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JOURNAL OF MATHEMATICAL PHYSICS VOLUME 6, NUMBER 6 JUNE 1965 

Note on the Kerr Spinning-Particle Metric* 

E. T. NEWMAN AND A. I. JANIS 

Physics Department, University of Pittsburgh, Pittsburgh, Pennsylvania 
(Received 19 June 1964) 

It is shown that by means of a complex coordinate transformation performed on the monopole or 
Schwarzschild metric one obtains a new metric (first discovered by Kerr). It has been suggested 
that this metric be interpreted as that arising from a spinning particle. We wish to suggest a more 
complicated interpretation, namely that the metric has certain characteristics that correspond to 
a ring of mass that is rotating about its axis of symmetry. The argument for this interpretation comes 
from three separate places: (1) the metric appears to have the appropriate multipole structure when 
analyzed in the manner discussed in the previous paper, (2) in a covariantly defined flat space as­
sociated with the metric, the Riemann tensor has a circular singularity, (3) there exists a closely 
analogous solution of Maxwell's equations that has characteristics of a field due to a rotating ring 
of charge. 

INTRODUCTION 

RECENTLY, R. Kerr l has derived a new solution 
of the empty-space Einstein field equations 

which in some sense represents a spinning object 
with mass; its linearized version is a mass monopole 
plus the Lens-Thirring spinning-particle metric. The 
present note has two purposes. In the first section 
we give a curious "derivation" of the Kerr metric 
by performing a complex coordinate transformation 
on the Schwarzschild metric. In the second section 
we attempt to argue that the Kerr metric has certain 
characteristics that suggest a metric arising from 
a ring of mass rotating about its axis of symmetry. 
There are three points to the argument: (a) In a 
covariantly defined flat space, the Riemann tensor 
considered as a field defined on the flat space is 
singular on a ring, (b) there is a very close analogy 
between the Kerr metric and a solution of Maxwell's 
equations having characteristics of a rotating ring 
of charge, and (c) using the definitions of the gravita­
tional multipoles given in the previous paper2 it is 
seen that the Kerr metric is compatible with the 
structure of a rotating ring of mass. 

"DERIVATION" OF KERR METRIC 

The Schwarzschild metric, written in standard 
coordinates, is 

It can be transformed by the coordinate trans­
formation 

* Supported in part by Aerospace Research Laboratories, 
Office of Aerospace Research, U. S. Air Force. 

1 R. P. Kerr, Phys. Rev. Letters 11, 237 (1963). 
2 A. I. Janis and E. T. Newman, J. Math. Phys. 6, 902 

(1965). 

u = t - r - ro In (r - ro), 

8' = 8, q,' = q" 

into the form (dropping the primes) 

ds2 = (1 - ro/r) du2 + 2 du dr 

r' = r, 

- r2(d82 + 8in2 8 dq,2). (2) 

(The surface u = constant is a spherically symmetric 
null surface.) 

The contravariant components of the metric [Eq. 
(2)], namely 

lO = 0, gll = -(1 - ro/r), gl2 = 1, 

l2 = -1/r2, g33 = -l/r2 sin2 8, 

can be written in the alternate form 

g#" = l"n" + l"n# - m#ffi' - m'ffi#, (3) 

where 

(4) 

_# 1 (~# i ~#) 
m = v'2 r U2 - sin 8 U3 • 

This complex null tetrad system forms the starting 
point of the "derivation" of the Kerr metric. "Der­
ivation" is put in quotation marks because there 
is no simple, clear reason for the series of operations 
performed on the tetrad to yield a new (different 
from Schwarzschild) solution of the Einstein equa­
tions, or even to yield a solution of the empty-space 
equations at all. Nevertheless, we do obtain a new 
solution. 

[Kerr has recently shown (in a private communica­
tion), from the Einstein field equations, that this 
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type of operation works for the class of solutions, 
gpo = flp> + X2l"l •. This class contains the Schwarz­
schild metric as a special case.] 

The coordinate r is allowed to take complex values 
and the tetrad is rewritten in the form 

l" = ~i, n P = ~P - ! [1 - !:2 (! + !)J~p 
o 2 2 r l' 1, 

(5) 

_p 1 (~" i ~,,) 
m = v'2 r U2 - sin 0 U3 , 

l' being the complex conjugate of r. (Note that part 
of the algorithm is to keep l" and nP real and mP 

and m" the complex conjugates of each other.) We 
now formally perform the complex coordinate 
transformation 

r' = r + ia cosO, 

u' = u - ia cosO, 

0' =0, 

q/ = c{>, (6) 

on the vectors l", n", and m". (m'" is defined as the 
complex conjugate of m'''.) 

If one now allows r' and u' to be real, we obtain 
the following tetrad: 

- !{1 - ro[r'/(r,2 + a2 cos2 O)]} ~';, 

m'" = [v2 (r' + ia cos 0)r1 

X [ia sin O(~~ - ~';) + ~~ + (i/sin O)~~]. 

(7) 

The metric g'''' = l'''n'' + l"n'P - m'''m'' - m'>m'P 
can now be shown by a coordinate transformation 
to be equivalent to that of Kerr. 

INTERPRETATION 

The contravariant form of the Kerr metric can 
be written as (dropping the primes) 

the gO". being easily computed from Eq. (7). The 
form is dictated by requiring gO". to be independent 
of ro (or the mass m). By calculating the Riemann 
tensor it is seen that if ro goes to zero, then the 
space is fiat, which proves that gOP> can be looked 
on as a flat-space metric tensor which is covariantly 
defined by the Kerr metric. Another result from the 
study of the Riemann tensor is that the space is 
algebraically special, Petrov type ID, l" being one 

of the double principal null vectors. The vector l. 
is not, as it is in the Schwarzschild case, surface 
forming or hypersurface orthogonal, the constant a 
giving a measure of the curl of l". There are two 
real invariants (or one complex one) which can be 
computed from the Riemann tensor, namely 

'112 == Ra~'Y3lam~n 'Y m3 = -ro/2(r - ia cos 0)3. (9) 

It should be emphasized that one can not treat 
the coordinates r, 0, and c{> as usual polar coordinates, 
for even in the fiat-space limit (ro = 0), the metric 
gPO is not the polar coordinate version of flp>, the 
Minkowski metric. However the following coordinate 
transformation does lead to polar coordinates, T, 0, 
1/), and it == t - 1': 

1'2 = r2 + a2 sin2 0, tan,j) tan c{> - air 
= 1 + (a/r) tan c{> 

cos iJ = r cos 0/(r2 + a2 sin2 0)1, 

it = u - (r2 + a2 sin2 8)1 + r. 

(10) 

We have the situation that the Kerr metric has 
associated with it a fiat-space metric gOP> which 
allows us to define polar coordinates in the original 
nonfiat space. We can now ask where, as a function 
of the polar coordinates plotted in the associated 
fiat space, is the Riemann tensor, or its invariants, 
singular. Clearly '112 is singular at r = 0 and 0 = !1T, 
or in polar coordinates [from Eq. (10)] it is singular 
on the circle r = a, iJ = !1T. It is reasonable then 
to associate with the Kerr metric this ring singularity. 

The second point of our interpretation arises from 
noting the striking analogy between the Kerr metric 
and a solution of the Maxwell equations. First we 
will show the analogy between the Schwarz schild 
metric and the Coulomb field. The single invariant 
of the Schwarzschild Riemann tensor is '112 = 
-ro/2r3; the analogous invariane of the Coulomb 
field is 

;r.. - IF (l" '+ -p ') - /2 2 '*'1 = "2 ". n m m - -e r. 

If in these two invariants we substitute r = r' -
ia cosO [obtained from Eq. (6)], we get the invariant 
Eq. (9) for the Kerr metric and (dropping the prime 
again) for the Maxwell field we get the invariant 

<1>1 = -e/2(r - ia cos 0)2. 

It can be shown that this is a solution of Maxwell's 
equations expressed in terms of the original coor­
dinate system of the Kerr solution [Eq. (8) with 
ro = 0]; i.e., rand 0 are not polar coordinates. 

3 For a discussion of the invariants of the Riemann tensor 
and the Maxwell field tensor and the analogy between them 
see Ref. 2. 
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Using the coordinate transformation to polar coor­
dinates, Eq. (10), we can see that this solution is 
singular only on the circle r = a, and (j = !11'. The 
task of analyzing the multipole structure of this 
solution was rather laborious and only the first three 
terms were calculated with the following results: 
(a) the monopole moment is e; (b) there is no electric 
dipole and the magnetic dipole moment is propor­
tional to ea; (c) there is no magnetic quadrupole 
moment and the electric quadrupole moment is pro­
portional to ea2

; (d) there appears to be an alterna­
tion back and forth between the electric and mag­
netic type poles. 

This structure plus its singularity leads us to con­
clude that the field is due to a ring of charge rotating 
about its axis of symmetry with angular velocity 
proportional to a. 

The analogy between the Kerr solution and this 
solution of Maxwell's equations suggests that the 
Kerr metric represents a ring of mass rotating about 
its symmetry axis. This is substantiated by analyzing 
the multipole structure of the metric in terms of 
the definitions given in the previous paper. 2 The 

method consists of finding null surfaces in the Kerr 
space and introducing them as coordinate surfaces 
with an associated null tetrad system. A lengthy 
but not difficult calculation leads to results similar 
to that found in the Maxwell case; there exists (a) 
a monopole moment equal to m; (b) no mass dipole 
but a spin-pole proportional to ma; (c) no spin 
quadrupole but a mass quadrupole proportional 
to ma2

• 

From these three points we believe that our 
interpretation of the Kerr metric is reasonable.4 
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