Engineering 7: Introduction to computer

programming for scientists and engineers

Interpolation

Recap
Polynomial interpolation
Spline interpolation
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Regression and Interpolation:
“learning” functions from data




Regression and Interpolation:

Regression Training Data: (x, yi)i=1,- Interpolation

Find a function, from a specified

to score a function’s performance.
Let f denote the best-fit function.

Find a function, from a specified

class, that best fits the data.| For class,|that exactly matches the data.

example, For example, find f € F; with
Féﬂzﬁmz f(z;)=y;forall 1 <i< N

Often use a squared-error criterion Let f/ denote such an interpolator.

The obtained function (f® or f/)

IS often used for prediction; given another

value of x (with y unknown), estimate/predict “what is the corresponding

value of y?”
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Perspectives: Differences/similarities

Regression: 0

o 0 o
* Measured data is inaccurate in a random fashion. 05 D Regression | 05| o®
* Data seems to exhibit “complex” variability, but that o Interpolation
variability is not truly indicative of the underlying -1 — o._ =0
phenomena that produces the data 15 15 0
. o = o
* Choose a “model” class of functions to represent - ‘ ‘ ‘ 2 ‘ |
the phenomena. It should be no more complex than 2 4 6 8 10 o 2 4 6 8 10
necessary
. . L. 0 0 o
* Get approximate fit from this simple class of .
functions 05 o Interpolation 05! ’1 Interpolation
Interpolation: - \ o o o
o d/"
» Measured data is believed to be accurate. -1.5 f -1.5] \ 1
. e P | | | | | o | | | |
Any complex variability is thought to be truly o 2 4 & & 10 0o 2 4 6 8§ 10

indicative of the underlying phenomena that
produces the data
* Functional representation should pass through all data points; no reason to expect wild variability between points.

* The smoothness of the interpolating function used depends on assumptions about the phenomena that produces the
data.
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Regression or Interpolation?

Accurate, fast approximation to

r _x3/2 —1 Interpolation: it makes sense that the fitting
f(T) = fO e tan~ " x dx | function should pass through the training points

over therange r € [0, 5]. Data, (r;, f;)i=1...n IS Obtained by
careful numerical integration, is repeatable, and not subject to
any appreciable error.

Regression: the “experimental” aspect hints at
errors and some degree of non-repeatability in the
training data due to uncontrolled/unknown factors.

Rebound velocity, as a function of impact velocity for a
composite baseball bat and baseball, r(v). Data, (v;,77)i=1...n

IS obtained from experimental lab apparatus.
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Polynomial Interpolation
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A linear (affine) polynomial has 2 parameters

Pa(x) = ag + a1z

Linear interpolation

Given 2 data points, (x,,y,), (x,, v,) with the x; # x,, there exists a unique
choice of parameters (a,, a,) so that p,(xi) =y, fori =1, 2.

H““H

(x1,¥1)

apg + a1x
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guadratic interpolation

A quadratic polynomial has 3 parameters
pa(T) = ap + a1 + azx”

Given 3 data points, (x;,¥,), (x5, ¥,), (x3,¥3), with the {x;};-, , 3 all distinct
from one another, there exists a unique choice of parameters (a,, a,, a,) SO
that p (xi) =y, fori =1,2,3.

o5 (x2,¥2)
1 21 a9 ag Y1 ap + a1z + agx?
1 zo x3 ar | = | Yo °
1 a3 a:% Y3 y
05" (x, ¥1)
\>ﬂﬂ' _ bf 1 | | (353jY3)

0.4 0.6 0.8 1 1.2
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Cubic interpolation

A cubic polynomial has 4 parameters

Pa() = ag + a1z + azx® + asz

Given 4 data points, (x;, 1), (x5, ¥5), (X3, ¥3), (x4, ¥4), With the {x;};=1 234 all
distinct from one another, there exists a unique choice of parameters
(ay, aq,ay a3) SO thatp,(xi) =y, fori =1,2,3,4.

L1
T2
I3
Ly

2 371 T

L1 I
x5 @5
r3 @3
ry @y

ag
a1
az

\Aaz—b

Y1
Y2
Y3
Ya

1r \

0.57

0,

-0.5¢

(X1, 3’1)‘

ag + arx + aza:z + asx

(x2,¥2)

15 2 2.5 3 3.5
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Polynomial interpolation

More generally, an nth degree polynomial has n + 1 parameters
Pa(®) = ag + a1z + agx” + - + apx”

Given n + 1 data points, (x,,y,), (x5, V5),***, (Xn+1, Yns1), With the
{xi}i=1,2...(n+1) all distinct from one another, there exists a unique choice of

parameters (a,, a,, a, -+,a,) sothatp (xi) =y, fori =1,2,---,n+ 1.

_ _ _ _ _ _ 2

1 SR A ag Y1

1 x9 SRR ay Y2

_1 Ln+1 n+1 Ay, | Yn+1 | i \ i &
\Ax_b S T S e
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Behavior of Polynomial Interpolation

For large n, this polynomial
tends to have large oscillations 3.8 ‘ ‘ 0 4.5

near the end points. ; 7™ order poly
3.8, 3 order poly T through 8 points ]
> through 4 points © é Q . o
The behavior of the interpolating 3.4 - 9 e
function, between points is 39 S ] ' .
unexpected and non-intuitive. 3 Wl
3 <o
For evenly-spaced x, the prediction 2.8 ‘ : 2.5
(ie., interpolating polynomial’s value) 0 1 2 3 0 1 2 3
at the midpoint between x; and x,
becomes highly sensitive to y;_n,.. : : :
vy YVi="/s £ 80‘ 15t order poly
through 16 point
n 5 7 9 11 13 15 6 60 rougn =5 points
Sens 1.2 15 33 86 24 72 4 s o 0-0-0-0 c o & o 40
2) 11t order poly 1 20
Polynomial interpolating . through 12 points ] © 0000000000000
functions using large n are |
generally thought of as bad s 1 5 3 1 5 3
predictors
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Spline interpolation: linear
and cubic




linear-spline

Given: data, (x;,y;)i=1...n- The (x;) are distinct and sorted, so that x; < x;.

A linear-spline interpolation consists of (n — 1) linear (affine) functions,
defined separately on each interval [x; x;.1].

— 1st function connects (x,, y,) to (x,, y,) with a straight line,
— 2nd function connects (x,, y,) to (x5, y5) with a straight line,

— k" function connects (x,, i) t0 (x,4+1, Yk+1) With a straight line
« For X in [x; xx4+q] interpolation function (relating X to Y) is easily expressed as

Yk+1 — Yk (X
Lk+1 — Tk

Y =y +

_xk)

— (n-1)™ function connects (x,_1, V,—1) t0 (x,, with a straight line.
n yn n Yn

Viewed as a whole: the interpolation function is piecewise-linear



Linear-spline (or just “linear”) interpolation

1.4 Q

Y=y, + Yien = Y (X -x,) o

/1 Xra — Xy 1'

Starting “‘Run” I
height T ! (Xk+1 Vie+1)
Slope in this 0.8 X1

interval
= (% k)
0.2
Data
O 2 3 4 5 & 7 8 9
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Cubic-spline

Given: data, (x;,y;)i=1...n- The (xi) are distinct and sorted, so that x; < x;,,.
A cubic-spline interpolation consists of cubic polynomial functions, defined
on each interval [xi x;41].

— 1st function connects (x,,y,) to (x,, y,) with cubic polynomial,

— 2nd function connects (x,, y,) to (x5, y;) with cubic polynomial,

— k" function connects (x,, yk) to (xy4+1, Vk+1) With cubic polynomial,

— (n-1)t function connects (x,_1, ¥n—1) t0 (x,, yn) with cubic polynomial
Constraints

@ x;, fi(z1)=u @ x, femr(@n) =y fro1(ze) = fr.(zw)

@ x, frn-1(zn) =yn 2<ksn-1) felze) =y fi_i(ze) = fi(zk)

kth function is parametrized by 4 coefficients (to be determined by the constraints)

fre(x) =ap + ai1(x — x) + as(x — xk)z + as(z — :ck)S
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Cubic spline

(n — 1) cubic polynomial L 4(n — 1) parameters
functions, each defined on i “ L to choose )
[xT Xi41]- oo |
—k™ function connects (x,, yk) 04 f,  (%¥2) f1
10 (Xk+1) Vie+1) 0l f i
Constraints o \°
@ x, 1 equation 0-tay) j |
fl (33‘1) =1 0.2+ P ¢ % -
@x, (2<k<n-1) 0.4 \* f .
Jr— 1(11%) = Yk -0.6 ¥ .
4(n—2) ( )—yk 08l f o f i
R | :
(k) = fil (o) o o l
@ x 1ol r r : Sxk+1,Yk+;) r r
n 1 equation 0 2 4 6 8 10 12 14 . 16 18
fn—1(zn) = yn | > 4(n — 2) + 2 equations
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Two Extra conditions

As there are fewer equations that unknowns (coefficients of the cubic
functions), the matching conditions (constraints) are not enough to
uniquely determine the cubic functions.

Two more conditions can be imposed. Four common approaches are

— Natural 08
(1) =0, fiy(wn) =0 ol
— Periodic o2 | \
@) = fia(@a), fle) = fla@) : I\
— Not-a-knot  f{"(z2) = f4(x2), \ N/
R o(Enms) = Fi sy (2nm) B "t
— Specified end-slope, given valuesvi, v, e

S

fi(@) =v1, frn_1(zn) =vy
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Setting up the equations




Values and derivatives of cubic

What are the values and derivative of a cubic
f(x) =ag+a(z—2)+ as(x — 2)* + as(x — T)°
f(z) = a1 + 2as(x — ) + 3az(z — %)?

///(:C — 6as

- f(z) |
/()

e

) =
f"(x) = 2as + 6az(x — )
) =

(z — )°
2(x — 7)

oo O =

)
fl// (fL‘)

(x —2)° |
3(x —17)?
6(z — )
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Values and derivatives of f;
For f;, the value of x = x4, so

fe(x) =ap +ar1(x — xp) + az(z — :z:k)z + as(z — :ck)S

fk(a:) = a1 + 2a2(z — xk) + 3as(x — xk)z
7 (x) = 2a0 + 6as(x — zp)

”’(g;) — Gas

' fr(rr) | 1 0 0 0] [ao] | fre(@ks1) | (1 hy  hE R} ][ao]
fllﬂ(ﬂfk) _ O 1 0 O aq ;C(ZC;@_H) _ 0 1 Qhk 3hz al
,’c’ (CU]{;) 0 0 2 0 as l,c,(xk+1) 0 0 2 6hk a9

i l;”(.ilj'k)_ _0 0 0 6_ _(13_,{ i l';”(iljk_|_1)_ _0 0 0 6 | _ag_k

Qr = Lk Qr = Ll41 hk = Tk4+1 — Tk
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@xla fl(xl) = Y1 @an, fn—l(ajn) = Un
(1 0 0 0]fag] = (1 hey k2, B3_][ao] = ¥n
ai ax
a9 a2
las|;,  |[(@o)1 = 1 as |,
Qrp,2<k<(n-1) (1 hp—r h2_, hi_, 0 0 0 O|[/a\ | [us
B 0 O 0 0 1 0 0 0llla e
Fr—1(@r) = v 0 1  2hg—y 303_, 0 =1 0 O|l|a |0
fr(zr) = yi 0 0 2 G6hxpy O O -2 Of|\as/_,| [O.
o1 () = fr(or) @0
ag)r = 9
¢y (ar) = S ) (90) = Y as
as k
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Rewrite Constraints

(ao)l =
(@) =yr,2 <k < (n—1)

@an, fn—l(ajn) = Un

[hnfl h? hi—l] ai1| = Yn — Yn-1
a2
as n—1

n—1

Qr,2 <k<(n-1) hy_1
1
Jo-1(@k) = Y 0

R, 0 0 0
3hi . -1 0 0
6hpy—1 0 —2 0
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Assembling the equations (n = 6)

|

hy
1
0

hi
20,
2

hi’z
3h3
6h,

0
—1
0

ha
1
0
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0
0

h
2h,
2

0
0
-2 0

B0 0 0
32 -1 0 0
6hs 0 -2 0
hy hE K3
1 2hs 3h2
0 2 6hs

0
-1
0

Two more conditions

—2
hi
2h4
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Assembling the equations (arbitrary n)

1 2k 302 -1 0 0

hy K2 RS 0 0 0
0 2 6hy 0 -2 0

Cols=
3% (k-1)+1:3k+3
_ hi hi Ry 0 0 0
Rows= 1 2h, 3h2 -1 0 0
3% (k-1)+1:3k 0 2 6h 0 -2 0
for—2 h%—Q h?v, 2 0 Y 0
1 2hp_o 3h2., -1 0 0
0 2 6hp_a 0 -2 0
?"’nfl h’n—l h’i—l] .
-, = a2
Two more conditions as) _,
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Incorporating extra conditions




Two Extra conditions

As there are fewer equations that unknowns (coefficients of the cubic
functions), the matching conditions are not enough to uniguely determine
the cubic functions.

Two more conditions can be imposed. Four common approaches are

— Natural =
P(z1) =0, [ i(xn) =0
— Periodic = \

fil@1) = fri(zn), fi(21) = fili(zn) \/

— Not-a-knot
1 (x2) = 15" (x2), 0

falo(@n—1) = frli(Tn-1) >
— Specified end-slope, given valuesvi, v, - ©
f{(xl):’t)l, ffr’z—l(mn) = Un

UC BERKELEY-COE
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Values and derivatives of f;
For f;, the value of x = x4, so

fe(x) =ap +ar1(x — xp) + az(z — :z:k)z + as(z — :ck)S

fk(a:) = a1 + 2a2(z — xk) + 3as(x — xk)z
7 (x) = 2a0 + 6as(x — zp)

”’(g;) — Gas

' fr(rr) | 1 0 0 0] [ao] | fre(@ks1) | (1 hy  hE R} ][ao]
fllﬂ(ﬂfk) _ O 1 0 O aq ;C(ZC;@_H) _ 0 1 Qhk 3hz al
,’c’ (CU]{;) 0 0 2 0 as l,c,(xk+1) 0 0 2 6hk a9

i l;”(.ilj'k)_ _0 0 0 6_ _(13_,{ i l';”(iljk_|_1)_ _0 0 0 6 | _ag_k

Qr = Lk Qr = Ll41 hk = Tk4+1 — Tk
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Extra equations for Natural spline

Conditions for Natural Spline (Z;\
1 (z1) =0 fr1(xn) =0 %
al\
Expressions (Zi ,
1 (1) = 2(az)1 a1
£ (@) = 2(a2)nmt + 6in1(a3)nor o)
aj
as 4
0 2 0] Z; . 0
[0 2 6hyoi] afsl |0
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Extra equations for Periodic spline

Conditions for Periodic Spline (Z;\
flw) = fos(@a)  fl(ma) = fi_i(on) as ),
| o
Expressions (a3 A
fi(z1) = (a1) a
fr—1(@n) = (a1)p—1 + 2hn_1(az)n—1 + 3h2_;(az)n—1 a2
as 3
fl (1) = 2(az)1 a
f?lv,l—l(mn) - 2(032)71—1 + Ghn—l(a?))n—l (CLQ)
as 4
[—1 0 o] 1 2h,_q 3h§_1] (a;) _ 0
0 —2 0 0 2 6hpy_1 as)| — | 0
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Extra equations for Not-a-knot

fi'(w2) = f3' (x2)

fglz(wn 1) =

Conditions for Not-a-knot spline

f£i1($n_1)

Expressions

fi'(z2) = 6(az):

f3"(22) = 6(az)2
fro(Tn_1) = 6(az)n—2
fal1(@n—1) = 6(as)n-1

[006][00 —6]

[006][00 —6]
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Extra equations for Specified end-slope

Conditions for specified end-slope

f{(ﬂ?’l):’ul, ffrlzul(wn) = Un

Expressions
fi(z1) = (a1

quz—1(3?n) =(a1)pn-1+ 2hp_1(a2)p_1 + 3hi_1(a3)n—1

(10 0]

(1 2h,—1 3R2_,]

U1
Un
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Implementation

Need one function to transform (x;, y;);=1 .., into the coefficients
(fao, a1,a;, az}i=1, (n-1y)- Justbuild the arrays, and use \ (backslash)

Need another function to evaluate the “spline” at an arbitrary value of x.
This function needs

—the coefficients, ({ao, a1, ay, as}iz1, . m-1)),

—the (x;);=1 .., Samples, and

—the x-values for which the evaluation should take place.

The commands
spline, ppval

implement the ideas put forth here, in a more efficient manner. Only the
“not-a-knot” and “specified end-slope” conditions are available.
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