182 CHAPTER 9. PROPERTIES IN QUANTUM PHYSICH

system possesses values for its physical quantities in a way that is analogous to thal
in classical physics. We shall derive an inequality that is satisfied by certain corre
lation functions in any such theory which is also local. We shall then see how the
predictions of quantum theory can violate this inequality. Since Bell’s original worl,
many examples of ‘Bell inequalities’ have been discovered, and the one employed here
is chosen because of its simplicity (see Redhead (1989) for more discussion of this
particular example).

The considerations of EPR were concerned with two observers who make mea-
surements along the same axis. John Bell found his famous inequalities by asking
what happens if the observers measure the spin of the particles along different axes.
In particular, we consider a pair of unit vectors a and a’ for one observer, and another
pair b and b’ for the other. Now suppose a series of repeated measurements is made
on a collection of systems whose quantum state is described by the vector [¢) in Eq.
(9.29); for example we could look at a series of decays, each of which produces a pair
of particles with zero total spin angular momentum. The central realist assumption
we are testing is that each particle has a definite value at all times for any direction
of spin. We let a,, denote 2/h times the value of a - S possessed by particle 1 in the
n’th element of the collection. Thus a, = £1ifa-S = u_nwm.

The key ingredient in the derivation of the Bell inequalities is the correlation
between measurements made by the two observers along these different directions.
For directions a and b this is defined by

1 N
C(a,b) := %WWM:"H @nbn, (9.31)
and similarly for the other directions. Note that if the results are always totally
correlated then C(a,b) = +1, whereas if they are totally anti-correlated we get

C(a,b) = —1.
Now look at the quantity

Gn = Gnbn + apbl, + aLb, — a,bl,. (9.32)
For any member n of the collection, each term in this sum will take on the value +1 or
—1. Furthermore, the fourth term on the right hand side is equal to the product of the
first three (because (a,)? = 1 = (b,)?). Then thinking about the various possibilities
shows that g, can take on only the values £2. Therefore, the right hand side of the
expression
1 N
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representing the average value of g,, must be less than or equal to 2. Thus, in the
limit as N — oo, we get

|C(a,b) + C(a, b)) + C(@,b) — C(a,b')| < 2, (9.34)
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which is one of the famous Bell inequalities.

It is important to emphasise that the only assumptions that have gone into proving
Eq. (9.34) are:

1. For each particle it is meaningful to talk about the actual values of the projection
of the spin along any direction.

2. There is locality in the sense that the value of any physical quantity is not
changed by altering the position of a remote piece of measuring equipment.
This means that both occurrences of a,, in Eq. (9.33) have the same value, i.e.,
they do not depend on the direction (b or b’) along which the other observer
chooses to measure the spin of particle 2. In particular, we are ruling out the
type of context-dependent values that arose in our discussion of the Kochen—
Specker theorem.

We shall now show that the predictions of quantum theory violate this inequal-
ity over a range of directions for the spin measurements. The quantum-mechanical
prediction for the correlation between the spin measurements along axes a and b is

2

O(a,b) = (3) Wla 8w @b -8l (9.35)
where WE and w@ are the spin operators for particles 1 and 2 respectively, and the
tensor product is defined as in Eq. (8.30). Since the total angular momentum of the
vector |¢) in Eq. (9.29) is zero, it is invariant under the unitary operators which
generate rotations of coordinate systems (cf. Sections 7.1-7.2). This means that
C(a,b) is a function of cosfy, := a - b only, and hence there is no loss of generality
in assuming that a points along the z-axis and that b lies in the z—z plane. Then
Eq. (9.35) becomes

C(a,b) = (Y| 01, ® (02, 0SBy + 025 5in Op) |2) (9.36)

where, for example, oy, is the z-direction Pauli spin matrix for the first particle. It
is now a straightforward calculation [Exercise| to show that

C(a,b) = — cos bu. (9.37)
Now let us restrict our attention to the special case in which (i) the four vectors

a,a’, b, b’ are coplanar; (ii) a and b are parallel; and (iii) O, = 6, = ¢ say. Then
the Bell inequality will be satisfied provided

|1+ 2cos ¢ — cos2¢| < 2. (9.38)

However, from the form of this function of ¢ sketched in Figure 9.1 we see at once
that the inequalities are wviolated for all values of ¢ between 0° and 90°.




