
only to vectors Φ such that
∑

n

n ‖ϕ(n)‖2 <∞ . (36)

By construction, Fock space is populated by repeated application of creation
operators on the vacuum vector:

0⊕ · · · ⊕ 0⊕ ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn ⊕ 0⊕ · · · = a†(ϕ1)a
†(ϕ2) · · ·a†(ϕn) Ω . (37)

A bosonic creation operator is always unbounded while one can show that
the norm of a fermionic creation operator a†(ϕ) is equal to ‖ϕ‖.

3.2 Product Fock spaces

A very important property of both bosonic and fermionic Fock space is their
behaviour with respect to the one-particle space: there is a natural isomor-
phism, i.e., a unitary map

U : Γ(a)s(H1 ⊕H2) → Γ(a)s(H1)⊗ Γ(a)s(H2) . (38)

U is actually a direct sum of unitary maps Un between the n-particle space
of Γ(a)s(H1 ⊕H2) and all the subspaces of Γ(a)s(H1)⊗ Γ(a)s(H2) that contain
k particles in the first factor and n− k in the second, k = 0, 1, . . . , n :

Un : (H1 ⊕H2)
⊗n,(a)s →

n⊕
k=0

(

H⊗k,(a)s
1 ⊗H⊗n−k,(a)s

2

)

. (39)

The explicit form differs a bit for bosons and fermions. For bosons

U1(ϕ1 ⊕ ϕ2) = ϕ1 ⊕ ϕ2

U2

(
(ϕ1 ⊕ ϕ2)⊙ (ψ1 ⊕ ψ2)

)
= (ϕ1 ⊙ ψ1)⊕ (ϕ1 ⊗ ψ2 + ψ1 ⊗ ϕ2)

⊕ (ϕ2 ⊙ ψ2)

...

(40)

while for fermions

U1(ϕ1 ⊕ ϕ2) = ϕ1 ⊕ ϕ2

U2

(
(ϕ1 ⊕ ϕ2) ∧ (ψ1 ⊕ ψ2)

)
= (ϕ1 ∧ ψ1)⊕ (ϕ1 ⊗ ψ2 − ψ1 ⊗ ϕ2)

⊕ (ϕ2 ∧ ψ2)

...

(41)
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Suppose that we have a composite system consisting of n indistinguishable
parties each with Hilbert space H. For very low densities one could restrict
attention to a single particle version of the system. We would then use the
Hilbert space

H⊕H⊕ · · · ⊕ H
︸ ︷︷ ︸

n-times

instead of H⊗n,(a)s . (42)

For two particles the right choice would be

(

⊕
i
H⊗2,(a)s

i

)

⊕
(

⊕
i1,i2
i1<i2

Hi1 ⊗Hi2

)

. (43)

There is a simple global prescription for this unitary isomorphism U = ⊕nUn

in terms of the creation operators

U Ω12 = Ω1 ⊗ Ω2 (44)

U a†(ϕ1 ⊕ ϕ2)U
† = a†(ϕ1)⊗ 1+ 1⊗ a†(ϕ2) for bosons (45)

U a†(ϕ1 ⊕ ϕ2)U
† = a†(ϕ1)⊗ 1+ (−1)N ⊗ a†(ϕ2) for fermions. (46)

Here, Ω1, Ω2, and Ω12 are the Fock vacua for the one-particle spaces H1, H2,

and H1 ⊕H2.

The isomorphism (38) is essential for resolving the Gibbs paradox for systems
with indistinguishable particles. If we consider two large volumes Λ1 and Λ2

in R3, then an equilibrium state of the total volume Λ1 ∪ Λ2 with N1 +
N2 particles will, up to boundary contributions, correspond with the tensor
product of the equilibrium state with N1 particles in Λ1 and N2 in Λ2., where
N1 = ρ|Λ1| and N2 = ρ|Λ2|, ρ being the particle density. Quantities like
entropy or internal energy will then be essentially additive, as is expected for
extensive quantities.

Another application of the isomorphism is to construct Fock space Γ(a)s(H)
using single mode factors Γ(a)s(C). These single mode spaces are very com-
mon.

For fermions Γas(C) ∼ C

2 with

Ω ∼
(
1
0

)

and a† ∼
(
0 0
1 0

)

.
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The isomorphism U between Γas(Cn) and C2⊗n
is called the Jordan-Wigner

isomorphism. Using the standard basis of C2

|0〉 =
(
1
0

)

and |1〉 =
(
0
1

)

(47)

we obtain
Ua

†
i1
a
†
i2
· · ·a†imΩ = |i〉, i1 < i2 < · · · < im . (48)

Here |i〉 is the binary string of length m consisting of a 1 at sites i1, i2, . . . , im
and 0 elsewhere. The Jordan-Wigner transform of a creation operator is

Ua
†
iU

† = σz ⊗ · · · ⊗ σz ⊗ a† ⊗ 1 · · · ⊗ 1 . (49)

The matrix a† sits at the i-th place and

σz =

(
1 0
0 −1

)

= (−1)a
†a . (50)

For bosons Γs(C) = L2(R, dx) and we use the coordinate representation of
position and momentum to define a† :

(Qψ)(x) = xψ(x) and (P ψ)(x) = −iψ′(x) . (51)

We then have

Ω(x) ∼ 1

π1/4
e−x2/2 and a† ∼ 1√

2
(Q− iP ) . (52)

The Fock space of a one-particle space H decomposes into a tensor product
of simple harmonic oscillator subspaces.

The exponential vectors are quite useful for bosons

Exp(ϕ) = 1⊕ ϕ⊕ 1√
2!
ϕ⊗ ϕ ⊕ . . . (53)

= Ω + a†(ϕ)Ω +
1

2!
a†(ϕ)2Ω+ · · · (54)

= exp(a†(ϕ)) Ω . (55)

Exponential vectors are linearly independent: the only possibility for having

n∑

j=1

αjExp(ϕj) = 0 with i 6= j =⇒ ϕi 6= ϕj (56)
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