CHAPTER ELEVEN

Module Theory without Rings

11A

In Chapter 12 we will begin our study of rings and their associated modules. As
will be apparent then, module theory is a crucial part of ring theory, and that makes
the title of this chapter somewhat paradoxical. If R is a ring (whatever that is), then
an R-module M is an abelian group for which R is a set of operators. It is more
than that, of course, since we make assumptions that relate the action of R on M
to the internal structure of R. (This is analogous to the situation of a group acting
on a set, where the permutations effected on the set by the group elemernts are not
arbitrary, but instead reflect the structure of the group.) Some of the basic definitions
and facts in module theory, however, ignore the structure of the ring and are really
concerned only with the properties of the module as an abelian R-group. It is this
part of module theory with which we deal in this chapter. (Actually, much of what
we do can be made to work in the nonabelian case too, but because our real interest
is module theory, we do not pursue that.)

To avoid confusion, we do not refer to the objects of study here as “modules,”
since that word is usually reserved for the situation where we have a ring and ad-
ditional structure. Our attention is directed mostly to abelian X-groups, which we
usually write additively, so that the symbol “0” means either the identity element
or the trivial X-subgroup. For additively written groups, it is customary to write
the action of X multiplicatively rather than exponentially. In place of u*, therefore,
we write ux, where x € X and u lies in some (abelian) X-group M. We thus have
u+v)x=ux+vxforxe Xandu,veM.

11B

It would be too restrictive to assume that our X-groups are finite, but from time to
time, we need conditions that will guarantee that they are not “too infinite.” In other
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words, we wish to investigate useful “finiteness conditions” on abelian X-groups.
‘We have already seen one such condition: finite composition length. We also discuss
finite generation and the ascending and descending “chain conditions.” It turns out
that there are a number of interconnections among these four finiteness conditions.

In order to discuss the two chain conditions, it is convenient to consider a more
general situation: that of “partially ordered sets.” Although this material is arguably
set theory rather than algebra, it is so useful for our purposes that it seems appropriate
to include it.

(11.1) DEFINITION. Let P be a set and let < be a binary relation on P. Then
P is a partially ordered set, or poset, with respect to < provided

i. a<aforallaeP,
ii. fa<bandb <c,thena <c, and
i, ifa <bandb <a,thena =b.

Since very little is required in Definition 11.1, examples of posets abound. For
instance, if S is any set, then the collection of all subsets of § is a poset with respect
to set containment. Also, if G is any group, then the collections of all subgroups
and of all normal subgroups form posets, also with respect to containment. Given
any poset, one can “reverse the inequality” to construct a new poset, which is called
the dual of the original poset. (In the dual of P, we havea < biff b <ain P.)

Given a # b in poset P, it may be that a and b are not comparable, that neither
a < bnor b < a. In some posets, every two elements are comparable. If this
happens, the set is said to be linearly or totally ordered. Examples of this are the
real numbers and the natural numbers with respect to the ordinary inequality <. An
“algebra” example is the collection of all subgroups of a cyclic p-group with respect
to C.

An ascending chain in a poset P is an infinite list of not necessarily distinct
elements a,, as, a1, ... of P, subscripted by the natural numbers, and such that

ag<ay=<--<a <.
Similarly, a descending chain in P is such a list with
A Zaz--Zay =

(Here, as is customary, we write x > y tomean y < x. We also write x > y or
y<xtomeany < x buty # x.)

We say that P satisfies the ACC, or ascending chain condition, if every ascending
chain in P is “eventually constant.” This means that if a; < a; < .- in P, then
for some integer n, we have a, = @n41 = @ny2 = ---. (In general, the number n
depends on the particular ascending chain considered.) In other words, there are at
most finitely many strict inequalities between consecutive terms in every ascending
chain. Similarly, the poset P satisfies the DCC, or descending chain condition, if
every descending chain is eventually constant. Obviously, the poset P satisfies the
DCC iff its dual satisfies the ACC.
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Some examples are appropriate. If P is finite, it satisfies both the ACC and the
DCC. Also, if P is any set, we can make P into a poset that satisfies both chain
conditions simply by defining < so that a < b iff a = b. More interesting are the
examples

P={l/n|neZ,n>0}

and
Q={1-1/n|neZ,n>0}.

It should be clear that P and Q are linearly ordered posets with respect to ordinary
inequality and that P satisfies the ACC but not the DCC and Q satisfies the DCC
but not the ACC.

We give one more example. Let Z be the additive group of the integers and let P
be the poset of all subgroups of Z. Every nontrivial subgroup of Z has finite index,
andsoif H; € H, C - - - is any ascending chain containing some nontrivial subgroup
H,, then there are only finitely many different subgroups H,, with m > k, and so
the chain is eventually constant. If the given chain has no nontrivial member, then,
of course, 0 = H, = H; = H; = .-, and in this case too, the chain is eventually
constant. It follows that P satisfies the ACC. It does not, however, satisfy the DCC
since, for instance,

(2) > (4) > (8) > (16) > --- .

Before we return to algebra, we need to consider two more conditions on a poset
P: the “maximal” and “minimal” conditions. If § C P, we say thata € Sisa
maximal element of S if there is no element b € S with b > g. Similarly,a € §
is minimal if there is no b € § with b < a. Of course, if § is nonempty but finite,
it necessarily contains both maximal and minimal elements. (There may be more
than one of each, and some elements of $ may be both maximal and minimal.) In
general, however, nonempty subsets of a poset may fail to have maximal or minimal
elements.

The poset P satisfies the maximal condition if every nonempty subset has a
maximal element and, dually, it satisfies the minimal condition if every nonempty
subset has a minimal element. Of course, finite posets satisfy both the maximal and
minimal conditions.

(11.2) LEMMA. Let P be any poset. Then

a. P satisfies the ACC iff it satisfies the maximal condition and
b. P satisfies the DCC iff it satisfies the minimal condition.

To prove Lemma 11.2 we need to venture more deeply into the realm of set
theory and discuss the axiom of choice (which we accept as “true” and use with only
the slightest hesitation).

Let S be a collection of nonempty sets. If X € S, we can certainly choose an
element x € X. This, of course, does not require any mysterious axiom; it follows
from the definition of what it means to say that X is “nonempty.” Now suppose we
wish to build a “machine” to do the job for us and select x € X whenever X € S.
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This may be an easy task. For instance, if each X consists of only some natural
numbers, we can program our machine always to choose the smallest x € X. This
“one line program” will do the job. As another example of where we could build
our machine, consider the case where the collection S of sets is finite. We can go
through all X € S and make a selection in advance of x € X for each X. We
can now explicitly design our machine to return our preselected choice when it is
presented with any X € S.

In the case where S is infinite, we cannot, in general, go through all X € S and
for each one make an explicit choice of x € X (although, as we have seen, this can
sometimes be easy, depending on the particular collection of sets). In essence, the
axiom of choice says that a “choice machine” can always be built. In other words,
there exists a choice function f : § — | JS such that f(X) € X forall X € S. The
axiom tells us only that this functions exists; it gives no clue as to its construction.

We stress that we have been using the word “machine” metaphorically here. The
axiom of choice definitely does not guarantee the existence of an actual algorithm
that could be programmed on a real computer. On the contrary, the axiom of choice is
useful precisely when no such algorithm exists. It allows us to assume the existence
of a choice function even when there is no choice algorithm,

We illustrate the situation with this example: Given infinitely many pairs of
shoes, an easy rule that serves to pick one shoe from each pair is to choose the right
shoe. If we are given infinitely many pairs of socks, however, the axiom of choice
is needed to guarantee the existence of a rule to pick one from each pair, but it does
not tell us how to do it.

Proof of Lemma 11.2.  Part (b) follows from (a) if we replace P by its dual poset,
and so we prove only (a). If P satisfies the maximal conditionanda; < a, < - - -
is any ascending chain, let § = {a; | { > 1}. Since § # &, the maximal
condition guarantees the existence of a maximal element a € S and we can
write @ = a, for some n. Since a,, > a, for m > n, we have am = a, for these
m, and the chain is eventually constant and P satisfies the ACC.

Conversely, assume P satisfies the ACC and let S € P be nonempty.
Suppose § has no maximal element. Then for every a € S, the set

S@)=1{beS|b>a)

is nonempty. By the axiom of choice, there exists a choice function that selects
some element b € S(a) for every a € S. In other words, there exists f:8—>S§
such that f(a) > a foreverya € §.

Now choose a € S and define a, € § inductively by setting a; = a,
a; = f(ay), and in general, forn > 1, leta, = f@a,-). Thena, <a; < ---
is an ascending chain in P in which no two consecutive terms are equal. This
contradicts the ACC and completes the proof. |

Finally we return to algebra. Let M be an abelian X -group and consider the
poset of all X-subgroups of M ordered by inclusion: <. We say that M is noetherian
(after Emmy Noether) if this poset satisfies the ACC. Also, M is artinian (after Emil
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Artin) if it satisfies the DCC. (Often, and somewhat improperly, one says that M
satisfies the ACC or DCC if it is noetherian or artinian.)

Of course, if M is finite, it is both noetherian and artinian. Taking X = @, we
see that Z, the additive group of the integers, is noetherian but not artinian. For an
example of an artinian but not noetherian group (with X = @), fix a prime number
p and consider the multiplicative subgroup of the complex numbers consisting of
all elements with order a power of p.

A finiteness condition we have already studied, finite composition length, can
be viewed as “decomposing” into the two chain conditions. This is the content of
our next result.

(11.3) THEOREM. Let M be an abelian X-group. Then M has finite composi-
tion length iff M is both noetherian and artinian.

Proof. Suppose M is both noetherian and artinian. Let S be the set consisting
of those X-subgroups of M that have finite composition length, and note that
S # @ since 0 € 8. Our goal is to show that M € S.

Since M is noetherian, the poset of all X-subgroups of M satisfies the
maximal condition by Lemma 11.2, and hence there exists a maximal element
S in §. We may assume that S < M and we let 7 be the collection of all
X -subgroups of M that properly contain S. Since M € T, we see that 7 is not
the empty set, and since M is artinian, Lemma 11.2 guarantees the existence of
some minimal element 7 € 7.

Now T > §, but there does not exist any X-subgroup U with T > U > §,
because otherwise U € 7 and this would contradict the minimality of 7. We
conclude, therefore, that T/ S is X -simple, and so we can append T to the end of
an X -composition series for S and get an X -composition series for 7. Therefore
€T) <ocandhence T € S. Since T > §, this contradicts the maximality of
S.

Conversely, assume that M has finite length. If § € S, € --- is any
ascending chain of S-subgroups, then since M is abelian, each S; <« M and so

6€S$) =) < < ElM) <0

by Lemma 10.7. It follows that the sequence {£(S;)} of integers is eventually
constant, and for some integer n > 1 we have

e(sn) = E(SM—I) = ..,

By Corollary 10.8, this forces S, = S, = - - -, and hence M is noetherian.
If, onthe otherhand, $; 2 $; 2 - - - isany descending chain of X -subgroups,
then by Lemma 10.7,
£(8) = £(8) = -+,

and the sequence of integers {£(S;)} must eventually be constant in this case,
too. Reasoning as above and using Corollary 10.8, we have §, = S,,; = ---
for some n, and therefore M is artinian. [
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