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Interpolation

Engineering 7: Introduction to computer

programming for scientists and engineers

▫ Recap

▫ Polynomial interpolation

▫ Spline interpolation
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Regression and Interpolation: 

“learning” functions from  data
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Find a function, from a specified 

class, that best fits the data.  For 

example,

Often  use a squared-error criterion 

to score a function’s performance.

Let       denote the best-fit function. 

Regression and Interpolation: 

Training Data: 𝑥𝑖 , 𝑦𝑖 𝑖=1,⋯,𝑁

The obtained function (𝑓𝑅 or 𝑓𝐼) is often used for prediction: given another 

value of 𝑥 (with 𝑦 unknown), estimate/predict “what is the corresponding 

value of 𝑦?” 

Find a function, from a specified 

class, that exactly matches the data.  

For example, find            with 

Let       denote such an interpolator. 

Regression Interpolation
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Perspectives:  Differences/similarities
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Regression:
• Measured data is inaccurate in a random fashion. 

• Data seems to exhibit “complex” variability, but that 
variability is not truly indicative of the underlying 
phenomena that produces the data

• Choose a “model” class of functions to represent 
the phenomena.  It should be no more complex than 
necessary

• Get approximate fit from this simple class of 
functions.

Interpolation:
• Measured data is believed to be accurate. 

• Any complex variability is thought to be truly 
indicative of the underlying phenomena that 
produces the data

• Functional representation should pass through all data points;  no reason to expect wild variability between points. 

• The smoothness of the interpolating function used depends on assumptions about the phenomena that produces the 
data.
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Accurate, fast approximation to

𝑓 𝑟 ≔  0
𝑟
𝑒−𝑥

3/2
tan−1 𝑥 𝑑𝑥

over the range 𝑟 ∈ 0, 5 .    Data, 𝑟𝑖 , 𝑓𝑖 𝑖=1,⋯,𝑁 is obtained by 

careful numerical integration, is repeatable, and not subject to 

any appreciable error.

Rebound velocity, as a function of impact velocity for a 

composite baseball bat and baseball, 𝑟(𝑣).  Data, 𝑣𝑖 , 𝑟𝑖 𝑖=1,⋯,𝑁

is obtained from experimental lab apparatus.

Regression or Interpolation?

Interpolation: it makes sense that the fitting 

function should pass through the training points

Regression: the “experimental” aspect hints at 

errors and some degree of non-repeatability in the 

training data due to uncontrolled/unknown factors. 
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Polynomial Interpolation
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A linear (affine) polynomial has 2 parameters

Given 2 data points, (𝑥1, 𝑦1), (𝑥2, 𝑦2) with the 𝑥1 ≠ 𝑥2, there exists a unique 

choice of parameters (𝑎0, 𝑎1) so that 𝑝𝑎(𝑥𝑖) = 𝑦𝑖 for 𝑖 = 1, 2.

Linear interpolation
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A quadratic polynomial has 3 parameters

Given 3 data points, (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), with the 𝑥𝑖 𝑖=1,2,3 all distinct 

from one another, there exists a unique choice of parameters (𝑎0, 𝑎1, 𝑎2) so 

that 𝑝𝑎(𝑥𝑖) = 𝑦𝑖 for 𝑖 = 1, 2, 3.

quadratic interpolation
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A cubic polynomial has 4 parameters

Given 4 data points, (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), (𝑥4, 𝑦4), with the 𝑥𝑖 𝑖=1,2,3,4 all 

distinct from one another, there exists a unique choice of parameters 

(𝑎0, 𝑎1, 𝑎2, 𝑎3) so that 𝑝𝑎(𝑥𝑖) = 𝑦𝑖 for 𝑖 = 1, 2, 3, 4.

Cubic interpolation
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More generally, an 𝑛th degree polynomial has 𝑛 + 1 parameters

Given 𝑛 + 1 data points, 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , ⋯ , (𝑥𝑛+1, 𝑦𝑛+1), with the 

𝑥𝑖 𝑖=1,2,⋯,(𝑛+1) all distinct from one another, there exists a unique choice of 

parameters (𝑎0, 𝑎1, 𝑎2, ⋯ , 𝑎𝑛) so that 𝑝𝑎(𝑥𝑖) = 𝑦𝑖 for 𝑖 = 1, 2,⋯ , 𝑛 + 1.

Polynomial interpolation
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For large 𝑛, this polynomial 

tends to have large oscillations 

near the end points.

The behavior of the interpolating 

function, between points is 

unexpected and non-intuitive.

For evenly-spaced 𝑥, the prediction 

(ie., interpolating polynomial’s value) 

at the midpoint between 𝑥1 and 𝑥2
becomes highly sensitive to 𝑦𝑖=  𝑛 2

.

𝑛 5 7 9 11 13 15
𝑆𝑒𝑛𝑠 1.2 1.5 3.3 8.6 24 72

Polynomial interpolating 

functions using large 𝑛 are 

generally thought of as bad 

predictors

Behavior of Polynomial Interpolation
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Spline interpolation: linear 

and cubic
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Given: data, 𝑥𝑖 , 𝑦𝑖 𝑖=1,…,𝑛.  The (𝑥𝑖) are distinct and sorted, so that 𝑥𝑖 < 𝑥𝑖+1.

A linear-spline interpolation consists of 𝑛 − 1 linear (affine) functions, 

defined separately on each interval [𝑥𝑖 𝑥𝑖+1].

– 1st function connects (𝑥1, 𝑦1) to (𝑥2, 𝑦2) with a straight line, 

– 2nd function connects (𝑥2, 𝑦2) to (𝑥3, 𝑦3) with a straight line, 

– kth function connects (𝑥𝑘, 𝑦𝑘) to 𝑥𝑘+1, 𝑦𝑘+1 with a straight line

• For  𝑋 in  [𝑥𝑘 𝑥𝑘+1] interpolation function (relating 𝑋 to 𝑌) is easily expressed as

– (n-1)th function connects (𝑥𝑛−1, 𝑦𝑛−1) to (𝑥𝑛, 𝑦𝑛) with a straight line.

Viewed as a whole: the interpolation function is piecewise-linear

linear-spline
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Linear-spline (or just “linear”) interpolation
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Given: data, 𝑥𝑖 , 𝑦𝑖 𝑖=1,…,𝑛.  The (𝑥𝑖) are distinct and sorted, so that 𝑥𝑖 < 𝑥𝑖+1.

A cubic-spline interpolation consists of cubic polynomial functions, defined 

on each interval [𝑥𝑖 𝑥𝑖+1].

– 1st function connects (𝑥1, 𝑦1) to (𝑥2, 𝑦2) with cubic polynomial, 

– 2nd function connects (𝑥2, 𝑦2) to (𝑥3, 𝑦3) with cubic polynomial, 

– kth function connects (𝑥𝑘, 𝑦𝑘) to (𝑥𝑘+1, 𝑦𝑘+1) with cubic polynomial, 

– (n-1)th function connects (𝑥𝑛−1, 𝑦𝑛−1) to (𝑥𝑛, 𝑦𝑛) with cubic polynomial

Constraints

@ 𝑥1 @ 𝑥𝑘
@ 𝑥𝑛 (2 ≤ 𝑘 ≤ 𝑛 − 1)

kth function is parametrized by 4 coefficients (to be determined by the constraints)

Cubic-spline
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𝑛 − 1 cubic polynomial 

functions, each defined on 

[𝑥𝑖 𝑥𝑖+1].

–kth function connects (𝑥𝑘, 𝑦𝑘)
to (𝑥𝑘+1, 𝑦𝑘+1)

Constraints

@ 𝑥1

@ 𝑥𝑘 (2 ≤ 𝑘 ≤ 𝑛 − 1)

@ 𝑥𝑛

Cubic spline
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As there are fewer equations that unknowns (coefficients of the cubic 

functions), the matching conditions (constraints) are not enough to 

uniquely determine the cubic functions.

Two more conditions can be imposed.  Four common approaches are

– Natural

– Periodic

– Not-a-knot

– Specified end-slope, given values 
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Setting up the equations
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What are the values and derivative of a cubic

Values and derivatives of cubic
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For 𝑓𝑘, the value of  𝑥 = 𝑥𝑘, so

Values and derivatives of 𝑓𝑘
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Constraints
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Rewrite Constraints
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Assembling the equations (𝑛 = 6)

Two more conditions
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Assembling the equations (arbitrary 𝑛)

Two more conditions

Rows=

3*(k-1)+1:3k

Cols=

3*(k-1)+1:3k+3
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Incorporating extra conditions
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As there are fewer equations that unknowns (coefficients of the cubic 

functions), the matching conditions are not enough to uniquely determine 

the cubic functions.

Two more conditions can be imposed.  Four common approaches are

– Natural

– Periodic

– Not-a-knot

– Specified end-slope, given values 
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For 𝑓𝑘, the value of  𝑥 = 𝑥𝑘, so

Values and derivatives of 𝑓𝑘
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Extra equations for Natural spline

Conditions for Natural Spline

Expressions
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Extra equations for Periodic spline

Conditions for Periodic Spline

Expressions
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Extra equations for Not-a-knot

Conditions for Not-a-knot spline

Expressions
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Extra equations for Specified end-slope

Conditions for specified end-slope

Expressions
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Need one function to transform 𝑥𝑖 , 𝑦𝑖 𝑖=1,…,𝑛 into the coefficients 

𝑎0, 𝑎1, 𝑎2, 𝑎3 𝑖=1,…,(𝑛−1) .   Just build the arrays, and use \ (backslash)

Need another function to evaluate the “spline” at an arbitrary value of 𝑥.  

This function needs

– the coefficients, 𝑎0, 𝑎1, 𝑎2, 𝑎3 𝑖=1,…,(𝑛−1) ,

– the 𝑥𝑖 𝑖=1,…,𝑛 samples, and

– the 𝑥-values for which the evaluation should take place.

The commands

spline, ppval

implement the ideas put forth here, in a more efficient manner. Only the 

“not-a-knot” and “specified end-slope” conditions are available.

Implementation


