einstein equations,

δϕ̈k + 3H δϕ̇k +

(

k2

a2
+
∂2V

∂ϕ2
(ϕ̄)

)

δϕk = 4 ˙̄ϕ φ̇k − 2
∂V

∂ϕ
(ϕ̄)φk , (117)

φ̇k +Hφk = 4πG ˙̄ϕ δϕk . (118)

It is clear that the first equation is an equation of propagation, while the second is only a constraint
equation. This confirms the intuition that unlike gravitational waves, scalar metric perturbations are not
additional independent fields: they just follow matter perturbations, like the gravitational potential in
Newtonian gravity. In absence of matter perturbations, scalar metric perturbations would simply vanish,
unlike gravitational waves. Therefore, we only need to quantize one independent degree of freedom. It is
actually possible to combine the Einstein equations in order to find a second-order differential equation
involving a single master variable. This master variable is not unique. For instance, it is possible to write
a second-order differential equation for the metric perturbation only:

φ̈k +

(

H − 2
¨̄ϕ
˙̄ϕ

)

φ̇k −
(

2H
¨̄ϕ
˙̄ϕ

+ 8πG ˙̄ϕ
2 − k2

a2

)

φk = 0 . (119)

This equation is rather complicated. Actually we can find a much simpler one for a master variable called
the Mukhanov variable. It was shown by Mukhanov that metric and scalar field perturbations can be
combined into a gauge-invariant quantity which reduces, when written in the Newtonian gauge, to

ξ = a δϕ+
ϕ̄′

H
φ (120)
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(we recall that the prime represents derivation with respect to conformal time). In addition, Mukhanov
found that in any gauge, the part of the action (41) describing first-order scalar perturbations is entirely
contained inside the Lagrangian

Lξ =
1

2

(

ξ′
2 − (∂iξ)

2 +
z′′

z
ξ2 + div

)

(121)

where “div” stands for irrelevant total divergence terms, and

z ≡ ϕ̄′

H
. (122)

The conjugate momentum reads

pξ =
∂Lξ

∂ξ′
= ξ′ (123)

and the Hamiltonian is found to be

H =
1

2

∫

d3x

[

ξ′
2

+ (∂iξ)
2 − z′′

z
ξ2
]

. (124)

In Fourier space the equation of motion of the Mukhanov variable reads

ξ′′k +

(

k2 − z′′

z

)

ξk = 0 (125)

and the Hamiltonian becomes

H =
1

2

∫

d3k

[

ξ′k
2
+

(

k2 − z′′

z

)

ξ2
]

. (126)

2.6.2 Solution during Quasi-De-Sitter stage

We could try to proceed like for tensor perturbations, and to quantize ξ in the limit of an exact De Sitter
stage, i.e. exponential expansion. Strictly speaking this requires Ḣ = 0 and therefore ϕ̄′ = ˙̄ϕ = 0. This
limit is actually singular since z = 0. The quantization of scalar perturbations in an exact De-Sitter
space is not difficult, but it requires a special treatment. Anyway, the outcome is that in this limit the
amplitude of metric perturbations 〈|φ|2〉 is damped at the end of inflation (there is only a decaying mode).
This is excluded by the actual observation of density perturbations in our universe. In other words, the
mechanism for generating scalar perturbations during inflation requires a small but non-zero derivative
˙̄ϕ.

So, first-order calculations of the scalar power spectrum are based on the assumption that over the
relevant range of time (a few e-folds before and after horizon crossing) the two quantities H and ˙̄ϕ are
approximately constant and equal to Hi, ˙̄ϕi. In this approximation, z is proportional to a, and the
relation η = −1/(aHi) remains true. So z′′/z = a′′/a = −2/η2 = −2(aHi)

2, and in the sub-Hubble limit
k ≫ aHi the Hamiltonian reduces as expected to its flat space-time counterpart. The equation of motion
for ξ,

ξ′′k +

(

k2 − a′′

a

)

ξk = 0 , (127)

is the same as that for y in the previous section, and therefore we know that the mode function reads

ξk =

√

1

2k

(

1 − i

kη

)

e−ikη . (128)

Let us go back to the variable φ, which is very useful for relating scalar perturbations during and after
inflation (since φ does not decay like the inflaton field). By combining Eq. (120) with the Einstein
equation, one obtains the exact differential relation

φk = −4πG
k2

ϕ̄
′2

aH

(

H

ϕ̄′
ξk

)′

. (129)

Inserting the mode function for ξ into this relation, we find that the mode function for φ reads (at any
time)

φk =
4πG√
2k3

˙̄ϕi ie
−ikη . (130)
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So, in the large wavelength limit k ≪ aH corresponding to kη → 0, we get

φk≪aH =
4πG√
2k3

˙̄ϕi i . (131)

We have seen that the modulus of the mode function can be interpreted as the Gaussian variance of the
classical stochastic mode after Hubble crossing. So, the squared variance of the the metric perturbation
reads

〈|φk|2〉 =
(4πG)2

2k3
˙̄ϕ
2
i . (132)

2.6.3 Long-wavelength solution during and after inflation

It is possible to show that during any stage (inflation, radiation domination, matter domination, dark
energy domination) the metric perturbation φ is described by the following exact analytical solution in
the long-wavelength limit k −→ 0

φk = C1(k)

(

1 − H

a

∫ t

a(t) dt

)

− C2(k)
4πG
k2

H

a
(133)

where C1, C2 are respectively the coefficient of the non-decaying and decaying modes. Changing the
lower bound of the integral amounts in absorbing some of the decaying mode into the growing mode (in
practice this minor ambiguity is unimportant). The integration can be performed explicitly during each
stage:

• during inflation, in the exact De Sitter limit we find that the non-decaying mode vanishes: φk

decays like H/a. So, in order to catch the dominant contribution to the growing mode, we need to
go to the next order and approximate H(t) near some time ti as Hi + Ḣi(t− ti), where Hi and Ḣi

are two constants. The relation H = d ln a/dt implies

a(t) = a(ti) exp

(
∫ t

ti

H(t)dt

)

(134)

≃ a(ti) exp

(
∫ t

ti

(Hi + Ḣit)dt

)

(135)

= a(ti) exp

(

Hi(t− ti) + Ḣi
(t2 − t2i )

2

)

(136)

Exercise : plug this expression into Eq.(133), and compute the result at first order in the small
parameter Ḣi/H

2
i . Show that

φk = −C1(k)
Ḣi

H2
i

. (137)

This shows that at any time during slow-roll inflation, the non-decaying mode is slowly-varying
(since Ḣ(t) and H(t) are slowly-varying), with a dominant contribution given by

φk = −C1(k)
Ḣ(t)

H(t)
. (138)

• during Radiation Domination (RD), a(t) ∝ t1/2 and the non-decaying mode reads

φk = C1(k)

(

1 − 1

2
× 2

3

)

=
2

3
C1(k) . (139)

So, during radiation domination, φk is constant on super-Hubble scales.

• during Matter Domination (MD), a(t) ∝ t2/3 and the non-decaying mode reads

φk = C1(k)

(

1 − 2

3
× 3

5

)

=
3

5
C1(k) . (140)

This shows that at the time of equality φk is damped by a factor (3/5)/(2/3) = 9/10, and then
becomes constant again on super-Hubble scales.

• during dark energy domination φk is damped on super-Hubble scales, but we do not need to compute
its detailed evolution here.
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2.6.4 Primordial spectrum of scalar perturbations

We can deduce from Eqs. (137-140) that the variance of φk on super-Hubble scales during radiation
domination is equal to the variance during inflation times a factor 2H2

i /(3Ḣi). Similarly, during matter
domination, the factor is 3H2

i /(5Ḣi). Most author define the primordial spectrum of φ as the squared
variance of the modes on super-horizon scales during matter domination. This is a bit misleading because
at the time of equality, many observable modes are already inside the Hubble radius. However, for those
modes, we can formally define the power spectrum as the amplitude on super-horizon scales during
radiation domination times the factor (9/10), and obtain

PMD
φ ≡ k3〈|φk|2〉MD = k3

(

3

5

H2
i

Ḣi

)2

〈|φk|2〉i = k3

(

3

5

H2
i

Ḣi

4πG√
2k3

˙̄ϕi

)2

=
9H4

i

50 ˙̄ϕ
2
i

(141)

where we employed Eqs. (132) and (53). We see that in this approximation PMD
φ does not depend on k:

it is a scale-invariant or Harrison-Zel’dovitch spectrum. With the help of Eqs. (57, 58), we can re-express
the primordial spectrum in terms of the scalar potential during inflation,

PMD
φ =

3

50
(8πG)3

V 3
i

(∂V/∂ϕ)2i
. (142)

Using the definition (61) of the slow-roll parameter ǫ, that we will call ǫi in order to show explicitly that
it is computed assuming constant values Hi and ˙̄ϕi, we obtain

PMD
φ =

3

100
(8πG)2

Vi

ǫi
. (143)

Note that the ratio of the tensor spectrum over the scalar one reads

Ph

PMD
φ

=
200

9
ǫi (144)

(if we were using the scalar power spectrum during radiation domination, PRD
φ = (10/9)2PMD

φ , we would

find instead a ratio Ph/PRD
φ = 18ǫi).

Spectrum of curvature perturbations. Some authors prefer to parametrize the scalar perturbations
not with the scalar metric perturbations φ (which is called the Bardeen potential or the generalized
gravitational potential), but instead with the curvature perturbation R, defined as the perturbation of
the spatial curvature radius R(3) on comoving hypersurfaces. The inconvenient of R is that its definition
is a bit complicated (it is related to φ through a differential equation). Its advantage is that as long as
the universe does not contain isocurvature perturbations, and in particular, in the standard cosmological
picture with single-field inflation, the long-wavelength solution for the curvature perturbation is Ṙ = 0:
the curvature is a conserved quantity for super-Hubble adiabatic perturbations, while φ is not. However,
during the radiation dominated era, we have seen that φ is constant, and at that time we can derive
a proportionality factor R = (3/2)φRD. The Bardeen potential is also constant during the matter
dominated era, and then R = (5/3)φMD. This gives

PR =

(

5

3

)2

PMD
φ =

1

12
(8πG)2

Vi

ǫi
=

2πGH2
i

ǫi
(145)

and a tensor-to-curvature ratio
Ph

PR
= 8ǫi . (146)

However, using the definitions of Lyth and Liddle for the power spectra,

P̃R ≡ 1

2π2
PR , P̃h ≡ 2

2π2
Ph , (147)

one gets a ratio that we will call r,

r ≡ P̃h

P̃R

= 16ǫi . (148)

This parameter r is the most common way of defining the tensor-to-scalar ratio, and we will use it
abundantly when comparing inflationary models with observations.
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2.7 Computing smooth spectra using a slow-roll expansion

So far, we computed the tensor spectrum assuming an exact De Sitter stage with a constant H , and the
scalar spectrum assuming a quasi-De Sitter stage with constant H and ˙̄ϕ (implying a constant Ḣ , which
is not in contradiction with a constant H since during slow-roll |Ḣ | ≪ H2). These assumptions are not
unreasonable, because the details of scalar and tensor spectra are only sensitive to a small number of
e-folds, during which slow-roll condition guarantee that variations in the background quantities are very
small. Let us try to understand how many e-folds are typically relevant.

As long as k ≫ aH , the mode function ξk (for scalars) and yk (for tensors) are oscillatory, with a
fixed amplitude (2k)1/2 which does not depend on the background dynamics. Any variation in H and
Ḣ at that time have no consequence for the mode function amplitude. In the opposite regime k ≪ aH ,
we can match the mode function with an analytical long-wavelength approximation which consistently
takes into account any variation in the background until the end of inflation and even later. For scalars,
we did such a matching for φk using the solution of Eq. (133). If instead we were using the curvature
perturbations we would just use the fact that Rk is time-invariant as soon as k ≪ aH . For tensors we
used the time-invariance of hλ k for k ≪ aH .

So, the details of the primordial spectrum depend only on the small range of time during which
the modulus of (ξk, yk) departs from (2k)1/2 and Eq. (133), Ṙk = 0 and ḣλ k = 0 are not yet good
approximations. This happens when k and aH have the same order of magnitude, typically between
k = 10 aH and k = 0.1 aH . During this time interval, the scale factor grows approximately by a factor
100, which corresponds to a number of e-folds

∆N = ∆ ln a = ln 100 ≃ 4.6 . (149)

So, the results that we already obtained are valid provided that the relative variation of H (and also of
Ḣ for scalars) is negligible over typically five e-folds.

If we want to go beyond this approximation, but still avoiding the resolution of the exact mode function
equations (101,125), we can work in a slow-roll expansion scheme. This consists in Taylor-expanding one
background function, for instance H(t), H(a), H(N), ϕ̄(t) or V (ϕ̄) around a pivot value (that we will
note t∗, or a∗, or N∗, or ϕ̄∗). The expansion is cut at a given order, and the mode function equation is
solved at this order, assuming that higher-order derivatives vanish. The approximation is optimal if the
pivot value corresponds to the time at which a typical observable wavelength k∗ (chosen to be roughly in
the middle of the range probed by CMB and LSS experiments) crosses the Hubble radius during inflation:
so, t∗ is the time at which k∗ = a∗H∗.

Technically, solving a second-order equation at a given order in the time-derivative of its coefficients
can be done following the so-called WKB approximation. For instance, the first-order WKB solution of the
equation ẍ+ω(t)2x is given by x ∝ ω(t)−1/2 exp(±iω(t)t), and is a good approximation whenever the time-
variation of ω(t) over one period of oscillation is negligible. Higher-order WKB solutions include higher
order time-derivatives of ω(t). This scheme provides an appropriate way to compute the inflationary
power spectra at a given order in slow-roll. However, if we want to extend our previous results to the
next order in slow-roll (i.e., for tensors, keeping term in Ḣ , and for scalars in Ḧ), we shall see that the
correct results can be obtained in a much simpler way.

Since at first order the solutions for Ph and Pφ are scale-invariant, the second order solution will
provide the approximate value of the scalar and tensor tilts, defined as

nt ≡ d lnPh

d ln k

∣

∣

∣

∣

k=k∗

, (150)

ns − 1 ≡ d lnPφ

d ln k

∣

∣

∣

∣

k=k∗

. (151)

Note that for a question of habits, the definition of nt and ns differ by a “minus one” term, so that a scale-
invariant scalar spectrum corresponds to ns = 1, while a scale-invariant tensor spectrum corresponds to
nt = 0. If at first order the spectra are scale-invariant, at second order the tilts are scale invariant and
the power spectra are exact power laws,

Ph(k) = Ph(k∗)

(

k

k∗

)nt

, (152)

Pφ(k) = PΦ(k∗)

(

k

k∗

)ns−1

. (153)
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In order to compute the running of the tilts with k, one would need to go to the third order, i.e. keeping Ḧ
terms for tensors and (d3H/dt3) terms for scalars. If instead of reasoning on H(t), we define the slow-roll
expansion using ϕ̄(t) or V (ϕ̄), Eqs. (53, 57, 58) show that it is equivalent to assume a constant H , ϕ̄ or
V ; as well as to assume a constant Ḣ , or ˙̄ϕ, or (∂V/∂ϕ). Finally it is straightforward to show that it is
equivalent to stop the slow-roll expansion at a given order n in (dnH/dtn), (dnϕ̄/dtn) or (∂nV/∂ϕn).

Simple method for computing the tilts. Let us now try to compute the tilts by starting from the
lowest-order solution

Ph(k) = 16πGH2 , (154)

Pφ(k) =
9H4

5 ˙̄ϕ
2 , (155)

that we obtained assuming that H and ˙̄ϕ were constant during inflation. Now, we will assume that these
formulas also apply to the case where H and ˙̄ϕ are slightly varying, with the right-hand side evaluated
precisely at the time at which k = aH . Given the previous discussion, this assumption sounds reasonable,
but the fact that it is sufficient for computing the tilts at first order in slow-roll (as we will do in the
following lines) is not something that we will prove rigorously6. We therefore admit that

Ph(k) = 16πGH2
k=aH , (156)

Pφ(k) =
9H4

k=aH

5 ˙̄ϕ
2
k=aH

. (157)

Then, the tilts can be computed simply from the finite difference between (H, ˙̄ϕ) at the time when k
equals the pivot scale k∗ = a∗H∗ and the time when it equals

k∗ + dk = (a∗ + da)(H∗ + dH) = a∗H∗ + a∗

(

1 +
H2

∗

Ḣ∗

)

dH . (158)

During slow-roll, we have seen that |Ḣ | ≪ H2, and we conclude that

dk ≃ a∗H
2
∗

Ḣ∗

dH . (159)

Tensor tilt. By definition, nt reads

nt ≃ lnPh(k∗ + dk) − lnPh(k∗)

ln(k∗ + dk) − ln(k∗)
≃ ln(H∗ + dH)2 − lnH2

∗

(dk/k∗)
≃ 2k∗ dH

H∗ dk
. (160)

Using now Eq. (159), we obtain

nt ≃
2k∗ Ḣ∗

a∗H3
∗

. (161)

Using the fact that k∗ = a∗H∗, we finally get

nt ≃
2Ḣ∗

H2
∗

. (162)

This result can also be expressed as a function of the potential derivatives using the slow-roll relations
(57, 58) and the exact equation (53),

nt ≃ − (∂V/∂ϕ)2∗
8πGV 2

∗

= −2ǫ∗ . (163)

Scalar tilt. We follow the same method for ns which reads

ns − 1 =
d lnPφ

d ln k

∣

∣

∣

∣

k∗

=
d ln(H4/ ˙̄ϕ

2
)

d ln k

∣

∣

∣

∣

∣

k∗

= 4
d lnH

d ln k

∣

∣

∣

∣

k∗

− 2
d ln ˙̄ϕ

d ln k

∣

∣

∣

∣

k∗

. (164)

6The rigorous proof follows from a WKB resolution scheme.
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We already evaluated the first term for the tensor tilt and found

d lnH

d ln k

∣

∣

∣

∣

k∗

=
Ḣ∗

H2
∗

. (165)

For the second term, we factorize out (d lnH/d ln k) and obtain

d ln ˙̄ϕ

d ln k

∣

∣

∣

∣

k∗

=
d lnH

d ln k

∣

∣

∣

∣

k∗

d ln ˙̄ϕ

d lnH

∣

∣

∣

∣

H∗

=

(

Ḣ∗

H2
∗

)

×
(

H∗ ¨̄ϕ∗

Ḣ∗ ˙̄ϕ∗

)

=
¨̄ϕ∗

H∗ ˙̄ϕ∗

. (166)

The final result is then

ns − 1 = 4
Ḣ∗

H2
∗

− 2
¨̄ϕ∗

H∗ ˙̄ϕ∗

, (167)

and like for the tensor tilt, we can express it in function of potential derivatives, using mainly the slow-roll
relation ˙̄ϕ = −(∂V/∂ϕ)/3H and its time-derivative

¨̄ϕ = − (∂2V/∂ϕ2) ˙̄ϕ

3H
+

(∂V/∂ϕ)Ḣ

3H2
. (168)

Then, we obtain

ns − 1 = 6
Ḣ∗

H2
∗

+
2(∂2V/∂ϕ2)∗

3H2
∗

= 6
Ḣ∗

H2
∗

+
2(∂2V/∂ϕ2)∗

8πGV∗
= −6ǫ∗ + 2η∗ . (169)

Alternative slow-roll expansions. We presented the lowest-order results for ns and nt in a slow-roll
expansion based on V (ϕ) [Eqs (163), (169)]. Another popular expansion scheme nowadays is that in
Hubble Slow-Roll (HSR) parameters defined as

ǫ0 ≡ H(Ni)

H(N)
, ǫn ≡ d ln ǫn−1

dN
, (170)

where Ni is the e-fold number, e.g., at the beginning of inflation (anyway, the normalization of ǫ0 is
unimportant). In this scheme, the first slow-roll parameter reads

ǫ1 = −d lnH

dN
= −d lnH

d ln a
= − Ḣ

H2
= ǫ . (171)

However, the second slow-roll parameter differs from η, since a short computation gives

ǫ2 =
d ln ǫ1
dN

=
1

4πG

[

(

∂V/∂ϕ

V

)2

− ∂2V/∂ϕ2

V

]

= −2η + 4ǫ . (172)

Many authors use these parameters, writing sometimes (ǫ1, ǫ2) as (ǫ, η). The scalar tilt as a function of
HSR parameters reads

ns = 1 − 2ǫ1∗ − ǫ2∗ . (173)

In this course, we will not present results at the next order in slow-roll, and refer to the specialized
literature for finding e.g. the expression of tilt running.

2.8 Computing Broken Scale Invariance spectra with analytical/numerical
methods

For all single-field models such that slow-roll conditions are well-satisfied during the “observable e-folds”,
i.e. when observable modes cross the Hubble radius, the previous computation is sufficient for accurately
describing the power spectrum and comparing with observations. Note that in many models, the slow-roll
parameters increase with time (we will see this in subsection 3.4, when studying particular forms for the
potential). Then, the fact that slow-roll parameters should still be smaller than one just before inflation
ends usually guarantees that during the observable e-folds, the first-order slow-roll results provide an
excellent approximation of the spectrum.

However, it is not impossible to build models in which the slow-roll conditions are only marginally
satisfied during the observable e-folds. This can happen for instance:
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1. in some models of hybrid inflation (defined in subsection 3.4) where at least one of the parameters
ǫ or |η| decreases with time, and the beginning of inflation is close to N∗. Then, the slow-roll
parameters could be close to order one at N = N∗.

2. in mode complicated models such that during observable e-folds, for ϕ close to ϕ∗, the potential
contains a sharp feature (this could be an effective description of a physical phenomenon triggered
by some other fields, e.g. a phase transition).

In the first case, it is generally sufficient to extend the slow-roll computations to second order, and to
find an expression for the running of the tilts. The running can be detectable if it is large enough and
if we have some precise observations on a wide range of scales. This next-order approach can still fail
to describe the power spectra when they inherit a particular shape at a given scale scale from a sharp
feature in the effective potential. Then, the spectrum is said to be Broken Scale Invariant (BSI). In these
models, the slow-roll conditions are almost violated, or even completely violated during a short time.
The stronger is the slow-roll violation, the larger is the feature in the power spectrum (spike, well, break,
oscillation, etc.). These situations have been widely studied in the past, but they receive a decreasing
interest since precise cosmological observations, which are compatible with a smooth spectrum, leave less
and less room for such features.

Some BSI spectra can be computed analytically, using various possible approximations e.g. for the
equation of evolution (125), which experiences different regimes (usually, a first slow-roll stage, a transition
and a second slow-roll stage). In any case, it is always quite easy to compute the inflationary power
spectrum numerically. This method is the only possible one for the most complicated BSI models. It is
also the best way to control the level of precision of the analytic slow-roll predictions. Numerical codes
designed for computing the inflationary power spectra usually obey to the following scheme:

1. First, the background equations are integrated as a function of time for a given potential and a set
of initial conditions ϕ̄(ti), ˙̄ϕ(ti). The results for a(t), H(t), ϕ̄(t) and ˙̄ϕ(t) are kept in memory.

2. Then, one performs a loop over each independent observable Fourier mode. For each mode, one
integrates the equation of evolution of scalar perturbations: either the master equation (125) for
ξk, or equation (119) for φk, or the coupled equations (117, 118) for (δϕk, φk). The computation
should start when k ≫ aH (typically, k = 50 aH gives very precise results) so that the initial mode
function can be approximated by the flat space-time solution, up to an arbitrary initial phase. If
this phase is chosen in such way that δϕk is real, the initial conditions read

δϕk ≃ 1

a
√

2k
, δϕ̇k ≃ −ik

a
δϕk , (174)

φk ≃ i
4πG ˙̄ϕ√

2k3
, φ̇k ≃ −ik

a
φk , (175)

ξk ≃ 1√
2k

, ξ̇k ≃ −ik
a
ξk . (176)

The computation can be stopped as soon as the solution for φk is proportional to Ḣ/H2. Then,
the coefficient C1(k) of Eq. (133) is found from

C1(k) = −φk(t)
H(t)2

Ḣ(t)
(177)

and the power spectrum of φk e.g. during matter domination is given by Eqs. (140,141)

PMD
φ = k3

(

3

5

)2

|C1(k)|2, (178)

while the super-horizon curvature perturbation spectrum at any time is given by

PR = k3|C1(k)|2 . (179)

Usually, it is sufficient to stop the integration at k = aH/50 for computing C1(k). The rigorous
way to stop the calculation is to plot the quantity φkH

2/Ḣ as a function of time and to wait until
its time-derivative falls below some threshold.
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3. in a similar loop over k values, one integrates the equation for yk, starting from the initial condition

yk =
1√
2k

, ẏk ≃ −ik
a
yk . (180)

The computation can be stopped when the ratio yk/a is approximately constant. Then, the ratio
C̃1(k) ≡

√
32πG (yk/a) provides the tensor spectrum, since

Ph = k3|C̃1(k)|2 . (181)

3 Current constraints from observations

3.1 Relating the primordial spectra to CMB and LSS observables

If we want to understand CMB anisotropy and large scale structure formation, we need to follow the
evolution of the Fourier modes of matter perturbations δm ≡ δρm/ρ̄m and radiation perturbations δr ≡
δρr/ρ̄r. Initial conditions for these quantities can be defined at some time deep inside the radiation era
(ρ̄m ≪ ρ̄r), on super-Hubble scales k ≪ aH (i.e., before the causal evolution due to gravitational and
electromagnetic forces can start), and after the various phase transitions leading to a universe composed
of ordinary photons, neutrinos, baryons and cold dark matter particles. For simplicity, let us neglect the
role of neutrinos and do as if all the radiation was in the form of photons. Then, in the longitudinal
(Newtonian) gauge, the linearized Einstein equations relate the metric perturbation φ to the density
perturbation of the dominant component, which is radiation:

δr = −2φRD = −4

3
R = constant . (182)

This provides an initial condition for radiation perturbations. What about matter perturbations? The
answer actually depends on the scenario for producing matter particles in the early universe. However,
there is a very generic class of scenarios such that all particles produced during reheating –or during
subsequent phase transitions– share the same local number density contrast:

∀(i, j),
δni

n̄i
(~x) =

δnj

n̄j
(~x) . (183)

In particular, this is always the case in cosmological scenarios where primordial perturbations are gener-
ated during single-field inflation. Indeed, in this case, all species are produced (possibly through many
intermediate steps) from the decay of a unique particle, the inflaton. So, the local value of the inflaton
density contrast at the end of inflation is the only relevant function of space allowing to compute the
density contrast at later times: on super-horizon scales, no mechanism can introduce a shift between
δn/n̄ for one species and δn/n̄ for another species. This would not be true in multiple inflation scenarios,
possibly leading to entropy perturbations. Standard initial conditions, described by the condition of Eq.
(183), are called isentropic or adiabatic conditions. The word adiabatic is justified in this context by the
fact that Eq. (183) also guarantees that the total pressure perturbation as a function of space, p(~x), is
proportional to the total density perturbation ρ(~x), as in any adiabatic fluid.

Focusing on two types of particles, that we call generically matter and radiation, we observe that the
relation

δnr

n̄r
(~x) =

δnm

n̄m
(~x) (184)

can be translated in terms of density contrasts using the dilution laws ρm ∝ a−3 ∝ nm for non-relativistic
matter, and ρm ∝ a−4 ∝ nm

4/3 for ultra-relativistic species. After differentiation and use of Eq. (184),
we get

δm =
3

4
δr . (185)

Together with Eq. (182), this equation provide initial conditions for matter and radiation perturbations,
namely

δm =
3

4
δr = −3

2
φRD = −R = constant . (186)

In addition, we have seen in subsection 2.6 that R is frozen on super-Hubble scale, so the power spectrum
of δm during radiation domination and on super-Hubble scales cab be readily deduced from the that of
metric or curvature perturbations at the end of inflation, computed in subsection 2.6.
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Matter perturbations. Matter perturbations δm which enter inside the Hubble radius during radiation
domination start to evolve with time. During RD, baryons are strongly coupled with photons and
undergo acoustic oscillations. Meanwhile, the CDM particles undergo a complicated evolution which can
be summarized as small oscillations (driven by the metric perturbation) on top of an average logarithmic
growth (corresponding to gravitational clustering). After photon decoupling, CDM perturbations grow
like δm ∝ a, and the perturbations of decoupled baryons converge towards the CDM ones. Matter
perturbations which enter during matter domination grow like the scale factor, both for baryons and
CDM, which are then indistinguishable. In summary, total matter perturbations always grow with time
because of gravitational clustering, and the modes entering earlier are those experiencing more growth.
However, the growth is less efficient for modes entering during radiation domination. Following Eq. (186)
the matter power spectrum

P (k) ≡ 〈|δm k|2〉 (187)

is initially equal to
P (k) = 〈|R|2〉 = k−3PR(k) . (188)

So, for ns ≃ 1, P (k) has a logarithmic slope close to -3. As a consequence of the previous described
evolution, the slope changes from -3 to +1 for modes entering during inside the Hubble radius during
matter domination. For smaller modes, the logarithmic slope is reduced because of the slow perturbation
growth during radiation domination. The slope is actually negative and very much scale-dependent (i.e.,
this branch of the spectrum is not a power-law).

As long as the evolution inside the Hubble radius is linear, it can be summarized in terms of a transfer
function T (k),

δm k(t0) = T (k) δm k(ti) , (189)

where t0 is the time today and ti is chosen during radiation domination when k ≪ aH . The transfer
function can easily be shown to be proportional to k2 on the largest scales observable today,

T (k) ∝ k2 for kmax ≪ k ≪ knr , (190)

where kmax is the scale entering the Hubble radius today, and knr the one entering the Hubble radius
at the time of equality between radiation and matter. The linear matter power spectrum today can be
written as

P (k) =
T (k)2

k3
PR(k) . (191)

In conclusion, the matter power spectrum which can be reconstructed from the observation of large scale
structures (galaxies, clusters, fluctuations of the intergalactic medium, etc.) is directly proportional to
the inflationary scalar power spectrum, with potentially a clear imprint of the scalar tilt or any other
other feature generated by the inflationary dynamics.

CMB perturbations. Still neglecting neutrinos and discarding the (small) evolution of photon pertur-
bation after decoupling, we can consider that observable CMB temperature anisotropies as related to the
density perturbations δr(tdec, rlssn̂) at the time of decoupling tdec, in direction n̂ and on the last scatter-
ing surface (a sphere of comobile radius rlss). The map of temperature perturbations can be expanded
in spherical harmonics,

δT

T̄
(n̂) = aT

lmYlm(n̂) . (192)

If the perturbations δr(tdec) are Gaussian, so are the multipoles alm. Their properties are therefore
encoded in the power spectrum

CT
l ≡ 〈|alm|2〉 (193)

which are related in first approximation to the Fourier power spectrum of δr k(tdec) convolved with Bessel
functions. The evolution of δr k(t) between some initial time ti and t is linear, so it can be parametrized
by a transfer function. Actually, tensor perturbation also contribute to temperature anisotropies, and
one can also define a transfer function relating initial perturbations hij to temperature fluctuations at
decoupling. In total, the multipole power spectrum CT

l can be decomposed in

CT
l =

∫

dk

k

(

PR(k)
∣

∣

∣
∆

(S)
l (k, tdec)

∣

∣

∣

2

+ Ph(k)
∣

∣

∣
∆

(T )
l (k, tdec)

∣

∣

∣

2
)

(194)
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Figure 2: The four independent power spectra of primary CMB anisotropies for temperature (TT), E-
polarization (EE), B-polarization (BB) and temperature×E-polarization cross-correlation. These curves
are theoretical predictions for a standard cosmological model (with no reionization and no cosmological
constant) obtained by Kamionkowski and Kosowsky in Phys.Rev.D57:685,1998 [astro-ph/9705219]. In
each panel, the dotted line shows the contribution of primordial scalar perturbations, and the solid line
that of primordial tensor perturbations (gravitational waves from inflation). In the BB case there is no
scalar contribution, but in the corresponding plot the authors show the impact of reionization (dashed
curve).

where |∆(S,T )
l |2 are the dimensionless transfer functions expanded in multipole space for respectively

scalar and tensor modes. Observationally, the spectrum CT
l is determined by mapping temperature

anisotropies, expanding in spherical harmonics and averaging over m,

Cobs
l =

∑

m |alm|2
m

. (195)

Cosmological parameters can be determined by fitting the theoretical power spectrum of Eq. (194) to
Cobs

l .
All what we said for temperature anisotropies also applies for polarization anisotropies. Since the

polarization map consists in a two-dimensional vector field, it can be decomposed in two scalar functions:
a curl-free component E(n̂) and a divergence-free component B(n̂). The E mode is seeded both by scalar
and tensor anisotropies, while the B-mode can only be generated by tensor anisotropies (this statement
is true at the level of primary anisotropies, i.e. neglecting the additional distortion caused by foregrounds
between the last scattering surface and ourselves). In total, four power spectra can be measured: the
temperature and E-mode power spectra (CT

l , CE
l ) related to PR and Ph; the B-mode power spectrum

CB
l related to Ph only; and the cross-correlation power spectrum between temperature and E-modes, CC

l ,
related to PR and Ph. Other cross-correlation spectra can be shown to vanish by construction. Figure 2
shows some typical theoretical predictions for each of these spectra.
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3.2 Overall agreement between observations and inflationary predictions

Before presenting the results of a detailed data fitting, we should mention that the overall agreement be-
tween the observed CMB anisotropy and the predictions of perturbation theory in inflationary cosmology
is absolutely remarkable. Inflation makes various non-trivial predictions (which are not true for a variety
of alternative models), each of which is verified by the observations of the last decade. Let us mention
four confirmed predictions which can be seen as indirect evidences for inflation.

3.2.1 Gaussianity

The fact that standard inflationary cosmology predicts Gaussian CMB anisotropies comes from the fact:

• that each Fourier mode starts in a quantum fundamental state with a Gaussian wave function.
So, the probability distribution P = |Ψ|2 (that we interpret as a classical probability after Hubble
crossing) is also Gaussian.

• that the equations of evolution between inflation and photon decoupling are linear, so that the
shape of the probability distribution is conserved (a probability distribution P(y) transported by
linear equations can only change according to the rescaling of the y variable; in cosmology, the
evolution of linear cosmological perturbations affects the mode variance, but the probability remain
Gaussian).

Until the mid-1990’s, it was difficult to discriminate between the main two paradigms for generating
cosmological perturbations: inflation and topological defects. The latter mechanism is strongly non-
linear, leading to significantly non-Gaussian perturbations. The first observation of CMB anisotropies
by COBE (1990-1994) probed large angular scales, i.e. CT

l on small multipoles (l ≤ 20). It was then
established that on these scales the perturbations do not exhibit strong deviations from Gaussianity,
a conclusion favorable to inflation. With the most recent CMB observations, constraints on possible
deviations from Gaussianity are very stringent.

The observation of Gaussian perturbations are an indirect evidence in favor of the most simplest
inflationary scenarios (those described in this course). In order to produce large non-Gaussianities,
inflationary scenarios should:

• either start from a non-vacuum initial state. This could be justified by non-minimal scenarios
with e.g. two inflationary stages: a first one would excite the quantum states, and a second one
would produce observable cosmological perturbations starting from non-Gaussian wave functions.
However, in these scenarios, the Fourier modes remain independent from each other and the central
limit theorem applies. The observable alm is given by a sum over independent Fourier modes, and
this sum tends to render each alm nearly Gaussian.

• or force the metric and/or inflaton perturbations to be marginally non-linear at some stage, during
which different Fourier modes couple with each other and significant non-Gaussianity can emerge.

In conclusion, the observation of nearly Gaussian CMB anisotropies is in agreement with the most
simple and natural inflationary scenarios, and disfavors various inflationary or non-inflationary alterna-
tives.

3.2.2 Scale-invariance

The approximate scale-invariance of the primordial power spectrum (for scalar and tensor perturbations)
is a distinct prediction of inflation. The observation of temperature anisotropies on large angular scales by
COBE brought evidence in favor of nearly scale-invariant primordial perturbations in the range 2 ≤ l ≤ 20.
The following generations of CMB observations (completed with the reconstruction of the matter power
spectrum from the observation of LSS) now confirm the scale invariance of the primordial scalar spectrum
with an impressive precision. As we shall mention here, the prediction of scale invariance by inflation is
really non-trivial, and some alternatives to inflation prefer a completely different scaling law.

It is instructive to trace back the origin of the factors k contributing to the final prediction φk ∼ k−3/2

at the end of inflation. Some factors come from the initial condition for the mode function, i.e. from the
quantum commutation relation; other factors are related to the later evolution. Suppose, for instance,
that we focus on the variable δϕk, for which the discussion is more illuminating than for ξk. The initial
mode function for δϕk reads

δϕk =
1√
2k a

e−i
∫

k
a

dt (196)
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so that a factor k−1/2 is present from the beginning. The amplitude then evolves quickly with time, like
a−1. However, it freezes out near the characteristic time of horizon crossing, when k ∼ a∗H∗. So, later
on, the amplitude remains close to (

√
2k a∗)

−1 ∼ H∗/
√

2k3. Outside the Hubble radius, the relationship
between δϕk and φk reduces toHφk ≃ 4πG ˙̄ϕ δϕk and does not involve any power of k. So, the factor k−3/2

is inherited by the metric perturbation φk. In order to reach this result, it was particularly important to
assume that the inflaton field is light during inflation (if we quantize a heavy scalar field with an effective
mass m > H , the mode function inside the Hubble radius will not contain the desired factor k−1/2), and
also that the inflaton field dominates the total energy density of the universe so that inflaton fluctuations
are directly imprinted into metric fluctuations. Alternative scenarios to inflation like the Pre Big Bang
or the Ekpyrotic paradigms usually have difficulties in predicting nearly scale-invariant perturbations,
because some of the above requirements are not satisfied.

3.2.3 Adiabaticity

We have seen in subsection 3.1 that after single-field inflation, the number density contrasts of all species
are related to a unique function: the inflaton density fluctuation at the end of inflation. This ensures
that for any two species (i, j),

δni

n̄i
(~x) =

δnj

n̄j
(~x) . (197)

This adiabatic initial condition plays a very important role in the study of cosmological perturbations. If
there exists at least one component for which δni

n̄i
differs from the others, the universe contains entropy

fluctuations (also called isocurvature modes) in addition to (or in replacement of) adiabatic fluctuations.
This will change the temporal phase of photon-baryon acoustic oscillations before decoupling, as well
as the k-dependence of the transfer functions for radiation and matter. The CMB peaks will appear at
different angular scales (different multipoles l), and the hierarchy between the amplitude of the CMB
peaks will change, as well as the slope of the matter power spectrum P (k).

The most robust proof in favor of a plain adiabatic scenario came with the observation of the first
CMB peaks (a detection of at least two peaks was performed by the Boomerang balloon in 2000). Today,
bounds on entropy fluctuations are quite constraining.

The reason for which single-field inflation leads to adiabatic fluctuations is that all initial fluctuations
are summarized by a single function; everything happens as if all points in comobile space where expe-
riencing exactly the same post-inflationary cosmological evolution, excepted for an initial time shift due
to the inflaton perturbations at the end of inflation. In multiple inflationary models, when the quantum
fluctuations of more than one field play a role, one can have significant entropy fluctuations surviving after
inflation; alternatives to inflation like Pre Big Bang models or topological defects also lead to isocurvature
perturbations. So, once again, the observation of adiabatic fluctuations is in remarkable agreement with
the predictions of the most simple inflationary scenario.

3.2.4 Coherence

The fact the we see acoustic peaks in the spectrum of CMB temperature and polarization anisotropies
is also far from obvious. Before photon decoupling, we know that the baryon-photon fluid has all the
required characteristic for the propagation of acoustic waves. However, these waves will be present only
if the fluid is displaced from equilibrium at some time. Depending on the initial conditions, oscillations
could take place in phase (like for stationary waves) or with random phases.

Among all possible initial conditions, one usually makes a distinction between active and passive

mechanisms. Active mechanisms are such that at some very early time, the system is displaced from
equilibrium, and then it evolves freely. The Einstein equation have no source term, and the evolution is
similar to that of a free harmonic oscillator. The crucial point is that for a given wavelength, all modes
enter inside the Hubble radius at the same time, when k = aH . It is this time which sets the initial
condition for the phase: all perturbations with given wavenumber will evolve with different amplitudes
(since they are stochastic) but with a common phase, passing through extrema at the same time. At
decoupling, the oscillation are frozen, and because of the phase coherence the structure of the peaks
appears in Fourier space, and therefore also in multipole space.

In passive mechanisms, the acoustic oscillation are displaced from equilibrium by some mechanism
injecting stress at all times. The Einstein equation do have a source term, representing for instance
topological defects. In the vicinity of a defect, strong gravitational interactions create an initial stress
which then propagates away from the defect. These perturbations are easier to imagine in real space rather
than in Fourier space. Interactions with topological defects happen at different times and locations, so
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Figure 3: WMAP 3rd year results for the temperature power spectrum (black), E-polarization (green),
B-polarization (blue), TE cross-correlation (red). In each case, the data is represented by dots and
error-bars. For temperature, the error-bars are so small that they are invisible. For B-polarization
the data consists in a single upper bound (blue arrow). The lines correspond to the prediction
of the favored ΛCDM model. These results are taken from the WMAP mission’s result webpage
http://map.gsfc.nasa.gov/m mm.html.

that Fourier modes with a common wavenumber have a priori random phases. At decoupling, for each
wavenumber, the average over all phases results in a smooth spectrum: acoustic oscillations are averaged
out.

The observation of acoustic peaks in the CMB excludes scenarios where topological defects are the
main seed for cosmological perturbations. This is not a direct proof of inflation, but at least a strong
indication that cosmological perturbations are generated very early, when modes are far outside the
Hubble radius.

In total, the four predictions of inflation reviewed in this chapter are all compatible with observations.
Together with the motivations presented in the introduction, they represent a variety of complementary,
indirect proofs for inflation, in the sense that nobody could build so far a different mechanism explaining
simultaneously all these features. It is particularly impressive that all observations converge towards
the most simple implementation of the inflationary paradigm, rather than towards some particular, non-
minimal realization.

3.3 Recent constraints on slow-roll parameters

Let us report the most recent constraints on inflation, based on three years of observation by the WMAP
satellite (accurate measurements of CT

l until l ∼ 1000, and more preliminary measurements of CE
l and

CC
l , see Figure 3), completed by various LSS observations.

First, there is no evidence at the moment in favor of a non-zero contribution of tensor perturbations
to temperature and/or polarization anisotropies. The power spectra are well-fitted with a purely scalar
contribution, with an amplitude (computed near the scale k = 0.05 Mpc−1, with an uncertainty of order
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Figure 4: The (ns, r) “phase-space diagram” of inflationary models. Red contours show the 1-σ and 2-σ
preferred region in ns, r) space, as obtained by Peiris and Easther (Figure 4 in astro-ph/0603587) using
only WMAP 3-year data. Black contours add some information from the SDSS galaxy power spectrum.
We superimpose the regions associated with the particular potentials described in section 3.4. According
to the terminology of this course (different from that of other authors like Kinney and collaborators),
inflationary models are divided into concave/convex and small/large field models in the following way:
the green line separates concave and convex potentials; small field models are confined near the r = 0
axis; and the rest of parameter space corresponds to large field models. Hybrid inflation models can stand
anywhere in this parameter space. Monomial potentials correspond to the blue segments. New inflation
potentials stand in the lower left sector. Hybrid inflation with a logarithmic loop correction correspond
to the orange band.

10%),

PMD
φ ≡ k3〈|φMD

k≪aH |2〉 =
3

50
(8πG)3

V 3
∗

V ′2
∗

=
3

100
(8πG)2

V∗
ǫ∗

≃ 2.10−8 ⇒ m−6
P

V 3
∗

V ′2
∗

≃ 2.10−11 (198)

(we defined the Planck mass as G ≡ m−2
P ). The 95% confidence limit on the tensor-to-curvature ratio

r = 16ǫ∗ is found to be
r < 0.55 (199)

which can be combined with the previous constraint in order to get an upper bound on the inflationary
energy scale,

V∗ =
100

3 (8π)216
rPMD

φ m4
P <

(

2.5 × 10−3mP

)4
=
(

3.7 × 1016GeV
)4

. (200)

The scalar primordial spectrum is compatible with a power-law (no evidence for tilt running) with a
scalar tilt ns = 0.98 ± 0.02 (Peiris & Easther astro-ph/0603587). There is some parameter degeneracy
between ns and r, so that constraints on inflationary models are best seen in two-dimensional (ns, r)
likelihood plots.
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3.4 Implications for various types of inflaton potentials

3.4.1 Practical method for constraining potentials

The study of a generic inflationary potential can be carried along the following steps:

1. compute the slow-roll parameters ǫ(ϕ), η(ϕ) defined in Eq. (61).

2. solve the integral of Eq. (64) which provides the relation N(ϕ), where N is the number of e-folds
before the end of inflation. Re-express the slow-roll parameters as functions of N : ǫ(N), η(N).

3. let us call N∗ the number of e-folds between horizon crossing for observables scales and the end
of inflation. For the allowed range 30 < N∗ < 60 (see subsection 1.3), compute at first order in
slow-roll the tensor-to-scalar ratio r = 16ǫ∗ [Eq. (148)] and the scalar tilt ns = 1 − 6ǫ∗ + 2η∗ [Eq.
(169)].

4. check the implications of observational constrains in the (r, ns) plane.

5. check the constraint of Eq. (198) on the scalar spectrum amplitude.

3.4.2 Monomial potentials

We first consider monomial potentials of the form

V = λm4
P

(

ϕ

mP

)α

. (201)

For α = 2 one recovers a usual quadratic potential with mass m =
√

2λmP .

Exercise 1: show that

ǫ =
α

2(α− 1)
η =

1

16π

(

αmP

ϕ

)2

. (202)

Deduce that

ns − 1 = −2ǫ

(

α+ 2

α

)

(203)

and that a model with given value of α stands along the following line in the (r, ns) plane:

r = − 8α

α+ 2
(ns − 1) . (204)

Exercise 2: assuming that ǫ = 1 is the condition for ending inflation, show that the corresponding field
value is ϕend = αmP /

√
16π. Integrate dN between ϕ∗ and ϕend and show that the integral is dominated

by the ϕ∗ boundary (at least for α≪ 4N∗). Conclude that irrespectively of the details of inflation ending,

ϕ∗ =

√

αN∗

4π
mP . (205)

Exercise 3: deduce that r = 4α/N∗ and ns − 1 = −(α+ 2)/(2N∗). Conclude that for a given N∗ and any
α, monomial inflationary models stand along the line

r = −8(ns − 1) − 8

N∗
. (206)

Summarize the result in the (r, ns) phase-space diagram.

The results are displayed in Fig. 4. In (r, ns) space, monomial inflationary models stand in a narrow
band delimited by the curves r = −8(ns−1)−0.26 [for N∗ = 30] and r = −8(ns−1)−0.13 [for N∗ = 60].
Inside this band, models with a given value of α are along the line r = −8[α/(α+2)](ns−1). It turns out
from Fig. 4 that the case α = 2 is comfortably allowed, while α = 4 raises some tension with observations
and α ≥ 6 seems to be excluded.
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Exercise 4: show that

m−6
P

V 3
∗

V ′2
∗

=
λ

α2

(

N∗α

4π

)α/2+1

≃ 2.10−11 , (207)

implying

λ ≃ 7.10−14α2

(

4π

N∗α

)α/2+1

. (208)

Conclude that for α = 2, the mass must be tuned to m ∼ 5.10−8mP ; for α = 4, the self-coupling should
be λ ∼ 2.10−16; and for larger values of α, the tuning should be more severe, with λ → 0 in the limit
α→ ∞.

Inflationary models with a monomial potential are often called chaotic inflationary models, for his-
torical reasons: it is for this family of potentials that Linde discussed in 1983 the issue of chaotic initial

conditions. At that time, some people objected that the universe would emerge from the quantum
gravity period with field values necessarily smaller than the Planck mass, so that monomial inflation
can never take place (Eq. (205) can never be fulfilled). Linde emphasized that, following the Heisenberg
uncertainty principle, the universe is expected to emerge from the quantum gravity era with stochastic
initial conditions such that the energy densities (and not the field itself) should have typically Planckian
values: 〈E〉 ∼ m4

P . Decomposing into potential, kinetic and gradient energy density, this gives

〈V 〉 ∼ 〈ϕ̇2〉 ∼ 〈(~∇ϕ)2〉 ∼ m4
P . (209)

With the potential of Eq. (201) and λ ≪ 1, the condition 〈V 〉 ∼ m4
P implies 〈ϕ〉 > mP . Statistically,

there should exist some patches in which the potential energy V slightly dominates over the kinetic and
gradient terms. In any such region, the slow-roll conditions are satisfied and inflation can take place.

3.4.3 New inflation

Instead of assuming that the field rolls down in a potential well, we will now assume that it rolls away
from an unstable point of equilibrium. In the vicinity of this point, we can Taylor-expand the potential
and keep the leading term

V = V0

[

1 −
(

ϕ

µ

)α

+ next order terms

]

(210)

where ϕ < µ, and the Taylor approximation is expected to break down for some value of order of µ. This
kind of potential will appear, for instance, in the case of a spontaneous symmetry breaking in the early
universe. In principle there could be two cases. First, if µ is much smaller than the Planck mass, we have

ϕ < µ≪ mP (SFM) (211)

throughout inflation. We will call such models Small Field models (SFM). Alternatively, if µ is of the
same order as (or eventually larger than) the Planck mass, we will call the model a Large Field Model
(LFM). We will see that SFM and LFM have different implications.

New inflation models were proposed by Starobinsky in 1979 and Linde in 1982. A full understanding
of these models requires some knowledge of another paradigm called stochastic inflation, introduced
by Starobinsky in 1986. Here we will only describe the underlying ideas of this paradigm.

We have seen that usually, the field can be decomposed into a homogeneous background ϕ̄ obeying
to the homogeneous Klein-Gordon equation, plus small perturbations which mode functions obey to
the linearized Klein-Gordon equation. If we take the case of a field placed initially in an unstable
equilibrium point, we see immediately that this description cannot be the good one. Indeed, in the
unstable equilibrium point, ∂V/∂ϕ = 0. The homogeneous Klein-Gordon equation tells us that ϕ̄ will
remain in this point forever. On the other hand, the linear perturbation equation has a mass term
[(k/a)2 + ∂2V/∂ϕ2] which is negative for k2 ≤ −a2(∂2V/∂ϕ2). If we want inflation to occur, we should
assume that |∂2V/∂ϕ2| ≤ H2 (this is the second slow-roll condition). So, the modes with a negative
effective squared mass are all super-Hubble modes with k < aH. For these modes, the negative squared
mass term causes a tachyonic instability: they are exponentially amplified. Modes inside the Hubble
radius will feel the large super-Hubble modes as an “effective zero-mode” or effective background which
is exponentially amplified with time. We see that the usual splitting into ϕ̄ and δϕk variables cannot
describe properly the physical evolution of this model: we must pass to a more complicated description
in which the “background” is the sum of a classical zero-mode, plus the assembly of all super-Hubble
modes, which contribute as a stochastic component. This is exactly the goal of stochastic inflation. The
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evolution of the effective background is not given anymore by the homogeneous Klein-Gordon equation,
but by some equations usually employed in statistical mechanics, like the Fokker-Planck equation.

The fact that perturbations evolve in a stochastic background composed of a classical zero-mode plus
the assembly of all super-Hubble modes is in principle always true. However, in most cases this can
be safely neglected in first approximation, because the modes which exit the Hubble radius during the
relevant inflationary e-folds contribute to the total effective zero-mode in a negligible way. The dominant
part of the background, i.e. the classical zero-mode plus the assembly of all modes already beyond the
Hubble radius at the beginning of the observable e-folds, obey exactly to the homogeneous Klein-Gordon
equation. Therefore, the usual description applies.

At the beginning of new inflation, assuming that we start exactly from ϕ̄, the zero-mode is initially
sub-dominant and the effective background will consist entirely in large wavelength undergoing tachyonic
amplification. It is possible to compute the evolution of each super-Hubble mode, to perform a statistical
average and to derive the evolution of the effective zero-mode. After a short period, one can prove that
the time evolution of the effective zero-mode gets closer and closer to that of a true zero-mode: i.e.,
the effective zero-mode starts to obey to the homogeneous Klein-Gordon equation. At that time we can
forget about the complicated mechanism of “effective zero-mode assembly”, and do as if we had a usual
splitting into two decoupled sectors: the classical background and the small perturbations. Therefore,
in this model, the machinery of stochastic inflation is relevant during the first few e-folds only. If the
“observable e-folds” take place later, we can use the usual formalism, starting from some initial value
ϕ̄i 6= 0.

In principle, it is possible to build more complicated models in which the stochastic inflation mecha-
nism plays a more important role than just setting the initial conditions.

After this digression on the beginning of new inflation, we come back to the systematic study of the
potential and its observational consequences.

Exercise 1: show that

ǫ =
α2

16π

(

mP

ϕ

)2

f

[(

ϕ

µ

)α]2

, (212)

η = −α(α− 1)

8π

(

mP

ϕ

)2

f

[(

ϕ

µ

)α]

, (213)

where we defined f(X) ≡ X/(X − 1). Show that for SFM, the fact that slow-roll conditions must be
satisfied during inflation implies that necessarily

f(X) ≃ X ≪ 1 , ϕ≪ µ , 0 < ǫ≪ −η , (214)

while for LFM we can have in principle ϕ of the same order as µ (although it is smaller by assumption)
and the only robust prediction is η < 0. Deduce from this that on a phase diagram, SFM are very close
to the r = 0 axis with ns < 1, while LFM can occupy all the region in which r ≤ − 8

3 (ns − 1).

Exercise 2: show that for α = 2, the assumption that we have a SFM leads to

η = −α(α− 1)

8π

(

mP

µ

)2

≫ 1 . (215)

Conclude that the α = 2 model can only belong to the LFM category.

Exercise 3: for a SFM and α ≥ 4, show that inflation ends when η ∼ −1 and

ϕend ∼
(

8πµα

α(α− 1)m2
P

)
1

α−2

. (216)

Check that at the end of inflation

(

ϕend

µ

)α

∼ 8π

α(α − 1)

(

ϕend

mP

)2

≪ 1 , (217)

consistently with our assumption that in SFM one has ϕ ≪ µ throughout inflation (including the very
last inflationary e-fold). Integrate dN between ϕ∗ and ϕend and show that the integral is dominated by
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the ϕ∗ boundary. Conclude that irrespectively of the details of inflation ending,

ϕ∗ =

(

8πµα

α(α− 2)N∗m2
P

)
1

α−2

, (218)

and deduce that

η∗ = −
(

α− 1

α− 2

)

1

N∗
(219)

and

ns − 1 = − 2

N∗

α− 1

α− 2
. (220)

For α ≥ 4 and 30 < N∗ < 60, check that 0.90 < ns < 0.97 and draw the new inflation SFM region in the
(r, ns) space.

We can see on Fig. 4 that many new inflation model (both SFMs and LFMs) are still allowed by obser-
vations. Actually, the current best-fit model has r ≃ 0, ns ≃ 0.96 or 0.97 (depending on the data set)
and matches exactly the predictions of new inflation SFMs.

3.4.4 Hybrid inflation

Chaotic inflation and new inflation scenarios refer essentially to the way of entering into the inflationary
stage. Instead, hybrid inflation is a generic name for models exiting the inflationary stage in a particular
way: with a phase transition triggered by an auxiliary field, occurring either before or just after the
breaking of slow-roll conditions. This second field doesn’t play any role during inflation, so these models
belong effectively to the category of single-field inflation rather than multiple-field inflation.

Hybrid inflation was first introduced by Lyth, Liddle and Stewart in 1990, and discussed in details
by Linde in 1991. Any potential in which low values of the inflaton lead to a phase transition are good
candidates for hybrid inflation. A typical example is provided by the potential

Vtot(ϕ, χ) = λ(M2 − χ2)2 + V (ϕ) + λ̃ϕ2χ2 (221)

= λM4 + (λ̃ϕ2 − λM2)χ2 + λχ4 + V (ϕ)

where ϕ and χ are two real scalar fields (respectively the inflaton and the trigger field). Let us scrutinize
the sign of the effective mass of χ, which appears explicitly in the second line of Eq. (221). For large
inflaton values, the mass is positive. We assume that initial conditions are such that λ̃ϕ2 > λM2, and
that due to the positive squared mass the χ field quickly rolls down to χ = 0 (the realization of this initial
condition is less trivial than it appears at first sight, but here we won’t go into these details). When
χ = 0, the effective potential for the inflaton reads

Veff (ϕ) = λM4 + V (ϕ) . (222)

If the potential V (ϕ) is flat enough, inflation can eventually take place. There are two possibilities for
ending inflation.

First, the slow-roll conditions can still be satisfied when the inflaton reaches the critical value such
that the effective squared mass of the χ field vanishes (when λ̃ϕ2 = λM2). Below this value, the χ field
leaves the unstable equilibrium point χ = 0 and the system rolls towards one of the absolute minima
(χ, ϕ) = (±M, 0). During the phase transition, the effective mass of χ is of the order of

√
λM . Usually

this mass is larger than H by several orders of magnitude, which implies that the phase transition is very
fast and does not support any accelerated expansion stage: inflation ends exactly when λ̃ϕ2 = λM2, and
the phase transition is often called the “waterfall”. More exceptionally, some authors discuss the case
in which

√
λM is smaller than the Hubble radius: then, the phase transition can add a few e-folds of

inflation (like a second stage of inflaton). We will not discuss this situation here (actually, this case really
belongs to multiple field inflation).

Second, the slow-roll condition can break before the inflaton reaches the critical value. Then, inflation
ends, and it takes a very short time until the critical value is finally reached and the phase transition
takes place.

In our example, there are two degenerate minima (χ, ϕ) = (±M, 0). The field can reach different
minima in different region of the universe, separated by domain walls. In general, the phase transition
at the end of inflation can represent the symmetry breaking of a larger symmetry than just the Z2

symmetry of our example. Depending on this symmetry, the phase transition at the end of hybrid
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inflation can lead to various types of topological defects (e.g. cosmic strings). We will not focus here
on this aspect, but we should mention that it is particularly interesting. Indeed, we have seen that
the cosmological perturbations responsible for CMB anisotropies and for structure formation cannot be
explained with topological defects. However, a small contribution of topological defects on top of the
dominant inflationary perturbations is not excluded (although there are very strict bounds on the relative
contribution). Scenarios in which the amplitude of inflationary and defect-generated perturbations differ
by just one or two orders of magnitude are called mixed perturbation models. Usually, it can be objected
that this possibility is not natural because it would result from some unlikely coincidence. However,
in hybrid inflation scenarios, the parameters governing the density of topological defects at the end of
inflation are the same as those governing the amplitude of the inflationary power spectrum: namely, these
are the coupling constants and the mass scales in the two-field inflationary potential. Therefore, there
are models which predict naturally some mixed perturbation, with a level of e.g. cosmic-string-generated
fluctuations which could be detected in principle in future CMB observations. Such an observation would
be a distinct signature of a certain class of hybrid models.

Generally speaking, a hybrid inflation model is specified by an effective potential of the form

Veff = V0[1 + f(ϕ)] (223)

with f(ϕ) > 0, plus a value for inflation ending ϕend which is such that max[ǫ(ϕend), η(ϕend)] ≤ 1, but
not necessarily max[ǫ(ϕend), η(ϕend)] ∼ 1 like in non-hybrid single-field models. We can classify the entire
family of hybrid models according to the following criteria, resulting in different regions in the (r, ns)
diagram:

1. models can have a convex or concave potential, depending on the sign of ∂2V
∂ϕ2 or ∂2f

∂ϕ2 when observable

scales exit the Hubble radius and ϕ = ϕ∗. Convex models (∂2V/∂ϕ2 ≤ 0) have η∗ < 0 and belong
to the region where ns ≤ 1 and 0 ≤ r ≤ − 8

3 (ns − 1). Concave models (∂2V/∂ϕ2 ≥ 0) occupy the
rest of the (r, Ns) plane.

2. like for new inflation, we can define Small Field Models (SFMs) as models for which ϕ≪ mP holds
throughout inflation (until the very end) and Large Field Models (LFMs) as any other models. This
distinction gives an information on the hierarchy between ǫ and η. Indeed, the slow-roll parameters
read in the general case

ǫ =
m2

P

16π

(

∂f/∂ϕ

1 + f

)2

, (224)

η =
m2

P

8π

(

∂2f/∂ϕ2

1 + f

)

. (225)

Usually, we can assume that ∂f/∂ϕ is of the same order of magnitude as f/ϕ, and that ∂2f/∂ϕ2

is of order f/ϕ2. In particular, this is true as long as the “observable” inflationary potential can
be approximated by a Taylor series truncated at a reasonable order. Then, the order of magnitude
of the slow-roll parameters is given by

ǫ ∼ 1

16π

(

mP

ϕ

)2(
f

1 + f

)2

, (226)

η ∼ 1

8π

(

mP

ϕ

)2
f

1 + f
. (227)

For any small field model, the ratio mP /ϕ is large: so, inflation can take place only if f ≪ 1, which
in turns imply ǫ ∼ f |η| ≪ |η|. We conclude that r = 16ǫ∗ is much smaller than |ns − 1| ≃ 2η∗, and
that in the (r, ns) diagram SFMs are very close to the r = 0 axis. Instead, LFMs can have f(ϕ∗)
smaller or larger than one and ǫ smaller or larger than η: they can stand anywhere in the (r, ns)
plane.

Note that the previously studied “new inflation models” (respectively SFMs and LFMs) occupy the
same region as the “convex hybrid models”. This is not a surprise since the distinction between the two
comes only from the overall sign of the function f , and in the above classification we made no assumption
on this sign. Note also that the “monomial potential models” are included in the region of “concave
hybrid LFMs”. Again this is very reasonable since these models do have a concave potential, large field
values, and can be seen as a limit of hybrid models with f(ϕ) = (λm4

P /V0)(ϕ/MP )α for V0 → 0.
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The class of hybrid models is so large that we cannot present a systematic study of all potentials.
However, we will focus on three cases that will play a particular role in the section 4 (connection with
high-energy physics).

Hybrid inflation with small quadratic term.

We will first study the potential

Veff (ϕ) = V0 +
m2

2
ϕ2 (228)

which is concave, and can fall in the SFM or LFM category depending on parameter values. Here, let us

focus only on the case where, by assumption, m2

2 ϕ
2 ≪ V0 throughout inflation (the opposite case is close

to that of a monomial quadratic potential).

Exercise 1: show that the slow-roll parameters read

ǫ =
m2

P

16π

m4ϕ2

V 2
0

, η =
m2

P

8π

m2

V0
, (229)

that the assumption m2

2 ϕ
2 ≪ V0 implies ǫ≪ η, and that the potential parameters must obeym2m2

P ≪ V0.
Show that inflation ends not when slow-roll conditions break, but when the critical value ϕend triggering
the phase transition is reached. Integrate dN between ϕ∗ and ϕend and show that the integral is dominated
neither by the ϕ∗ boundary, neither by the ϕend boundary, but instead that

ϕ∗ = ϕend exp

[

m2
Pm

2N∗

8πV0

]

. (230)

Conclude that since ϕend is arbitrary, ϕ∗ can take a priori any value.

So, in the (r, ns) plane, the category of models that we are studying stands close to the r = 0 axis, with
ns ≥ 1. These models are not the most favored one at the moment, but they are not excluded with high
significance. The preferred case is that with ns ≃ 1, corresponding to the limit in which m2 is smaller
than V0/m

2
P by several orders of magnitude. If in the future the case (r, ns)=(0,1) becomes excluded

with high significance, these models will be ruled out.

Exercise 2: show that the constraint on the scalar power spectrum amplitude reads

V 3
0

m6
Pm

4ϕ2
∗

∼ 2.10−11 . (231)

By combining the above condition and the requirement that η ≪ 1, show that for SFMs we can derive a
bound for the mass, m≪ 4.10−6mP .

We can make a final comment on these models: there exists a branch of solution, called low-energy hybrid
inflation, in which V0 can be arbitrarily small and all the above constraints can still be satisfied. This is
best seen by noticing that the amplitude constraint can be decomposed into

V0

m2ϕ2
∗

V0

m2
Pm

2

V0

m4
P

∼ 2.10−11 . (232)

On the left hand side, we have the product of three ratios. Suppose that we take an arbitrarily small
value of V0, i.e. of the third ratio. By adjusting m, we can keep the second ratio large enough so that η
and (ns − 1) are as small as required by observations. The product of the three factors can be adjusted
to 2.10−11 simply by choosing a small value of ϕend and ϕ∗, corresponding to a large value of the first
ratio. This branch of solution has been used for building inflationary models at very low scales (with
respect to the usual GUT scale) at the expense of very small, fine-tuned values of the mass and of ϕend.

Hybrid inflation with small quartic term.

We now turn to the case

Veff(ϕ) = V0 +
λ

4
ϕ4 (233)
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which is concave, and can fall in the SFM or LFM category depending on parameter values. Here, let us
focus only on the case where, by assumption, λ

4ϕ
4 ≪ V0 throughout inflation (the opposite case is close

to that of a monomial quartic potential).

Exercise 1: show that the slow-roll parameters read

ǫ =
m2

P

16π

(

λϕ3

V0

)2

, η =
m2

P

8π

3λϕ2

V0
, (234)

and that the assumption λ
4ϕ

4 ≪ V0 implies ǫ ≪ η. Show that inflation must end with a waterfall
transition, rather than by breaking the slow-roll conditions, and that we should impose

ϕ2
∗ ≤ 8πV0

3λm2
P

. (235)

Integrate dN between ϕ∗ and ϕend and show that the integral is dominated by the ϕend boundary, so
that N∗ and ϕend are related by

ϕ2
end ≃ 4πV0

m2
PN∗

. (236)

From the requirement that ϕend < ϕ∗, show that we get a weak constraint λ < 4
3N∗.

So, in the (r, ns) plane, the category of models that we are studying stands close to the r = 0 axis, with
ns ≥ 1. These models are not the most favored one at the moment, but they are not excluded with high
significance. The preferred case is that with ns ≃ 1, corresponding to the limit in which the arbitrary
parameter ϕ2

∗ is chosen to be smaller than V0/(λm
2
P ) by several orders of magnitude. If in the future the

case (r, ns)=(0,1) becomes excluded with high significance, these models will be ruled out.

Exercise 2: show that the constraint on the scalar power spectrum amplitude reads

m6
P

V 3
0

(λϕ3
∗)

2
∼ λ
(

8π
3 η∗

)3 ∼ 2.10−11 . (237)

By combining the above condition and the requirement that η∗ ≪ 1, show that we can derive a bound
on the self-coupling constant, λ≪ 10−8.

Here again, there exists a branch of solutions in which V0 can be arbitrarily small.

Hybrid inflation with small logarithmic term.

The potential

Veff(ϕ) = V0

[

1 + λ ln
ϕ

ϕend

]

(238)

with (by assumption) λ ln(ϕ/ϕend) ≪ 1 plays a particular role in models with spontaneously broken
supersymmetry (as we shall see in section 4).

Exercise 1: show that the slow-roll parameters read

ǫ =
λ2

16π

(

mP

ϕ

)2

, η = − λ

8π

(

mP

ϕ

)2

. (239)

Integrate dN between ϕ∗ and ϕend and show that the integral is dominated by the ϕ∗ boundary. Conclude
that irrespectively of the details of inflation ending,

ϕ∗ ≃
√

λN∗

4π
mP (240)

and conclude that

ǫ∗ ≃ λ

4N∗
, η∗ ≃ − 1

2N∗
. (241)
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Exercise 2: show that for SFMs we must assume λ≪ 1, obtaining

ns ≃ 1 − 1

N∗
, r ≪ |ns − 1| . (242)

Conclude that for 30 ≤ N∗ ≤ 60, all SFMs stand in the (r, ns) plane very close to the r = 0 axis with
0.96 ≤ ns ≤ 0.98.

Exercise 3: show that LFMs extrapolate between the above region and an asymptotic region close to the
line r = − 8

3 (ns − 1).

We can see on Fig. 4 that this type of model is still allowed by observations, excepted in the large r
region, which correspond to the large λ limit: actually, observations place an upper bound on λ, of the
order of λ < 1.

Exercise 4: show that the constraint on the scalar power spectrum amplitude gives a relation between
V0 and λ

V0

λ
∼ 8π.10−11

N∗
m4

P , (243)

and conclude that we obtain an upper limit on the energy scale of inflation

V
1/4
0 <

4.10−3

N∗
mP . (244)

4 Connection with high-energy physics

4.1 Fine-tuning issues

Generically, it is difficult to build inflationary models based on a Lagrangian motivated by high-energy
physics, mainly for two reasons:

1. in all the examples studied in the last section, some of the potential parameters (dimensionless
coupling constants, or mass scales in units of the Planck mass) must be fixed to very small values.
The generic reason is the smallness of the scalar spectrum amplitude, associated to the constraint

m−6
P

V 3

[∂V/∂ϕ]2

∣

∣

∣

∣

ϕ∗

≃ 2.10−11 . (245)

Unavoidably, the small number on the right-hand side has to come from small parameters in the
potential. In high-energy physics, the problem with small parameters is that they have to be
justified by some symmetry or some special mechanism, otherwise they appear as the result of
some unrealistic fine-tuning. In addition (and this is related to the next point), naked parameters
often receive some radiative corrections (i.e. need to be renormalized) in such way that plausible
values, related to some renormalization scale, are usually far too large for inflation. Therefore, one
should investigate possible symmetries justifying the small parameters and protecting them from
large radiative corrections.

2. if one writes an inflationary potential assuming that it represents a sector of the ultimate theory
describing Nature, one can in principle choose any potential provided that the theory remains
renormalizable. However, in the real world, we usually assume that the theory governing the
physics at the scale where inflation takes place (i.e., at most the GUT scale, given the limit on the
tensor mode amplitude) is only an effective theory, i.e. a low-energy approximation of some theory
valid at higher energy (like string theory). In this case, one should assume assume that the effective
potential contains a priori all terms in the Taylor expansion

V (ϕ) = V0 +
1

2
m2ϕ2 + λ4ϕ4 +

∑

α≥6

λαm
4
P

(

ϕ

mP

)α

. (246)
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Terms with α ≥ 6 are non-renormalizable by construction but they do appear in the effective theory.
In the above expansion, we can assume that the mass and/or some of the coupling constants are
small –or exactly zero– if and only if this is justified by some symmetry or some argument based
on the high-energy theory. We can then distinguish two cases:

• for Small Field Models (SFMs) with ϕ ≪ mP throughout inflation, the series formed by the
non-renormalizable terms can converge in the large-α limit even if the coupling constant λα are
not particularly small. In that case, the theory can be kept under control, and the potential
can match all inflationary criteria provided that a finite number of parameters are fine-tuned
to small values. This can be eventually justified by some symmetry.

• for Large Field Models (LFMs) with ϕ ≥ mP , the series diverges and the potential is not
appropriate for inflation, unless an infinite number of parameters λα are tuned to very small
values. The model is then completely unrealistic from the point of view of particle physics,
unless a given symmetry has the power to keep all λα couplings vanishingly small.

4.2 Global Supersymmetry models

Supersymmetry is a symmetry between fermions and bosons, introduced in order to solve various problems
in particle physics, like the unification of gauge couplings for the electroweak and strong interactions, and
the size of radiative corrections to the the Higgs mass. However, when imposed as a global symmetry,
supersymmetry does not address the problem of the unification of gravity with other interactions: this is
one of the motivations in favor of the more general theory called supergravity, in which supersymmetry is
realized locally (like a gauge symmetry) rather than globally. In this section, we will assume that global
symmetry is the “ultimate high-energy theory” and explore the consequences for inflation. In the next
sections, we will adopt the more realistic point of view that supersymmetry is only an approximation of
supergravity.

In “global SUperSYmmetry” (SUSY), the scalar potential is not a free function: it must be built in
a very specific way, and can be split in two contributions called the F-term and D-term,

V = VF + VD . (247)

The F-term is related to a function called the superpotential W (Φ1, ...,Φn), which must be a holomorphic
function of order at most three in the complex scalar fields Φi:

W (Φ1, ...,Φn) = µ3 +
∑

i

µ2
i Φi +

∑

i,j

µijΦiΦj +
∑

i,j,k

µijkΦiΦjΦk . (248)

In presence of additional symmetries (like gauge symmetries), the expression of the superpotential W
is usually very constrained and depends only on a small number of free parameters. By definition, the
F-term is equal to

VF =
∑

n

∣

∣

∣

∣

∂W

∂Φn

∣

∣

∣

∣

2

(249)

where the sum runs over all the scalar fields Φn present in the theory. The D-term is related to symmetries.
For instance, for a U(1) symmetry, one obtains a contribution

VD =
1

2
g2

(

∑

n

qn|Φn|2
)2

, (250)

where qn is the charge of Φn under the U(1) symmetry. Actually, nothing prevents from adding a constant
term ξ –called a Fayet-Illiopoulos term– inside the parenthesis,

VD =
1

2
g2

(

∑

n

qn|Φn|2 + ξ

)2

. (251)

At the level of global supersymmetry, the motivation for ξ is the same as that for a cosmological constant
from the point of view of Einstein: it is a term which can be put by hand, and respects the covariance of
the theory.

It has been realized in the 1990’s that global supersymmetry is an ideal framework for building
inflationary models. The deep reason for that is twofold:
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1. in supersymmetry, the scalar potential generally exhibits some flat directions: this means that when
one field is staying at its equilibrium value, the potential does not depend on the other fields. So,
along some directions in field space, the potential is constant.

2. supersymmetry leads to a cancellation between bosonic and fermionic loops resulting in the ab-
sence of radiative corrections for the scalar field parameters: there is a consequence of the non-

renormalization theorem valid in SUSY.

Let us be a bit more precise:

1. when supersymmetry is realized in Nature, the cancellation between bosonic and fermionic loops
is exact, leading to null radiative correction. Therefore, the flat directions are exactly flat. In
addition, in this case, it can be shown that classically the fields must stand in a point where V = 0.
So, flat directions appear as degenerate lines in field space where the potential exactly vanishes.

2. when supersymmetry is spontaneously broken, the difference between the mass of standard model
particles and their superpartners leads to the apparition of small radiative corrections at the one-
loop order. Flat directions are not exactly flat anymore. In addition, the tree-level contribution
to the potential cannot be zero: SUSY breaking implies that classically the fields must stand in a
point where V 6= 0 at tree-level.

In our universe, in order to obtain masses for the superpartners compatible with observational bounds,
we must assume that supersymmetry is broken in a very special way called soft supersymmetry breaking,
involving a hidden sector. The breaking terms are such that the scalar potential does not offer a good
framework for inflation. At high energy, supersymmetry is restored, and the scalar fields must be in an
equilibrium configuration where V = 0: again this is not suitable for inflation. The general idea declined
in the literature is that inflation describes the dynamics of the fields rolling to this minimum – assuming
that they start e.g. from chaotic initial conditions. When the rolling takes place along flat directions
where the tree-level potential is constant and non-zero, and the dynamics is governed by small loop
corrections, inflation can take place. The non-renormalization theorem (i.e., the flatness at tree level)
enforces very small value of the quantities (m, λ, λα) in the Taylor expansion of Eq. 246: in this way, in
global supersymmetry, one can obtain inflation in a natural way, without severe fine-tunings.

F-term inflation. A famous toy-model for supersymmetric inflation is based on three scalar fields Φ+,
Φ− and S, assumed to have charges +1, −1 and 0 under a U(1) symmetry. The Fayet-Illiopoulos term
is assumed to vanish. The most general superpotential W (Φ+,Φ−, S) compatible with the above U(1)
symmetry, plus another simple symmetry often used in SUSY model building (a continuous R-symmetry)
reads

W = αΦ+Φ−S − µ2S , (252)

and leads to the following terms in the scalar tree-level potential

VF = |αΦ+Φ− − µ2|2 + α2|S|2
(

|Φ+|2 + |Φ−|2
)

, (253)

VD =
g2

2

(

|Φ+|2 − |Φ−|2
)2

. (254)

This potential appears to be perfect for implementing hybrid inflation. Indeed, when |S| is above some
critical value,

|S|2 ≥ µ2

α
, (255)

the charged fields remain in the equilibrium configuration in which

Φ+ = Φ− = 0 (256)

and the tree-level potential is constant: V = µ4. This is a typical flat direction, lifted only by loop
corrections. The Coleman-Weinberg formula predicts that, at the one-loop order, the effective potential
reads

Veff = µ4 +
α2µ4

16π2

(

3

2
+ ln

α2|S|2
Λ2

)

(257)

where Λ is a renormalization scale, which should be taken of order Λ ∼ µ
√
α. This is nothing but

the previously considered potential of Eq. (238), with the role of the inflaton played by the canonically
normalized modulus of S, defined to be ϕ ≡

√
2|S|. The terms V0 and λ of Eq. (238) can be identified as

V0 ≡ µ4 , λ ≡ α2

8π2
. (258)
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At some point, the modulus of the S field will fall below the critical value

|S|crit =
µ√
α

(259)

triggering a “waterfall transition” to the true minimum

Φ+ −→ µ√
α
eiθ , Φ− −→ µ√

α
e−iθ , S −→ 0 , (260)

where V = 0 and SUSY is restored (θ is an arbitrary phase). We already studied this model in subsection
3.4.4, and showed that it is compatible with observations for λ ≤ 1, which just requires α ≤ 2

√
2π (this

sounds like a natural condition), and

µ ∼
√

α

2
√

2π

4.10−3

N∗
mP . (261)

Note that if we assume that α is not very small with respect to one, the model belongs to the class of
LFMs such that ϕ∗ ≃

√

λN∗/(4π)mP ∼ mP , µ ∼ 10−3mP and inflationary gravitational waves could be
detected with future experiments.

This toy model is a particularly simple illustration of SUSY F-term inflation. However, more compli-
cated and better motivated scenarios have been built, relying sometimes on the breaking of the SUper-
SYmmetric Grand Unified Theory (SUSY GUT) group, for instance SU(5); or involving more complicated
schemes for breaking supersymmetry than the above spontaneous breaking (the one-loop potential can
then be more complicated that above); or assuming that inflation takes place at low energy, around
V 1/4 ∼ 1010 GeV, in order to get a unified description of the mechanisms responsible for inflation and
for the SUSY breaking still realized in our observable universe.

We will see later that when supergravity corrections are included, the situation is not as promising as
one could think from these lines.

D-term inflation. It is also easy to build global supersymmetric model in which the term V0 breaking
supersymmetry is not contained in VF , but in VD. Taking the same three fields as in the previous toy-
model, and assuming the same charges under the U(1) symmetry but a different R-symmetry, one is lead
to the superpotential

W = αΦ+Φ−S (262)

which is equal to the previous one with µ = 0. However, we now put by hand a non-vanishing Fayet-
Illiopoulos term ξ so that the two components of the scalar potential read

VF = α2|Φ+Φ−|2 + α2|S|2
(

|Φ+|2 + |Φ−|2
)

, (263)

VD =
g2

2

(

|Φ+|2 − |Φ−|2 + ξ
)2

. (264)

Again, this potential is perfect for hybrid inflation. When |S| is above some critical value,

|S|2 ≥ g2ξ

α2
, (265)

the charged fields remain in the equilibrium configuration in which

Φ+ = Φ− = 0 (266)

and the tree-level potential V = 1
2g

2ξ2 is constant as a function of |S|. This is again a flat direction. The
one-loop corrections which give a slope to V can be computed using the Coleman-Weinberg formula, and
the effective potential along the (nearly) flat direction reads

Veff =
g2ξ2

2
+
g4ξ2

16π2

(

3

2
+ ln

α2|S|2
Λ2

)

(267)

where Λ is a renormalization scale, which should be taken of order Λ ∼ g
√
ξ. This is nothing but the

previously considered potential of Eq. (238), with the role of the inflaton played by ϕ ≡
√

2|S|. The
terms V0 and λ of Eq. (238) can be identified as

V0 ≡ g2ξ2

2
, λ ≡ g2

8π2
. (268)
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At some point, the modulus of the S field will fall below the critical value

|S|crit =
g
√
ξ

α
(269)

triggering a “waterfall transition” to the true minimum

Φ+ −→ 0 , Φ− −→
√

ξeiα , S −→ 0 , (270)

where V = 0 and supersymmetry is restored (θ is an arbitrary phase). We already studied this model
in subsection 3.4.4, and showed that it is compatible with observations for λ ≤ 1, which just requires
g ≤ 2

√
2π (this sounds like a natural condition), and

ξ1/2 ∼
(

20

πN∗

)1/4

10−3mP . (271)

Note that if we assume that g is not very small with respect to one, the model belongs to the class of
LFMs such that ϕ∗ ≃

√

λN∗/(4π)mP ∼ mP and inflationary gravitational waves could be detectable.
We will see in the next sections that this models resists better than F-term inflation to supergravity

corrections, while from the point of view of string theory both models are under considerable pressure.

4.3 Supergravity models

SUperGRAvity (SUGRA) is a generalization of SUSY in which supersymmetry is local. This theory
naturally includes gravitons, and is considered as a very promising step forward in view of unifying
gravity with other interactions. In particle physics, one often encounters situations in which the formalism
of global supersymmetry is sufficient for deriving results which are good approximations of the exact
supergravity problem. We will see that this is hardly the case for studying inflation.

In supergravity, the scalar potential can still be split into an F-term and a D-term, obeying to
construction rules which are similar to those of global supersymmetry, although slightly more complicated.
In particular, it is still necessary to start from a superpotential W which is a holomorphic function of
the fields. In order to obtain a renormalizable theory, one should limit W to be of order three in the
fields; however, if supergravity is only an effective theory, terms are present at all orders. In addition,
one should specify two more functions: the gauge kinetic function f , which is also a holomorphic function
of the fields, and the Kähler potential K, which can be an arbitrary real function of the fields and their
complex conjugates (with the dimension of a squared mass).

Here, we will not write the full expression of the scalar potential as a function of W , f and K, because
our goal is not to enter into a detailed discussion of SUGRA-motivated inflationary models. It is sufficient
to point out a few salient features.

F-term inflation. In supergravity, the potential VF is always of the form

VF = e8πK/m2
P [...] , (272)

where the brackets contain a function of the fields related to (W,K) as well as their first and second order
derivatives. Note that if we Taylor-expand the Kähler potential in the vicinity of the origin field space,
we can always cancel the lowest-order terms through appropriate transformations and obtain without
loss of generality

K =
∑

mn

KmnΦmΦ∗
n + higher order terms, (273)

where the coefficients of the matrix Kmn are typically of order one. Let us assume that the radial field
ϕ ≡

√
2|Φ1| plays the role of an inflaton. Then, the inflaton potential will start with

VF = e4πK11(ϕ/mP )2+...[...] (274)

and its derivatives will include the terms

∂VF

∂ϕ
=

8πK11 ϕ

m2
P

VF + ... , (275)

∂2VF

∂ϕ2
=

8πK11

m2
P

VF + ... , (276)
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with a contribution to the second slow-roll parameter of the form

η =
m2

P

8π

8πK11

m2
P

+ ... = K11 + ... . (277)

Since K11 is generically of order one, η cannot be small. This very famous issue is called the η-problem.

We conclude that in supergravity, the potential VF violates the second slow-roll condition by construction,
unless the expression of K and W is such that some extra terms cancel the one above almost exactly.

If supergravity is considered as the ultimate theory in Nature, rather than a low-energy effective
theory, it is possible to choose a simple renormalizable superpotential, and to assume an arbitrary form
for the Kälher potential. Then, it is not difficult to arrange for a cancellation leading to |η| ≪ |K11|.
A famous example is called minimal supergravity, corresponding to the prescription K =

∑

n |Φn|2, i.e.
Kmn = δmn. In minimal supergravity and with the same superpotential as for global SUSY F-term
inflation, the contribution to η of order one does vanish. So, at the level of supergravity, the problems
affecting F-term inflation can be eliminated in a reasonable way; we will see however that they come back
in all known string-motivated frameworks.

D-term inflation. In supergravity, the potential VD receives corrections depending on the form of the
Kähler potential and on the gauge kinetic function f . For instance, for a U(1) symmetry with a non-zero
Fayet-Illiopoulos term,

VD =
1

2
(Ref)−1g2

(

∑

n

qn
∂K

∂Φn
Φn + ξ

)2

. (278)

We have seen that the Kähler potential tends to spoil F-term inflation; instead, it is completely irrelevant
for D-term inflation (at the level of supergravity). Indeed, taking the same toy model as before with
W = αΦ+Φ−S and a completely arbitrary function K, one finds that during inflation, when Φ+ = Φ− =
0, the superpotential and all its derivatives ∂W/∂Φn vanish, leading to VF = 0: in other words, the flat
direction is preserved in the F-term. Meanwhile, the D-term reads

VD =
1

2
(Ref)−1g2ξ2 . (279)

So, at tree level, the flat direction is only lifted by the gauge kinetic function f : the slow-roll parameters
are given by (Ref)−1 and its derivatives with respect to the inflaton field. This is not as problematic as
the role of K in F-term inflation, first because f is holomorphic and can be easily constrained with some
symmetries, and second because the potential depends on f−1 instead of ef , so the contribution to ǫ and
η is usually small provided that the inflaton field is slightly smaller than mP during inflation. The order
of magnitude of the inflaton is given by Eqs. (240, 268),

ϕ∗ ∼ gmP

4π

√

N∗

2π
, (280)

so for g slightly smaller than one the f -correction is small and D-term inflation can take place like in
global supersymmetry, with the same unique requirement

ξ1/2 ∼
(

20

πN∗

)1/4

10−3mP . (281)

Again, we will see that problems come back in string-motivated frameworks.

4.4 Compatibility with string theory

If supergravity is an effective theory, i.e. a low-energy approximation of a more general theory like
string theory, we expect that non-renormalizable terms will be present in W and f , and that the Kähler
potential will include all terms compatible with the symmetries imposed by the underlying string theory.

F-term inflation. We have seen that this paradigm is plagued by the η problem, unless K and W have
special forms leading to some exact cancellations (like, for instance, in minimal supergravity). People
have searched for string theory constructions in which the low-energy SUGRA limit would have the
required properties; however, it is very difficult to constrain the form of the effective Kähler potential,
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and no natural framework for string-motivated F-term inflation has ever been proposed: in other words,
the current understanding is simply that symmetries that would cure the η problem do not exist in string
theory.

D-term inflation. If there are non-renormalizable terms in the gauge kinetic function, we must assume
that inflation takes place for ϕ≪ mP in order to avoid the resurrection of the problems that motivated
the introduction of supersymmetric inflation: namely, the appearance of a polynomial tree-level potential
for the inflaton, deriving from the (Ref)−1 factor in VD, and requiring an infinite number of fine-tunings.
The condition ϕ ≪ mP is fulfilled in our toy-model by requiring that g is slightly smaller than one.
However, in more realistic examples, the one-loop potential often receives a correction of the type

Veff =
g2ξ2

2
+ C

g4ξ2

16π2

(

3

2
+ ln

α2|S|2
Λ2

)

(282)

where the correction factor C can be as large as one hundred or so. In this case, g must be fine-tuned by
an extra factor

√
C in order to get ϕ≪ mP , and this is difficult to motivate from string theory. Even more

problematic is the origin of the Fayet-Illiopoulos term. There exists a known mechanism for generating
ξ 6= 0. In string theory, one is often lead to introduce anomalous U(1) symmetry, i.e. symmetries with
∑

n qn 6= 0. In that case, the so-called Green-Schwartz mechanism of anomaly cancellation generates a
Fayet-Illiopoulos term slightly smaller than m2

P . This term is generically a bit too large for satisfying
the normalization condition of Eq. (283), but the small discrepancy could be solved in presence of the
previously mentioned correction factor C, since in that case we just need to obtain

ξ1/2 ∼
(

20C

πN∗

)1/4

10−3mP . (283)

This framework has been though for a while to be appropriate for inflation. Unfortunately, it was
realized that in these models the dilaton field (which is always present in string theory) always get a
runaway potential, and must be stabilized in order to avoid a large running of fundamental constants.
The stabilization mechanism generically involves an F-term, and one is back to the original η problem of
F-term inflation.

In order to avoid the runaway dilaton potential, one could try to introduce the Fayet-Illiopoulos term
by hand, for a non-anomalous U(1) symmetry. In this case however, ξ1/2 is expected to be naturally of
order mP . Then, in order to match the normalization constraint, one should motivate a huge number
C. So it is impossible to get the correct order of magnitude for ξ1/2C−1/4 without invoking some strong
fine-tuning.

In summary, all attempts to implement inflation in a string-motivated framework in which supersymmetry
would preserve flat directions have failed (or require some non-negligible amount of fine-tuning). The
generic problem is that the non-zero potential energy V0 necessary for inflation breaks supersymmetry in
such a way that flat directions can be preserved at the level of SUSY or even SUGRA when these theories
are regarded as fundamental ones, but not when they are derived as effective theories.

4.5 State of the art of inflationary model building

Currently, a fraction of the community still investigates new string theory frameworks in which supersym-
metric flat directions could be preserved at inflationary energy scales in the low-energy, four-dimensional
effective theory. However, many people are pessimistic about this direction, and retain that supersymme-
try fails in imposing flat direction during inflation. So, it is more fashionable in these days to investigate
the consequences of other types of symmetries for inflation. For instance, various symmetry breaking
mechanisms lead naturally to the existence of Pseudo Nambu-Goldstone Bosons (PNGB). Usual Gold-
stone bosons appear when the scalar field potential has a degenerate minimum (in the case of a Mexican
hat potential, the degenerate minimum is a circle). The minimum valley can be seen as an exactly flat
direction. In the case of a PNGB, the symmetry of the potential is slightly broken, and the valley of
degenerate minima receives small periodic corrections, typically of the form

V = V0[1 + cos(ϕ/µ)] (284)
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where the scalar field ϕ is the phase of a complex field, and µ is a mass scale. This potential is reminiscent
of that of new inflation with a leading quadratic term,

V = V0

[

2 − 1

2

(

ϕ

µ

)2

+ O(ϕ4)

]

. (285)

This framework opens an opportunity for slow-roll inflation, since the slope of the potential arises from a
symmetry breaking term which is predicted to be small in many set-ups, ensuring a nearly flat potential.
However, we have seen in subsection 3.4.4 that that “quadratic new inflation” falls necessarily in the
category of large-fields models. Then, the flatness of the potential at tree-level tends to be spoiled by
radiative corrections, and in particular by the infinite hierarchy of large, non-renormalizable terms.

A current direction of investigation is to find realistic models from the point of view of high-energy
physics in which the inflaton is a PNGB, and in which, for some reason, the quadratic term vanishes. If
this is the case, the model can be assumed to be a SFMs with negligible non-renormalizable terms. Some
frameworks like the Little Higgs mechanism could lead to such a nice situation. On can also combine
the advantages of PNGB and supersymmetry by building supersymmetric PNGB models. Finally, one
can study PNGBs in the context of large extra dimension models. In that case, the interpretation of the
Planck mass is radically different, and the fundamental scale of gravity can be lower than mP : then, the
fact that a model appears as a large-field model in the effective theory does not necessarily imply large
radiative corrections. Various inflationary models based on large extra dimension have been proposed;
for instance, the inflaton could be a radion, i.e. a scalar field representing some inter-brane distance.

4.6 Prospects for observations and theoretical developments

The future of inflationary model building will depend very much on the observation of primordial grav-
itational waves. In summary, we can make the following statements. Future experiments are expected
to detect gravitational waves provided that r ≥ 0.01 for future CMB experiments optimized for B-mode
detection, i.e. beyond Planck, or provided that r ≥ 10−3 − 10−4 for the next generation of spatial
gravitational wave interferometers beyond LISA. We have seen that such levels correspond typically to
LFMs where the inflaton expectation value is of the same order of magnitude as the Planck mass, either
during observable inflation, or at least at the end of inflation. So, future experiments should be able to
discriminate between SFMs and LFMs. Let us review the possible scenarios for the future, as well as
their implications:

• primordial gravitational waves might never be detected. From the point of view of high-energy
physics, this would sound like good news, because it would mean that inflation is implemented as a
SFM and can be described with the laws of standard quantum field theory, with sub-Planckian fields
and small radiative corrections. But in this case, we could never measure more than two inflationary
parameters: the scalar tilt and the scalar amplitude, already constrained today. The inflationary
energy scale could not be measured. Evidences for inflation would remain, like today, strong but
indirect, and presumably, one could only make vague conjectures about the implementation of
inflation in particle physics models.

• primordial gravitational waves might be detected. We can then distinguish too sub-cases:

– either the gravitational waves are just around the corner, with r ∼ 0.1, and we are about to
see them. In that case it would be possible to measure also the tensor tilt with reasonable
precision. That would be fantastic because we could compare the value of nt with that of
r. Single-field slow-roll inflation predicts a relation r = 16ǫ = −8nt called the inflationary

self-consistency relation. By confirming this relation experimentally, one would have a very
clear, direct proof of inflation. If −8nt was found to be a bit different from r, there would be
some evidence for multiple-field inflation. In any case this situation would be extremely rich
and interesting for early universe physics.

– either r is in the range between 10−4 and 10−2, so that primordial gravitational waves will be
detect but their tilt will be hardly measured. In this case, the self-consistency relation could
not be probed, but still we would know the energy scale of inflation, and get independent
measurements of V∗, V

′
∗ and V ′′

∗ .

So, in these two sub-cases we would get a lot of new information, but paradoxically inflationary
model building could be stuck by the evidence for new physics. Indeed, we have seen that r can
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be detectable only in LFMs, with field values around or greater than the Planck mass. In ordinary
quantum field theory this raises the problem of large radiative correction and non-renormalizable
terms, and we have seen that in effective theories supersymmetry cannot solve this problem. So,
this situation would really require some new high-energy physics set-up, which would actually be a
rather exciting situation. In particular, the detection of inflationary gravitational waves could be
seen as an indication in favor of large extra dimensions.
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