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Inhibition in Speed and Concentration Tests:
The Poisson Inhibition Model

JaN C. SmrT AND AD H. G. S. vAN DER VEN

University of Nijmegen

A new mode! is presented to account for the reaction time fluctua-
tions in concentration tests. The model is a natural generalization of an
earlier model, the so-called Poisson—Erlang model, published by Pieters
& van der Ven (1982}, First, a description is given of the type of tasks
for which the model has been developed, Next, the new model, called
the Poisson inhibition model, is described. Each reaction time is
considered as series of alternating processing times and distraction
times. During processing, the transition rate from work to distraction is
assurned to be constant. Therefore, the number of distractions has a
Poisson distribution, During distraction, the transition rate from rest to
work is inversely related to the level of inhibition. The model is a limiting
case of a model in which inhibition is assumed to oscillate between a
lower and an upper limit. The present model is described in such a way
that computer simulations of the reaction times can be made. Further-
more, the moments of the reaction times are derived. At the end of the
paper it is shown that a description of the actual time series in terms of
the underlying inhibition process is in complete agreement with
Spearman’s theory about the universal factors, which are the general
factor and the factors oscillation and perseveration,  © 1995 Academic
Press, Inc,

INTRODUCTION

Pieters & van der Ven (1982), van der Ven & Smit (1982),
van Breukelen, Jansen, Roskam, van der Ven & Smit
(1987), and van der Ven, Smit & Jansen (1989) have
developed several models to account for the reaction time
fluctuation in concentration tests, which consist of over-
learned continuous response tasks, also referred to as
overlearned prolonged work tasks. In this article a new
model 1s presented, which is a natural generalization of an
earlier model, the so-called Poisson-Erlang (PE) model,
which was published by Pieters & van der Ven in 1982,
First, this paper describes the type of tasks for which the
models have been developed. Next, a short overview is given
of the models which have been developed in the past.
Following that, the new model, called the Poisson
inhibition model, is described. Finally, it is shown that the
interpretation of the main descriptive properties of the time
series in terms of the inhibition model is in complete
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agreement with the wuniversal factors postulated by
Spearman, which are g and oscillation and perseveration,

EXPERIMENTAL PARADIGM

The model to be presented here applies to the speed com-
ponent both in so-called speed tests and in concenfration
tests. The development of speed tests mainly originated
from the Anglo-American tradition of intelligence measure-
ment, whereas concentration tests come from the European
tradition. In contemporary intelligence measurement, speed
tests are time-limit tests in which all items can be solved if
the subjects are given unlimited time. Although the items
are relatively easy, they still may vary in difficulty. This
means that some items require more time than others.
Typical examples of present day speed tests are Name
Comparison, Tool Matching, Form Matching, and Com-
putation from the General Aptitude Test Battery, and
Reasoning and Number from the Primary Mental Abilities
Tests. It 1s the number of items correctly solved, given the
time limit, that provides the index of speed. This index,
however, is dependent not only on speed of work, but also
on the difficulty of the items. In order to study speed of work
as such, and especially its random variability, the items
should be of the same difficulty and an attempt should be
made to time individual items. This approach is used in
conventional speed tests. The conventional speed tests
required subjects to engage in repetitive activities, such as
letter cancellation, detecting differences in simple shapes,
adding three digits, and so on. In the majority of studies
however, no attempt was made to time individual items. At
the same time, exactly the same type of tests were used in
Europe. However, here, the duration of individual items or
groupings of items were measured and employed in the
assessment of subject performance. These tests, which are
actually speed tests in the conventional meaning of the
word, were refered to as concentration tests, The difference
Is not in test content or test instruction {Work as quickly
and as accurately as possible!), but in performance registra-
tion. Instead of one gross measure such as number of correct
items or total time needed to complete the test, individual
item scores such as the time needed to complete each
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separate item or groupings of items were used. The charac-
teristics of these two distinct trends in speed measurement
can be summarized in terms of differences between timing
procedures used and not in terms of test content. The model
to be discussed here requires the timing of individual items
or groupings of items, which is the case in concentration
tests. Therefore, these tests will be given more attention.

Concentration tests were already used in the very begin-
ning of this century. Binet {1900), for example, the author of
the well-known intelligence scale, reports an extensive study
on the measurement of concentration. He refers to it as “la
force d’attention volontaire.” He made use, among others,
of a so-called letter cancellation test originally proposed
by Bourdon (1895). This test consisted of crossing five let-
ters, such as the vowels of the alphabet, in a meaningful text
for 10 min. For each 1-min. period the number of crossed
letters and the number of errors was recorded. Binet was
well aware of the importance of the fluctuation in speed and
error suggesting the mean deviation as a measure of perfor-
mance. However, in reporting the final results he reported
only general level scores such as the mean number of
crossings and the mean number of errors during the first
and second 5-min. period. Moreover, the test was still
subject to learning. However, concentration tests should be
overlearned in advance, because the purpose of the test is to
measure ability to concentrate and not learning ability (as
is the case in reminiscence tasks, see below). Later, Abelson
(1911) reported a study on the measurement of mental
ability of “backward” children. As in the study of Binet, only
total scores 1.e., the total time to complete the test, were
reported.

Subsequent researchers became increasingly aware that
concentration test tasks should be relatively easy. Learning
effects should be avoided and the relevant information
should be found in the short term oscillation of the measure
of performance. Godefroy (1915) was probably the first to
stress the importance of the fluctuation in the response
times. He used the mean deviation of the response time as an
indication of concentration. Spearman, several decades
later, considered even oscillation to be a separate universal
factor; in addition to the general factor, g, and perseveration
(Spearman, 1927, p. 327). A typical manifestation of this
factor “...is supplied by the fluctuations which always occur
in any person’s continuous output of mental work, even
when this is so devised as to remain of approximately
constant difficulty.” (Spearman, 1927, p. 320). According to
Spearman “...almost any kind of continuous work can be
arranged so as to manifest the same phenomenon. In all
cases alike, the output will throughout exhibit fluctuations
that cannot be attributed to the nature of the work, but only
to the worker himself” (Spearman, 1927, p. 321).

At present the typical concentration test consists of a
simple mental task such as addition of one digit numbers,
cancellation of letters, crossing out sets of dots, etc. The task

SMIT AND VAN DER VEN

has to be performed for a relatively long period of time
varying from 10 to 30 min. Performance is measured by a
time series that consists of either a series of response times,
in which each response time is the result of a fixed number
of responses, or a series of response counts, in which each
count is obtained in a fixed amount of time. A well-known
example of the former is the Bourdon—Vos test (Vos, 1988),
which is a children’s version of the Bourdon—-Wiersma test
(see Huiskam & de Mare, 1947, and Kamphuis, 1962) used
in The Netherlands. A well-known example of the latter is
the Pauli test (see Arnold, 1975) used in Germany, which is
a single-digit addition task. The time series consists of the
number of additions per minute during a 30-min. period.
This article is lirnited to models for response times. In prin-
ciple it is possible to change these models into models for
response counts.

In concentration tests the subject responds in a self-paced
continuous manner. The person controls his own speed: the
subject’s response to each part releases the next one in the
sequence. He/she is not allowed to take rest pauses between
parts. This may result in a certain dependency of the item
response times. The mental state of a subject at the start of
a recording may be dependent on the mental state of the
subject at the end of the previous recording. Consequently
the consecutive item response times should be studied as a
time series.

TASKS OUTSIDE THE THEORY

Prolonged work tasks also occur in experiments on
reminiscence. The study of reminiscence has also a long
history, which is briefly described in Eysenck & Frith (1977,
Chap. 1}. “Reminiscence is a technical term, coined by
Ballard in 1913, denoting improvement in the performance
of a partially learned act that occurs while the subject is
resting, that is, not performing the act in question.”
{Eysenck & Frith, 1977, p.3). The reality of the phenomenon
was first experimentally demonstrated by Oehrn (1896). In
experiments on reminiscence the same task is always
administered twice or more. Learning curves are obtained
which usually include a pre-rest period of massed practice,
a rest period, and a post-rest period. The tasks which are
used are highly sensitive to learning. One 1s mainly inter-
ested in long-term trend effects, disregarding the short-term
fluctuations of the individual response times. In contrast
with reminiscence tasks, concentration tests typically con-
sist of tasks which are already familiar to the subject before
administration. Usually some practice trials are given before
the actual test is administered in order to eliminate any
remaining learning effects. In concentration tasks one is
mainly interested in the short-term fluctuations of the
response times. In reminiscence tasks the interest is
primarily in the long-term trend. Although the tasks used n
experiments on reminiscence are prolonged work tasks
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similar to the tasks used in concentration tests, they do not
belong to the domain of tasks that form the object of this
study. The models which will be discussed in this paper
apply only to concentration tests which consist of
overlearned, prolonged work tasks, that is, tasks in which
learning effects can be disregarded. However, it is quite
possible to enrich these models by assuming that some of
the parameters may change, dependent on practice.

Additionally, wigilance tasks are not the object of research
in this study. In vigilance tasks the subject is required to
keep watch for incomspicuous signals (either visual or
auditory) over long periods of time (one hour or more}.
Systematic scientific investigation of vigilance was initiated
by Mackworth (1950), who simulated the task of main-
taining radar watch for submarines by using a clock pointer
which moved on a series of steps. The subjects watched the
pointer and reported the relatively infrequent occasions on
which the pointer gave a double jump. “The most important
finding is the so-called vigilance decrement: the probability
of signal detection tends to decrease over time.” {Eysenck,
1982, p. 80). Unlike vigilance tasks, concentration tests con-
sist of stimuli (or items), which are presented over short
periods of time {10 to 20 min.), each requiring a response.
Responses occur frequently, instead of infrequentiy as in
vigilance tasks. In vigilance research one is mainly inter-
ested in studying the effect of fatigue or boredom. In concen-
tration tests, the task should be completed before fatigue or
boredom may play a role. However, the models which will
be discussed in this study can be adapted by allowing the
relevant parameters to change, dependent on fatigue or
boredom.

INHIBITION AS AN EXPLANATORY CONCEPT

Pieters and Van der Ven (1982} introduced the
explanatory concept of distraction to account for the
response time fluctuations occurring in concentration tests.
They assumed that the manifest response time should be
considered to be composed of a relatively constant {over
items or groupings of items) real total work time, inter-
rupted by a series of random distraction times. This led to
the formulation of the Poisson—Erlang model, which is
based on the following three assumptions: {1) each separate
distraction time has an exponential distribution, (2) the
number of distractions has a Poisson distribution, and (3)
the real total working time is constant over responses. The
notion of intermediate periods of distraction has already
been suggested by many authors; see Peak & Boring (1926),
Bills (1931, 1935, 1964), and Berger (1982).

The Poisson—Erlang model is able to account for the
short-term variation in the response times, but not for any
long-term trend effect, although in actual time series, this
effect usualily does occur. In many cases at the beginning of
the test, there is an increase in the reaction times, which in

267

the long run starts fluctuating at some stationary level
Picters & van der Ven (1982) and Pieters (1985} always
used some correction procedure to remove the long-term
trend from the data, before actually testing the model
However, since this phenomenon occurs very frequently, it
is much more plausible to assume that the emergence of a
long-term trend 1s a part of the distraction process itself.

In the past few years two alternative models have been
developed in order to account for the long-term trend and
the possible interdependency of the response times (van der
Ven & Smit, 1982, and van der Ven et al. 1989). Both
models are based on the assumption that distractions are
periods of recovery from accumulated inhibition. The
general assumption that during work inhibition increases
and during distraction inhibition decreases is made. The
1989 model is mathematically simple in comparison to the
1982 model. In the 1982 model, individual working and
distraction times both are dependent on the underlying
process of inhibition increase and decrease. In the 1989
model only the individual working times are assumed to
be dependent on inhibition. A reparametrisation of the
1989 model is given by Roskam (see van Breukelen e al.
1987). In the model to be presented in this article only the
individual distraction times are assumed to be dependent
on inhibition.

The Poisson inhibition model, as well as previously
developed inhibition models, is developed to account for the
sequence of RTs which can be observed when a single test is
administered to a single subject. The response (or reaction)
time 7, which the subject needs for a particular response in
the reaction time sequence, is modelled as the sum of
individual working and distraction times. The reaction time
T is observed, whereas the individual working and distrac-
tion times are /atent.

THE POISSON INHIBITION MODEL

The model is designed to explain the statistical properties
of a series of reaction times, 7, T, .., representing the
amounts of time a person uses on each one of a sequence of
tasks executed consecutively. As previously mentioned, it is
assumed that each task requires for its completion the same
amount of processing time, 4. The actual time 7 spent on a
task (the reaction time), exceeds 4 because of distractions
interrupting work on the task. So, T=A+ D, where
D=d,+d,+ - +d,is the sum of the distraction intervals
during this particular task. The durations d, of these distrac-
tions are random variables and so is their number . (No
special notation such as boldface or capital letters to denote
random variables will be used. Tt will be clear from the
context which variables are random variables.)

In an earlier model, the PE model, N has a Poisson
distribution and the d; are exponentially distributed, so D
has an Erlang distribution.
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In the PE model the successive reaction times constitute
a sequence of independent random variables with the same
distribution. Trend phenomena, often observed in actual
reaction time series, cannot be explained by this model. In
order to get a more adaptable model the above situation is
described as follows.

The person is alternately in state 1, processing or work,
and in statue Q, distraction or rest. Let X{¢) denote the state
the person is in at time ¢. Assuming X(7) to be a two state
continuous time Markov process (see Hoel, Port, & Stone,
1972), with constant transition rates A, and 4,, leads to the
PE model (transition rates: When in state 7 at time ¢, the
probability of jumping to the other state in the infinitesimal
time interval (7, t +d4t) is given by A, d¢). The intended adap-
tation of the model is obtained by allowing the transition
rates to vary according to the level of inhibition. Inhibition,
like fatigue, increases during processing and decreases
" during distractions. This idea has already been suggested by
Spearman when he relates oscillation in performance to
what he assumes to be an alternating process of energy con-
sumption (read inhibition increase) and energy recupera-
tion (read inhibition decrease) (see Spearman, 1927, p. 327).
The transition rate 4, and 2, are assumed to change with the
level of inhibition in such a way that when inhibition is high,
distractions will be long relative to the length of work inter-
vals. This causes inhibition to decrease. Likewise when
inhibition is low, distractions will be relatively short and as
a result inhibition will rise. This makes it plausible that
inhibition will tend to behave iike a stationary process, fluc-
tuating around a central region and tending to return to this
region whenever it finds itself outside of it. The possibility of
trend phenomena in the sertes of reaction times is thus easily
perceived. For example, if the initial inhibition happens to
be low, one will have short distractions (and hence short
reaction times) in the beginning. As a consequence, the
inhibition gradually increases and this causes distractions
(and hence also reaction times) to become longer. So, one
gets an upward trend in the reaction time series. The
opposite phenomenon, a downward trend in the reaction
time series, is to be expected when the initial inhibition is
high (relative to its stationary mean value).

The exposition of the mathematical model consists of the
following subsections:

1. Assumptions of the general inhibition model, the
Poisson inhibition model, and the beta inhibition model.
2. Simulation of the model.

The inhibition process ¥{(¢), stationary distribution,

4. Moments of ¥{¢).
5. Moments of reaction times {stationary case).
6. Trend and autocorrelation.
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1. Assumption of the General Inhibition Model, the Poisson
Inhibition Model, and the Beta Inhibition Model

The assumptions of the general inhibition (GI) model are
as follows:

(GIl. The person is alternately in state 1, processing,
or in state 0, distraction: X{r) denotes state at time ¢
Each task requires the same amount of processing time A.
So the successive tasks are completed at the moment
T, T\+7T,, T+ T,+T,, .. when the accumulated pro-
cessing time reaches A, 24, 34, ... (T, T,, ... constitute the
series of reaction times).

GI2. Inhibition denoted by ¥(t) increases linearly with
rate a, during work: Y'(¢} =a, when X{r) = | and decreases
linearly with rate &, during distractions: Y'(¢) = — a, when
X(5)=0.

(I3. The transition rates 4,, from state 1 to state 0, and
Ag, from state 0 to state 1, depend on inhibition: 4, = /{{¥),
Ay =1 1), where {, is a non-decreasing function and {,is a
non-increasing function.

Specification of the functions {, and /; leads to various
“special inhibition models.” One of these models, the
Poisson inhibition model, will be elaborated in the sequel.
In this model {, and I, are as follows:

Lin=c, {positive constant). {1}
In the Poisson inhibition (PI) model the transition rate
from state 1 to state 0 is constant. Since a task requires for
its completion (by assumption GI1) an amount of working
time A, and during this time interruptions occur with rate
¢, 1t follows that the number of distractions is Poisson
distributed with mean ¢; 4. This was the reason for the
“Poisson” in the name of the model:

ly)=coly for y>0 (c,a positive constant). (2)
The transition rate from state 0 to state 1 is given by A,(¢) =
L ¥(£)) = ¢,/ ¥{2). Note that as ¥(t) goes to zero (during a
distraction), the transition rate 14(7) goes to infinity and this
forces a transition to state 1 before the inhibition could
reach zero.

In order to ensure that ¥(t} is always positive the addi-
tional assumption that when a person is not performing a
task, his/her mind s alternating between states 1 and 0, with
transition rates given by the same functions 2,(r) =/,( ¥{¢)),
i=0, 1 is also made. However, the rate of increase of ¥{1)
when X(¢) =1 during a leisure period is less (say a,) than a,,
the rate of increase when X{¢) = 1 during performance of the
task. As a result the mean level of inhibition during leisure
periods is lower than it will be during tasks, as will be
demonstrated in subsection 3.
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The special choice of the functions /, and /| in the PI
model is motivated mainly by mathematical convenience.
This choice makes it possible to derive exact expressions for
the moments and the correlation function of the ¥{7)
process and the reaction time sequence. Other choices
may produce models with roughily the same behavior. One
such model has /,{y}=¢,/(1—y/M)=c, M/(M — ) and
Io( y) = ¢y/y. This model has ¥(7) fluctuating in the interval
between 0 and M. The stationary distribution for ¥{#)/M in
this case is a beta distribution (reasocn to call it the beta
inhibition {BI} model). The reader may check this assertion
for her- or himself following the steps set out in subsection
3 where the stationary distribution of ¥(t) for the PI model
is shown to be a gamma distribution. So the PI model might
as well be called the gamma inhibition model. For M — oo
the beta inhibition model converges to the PI model.

In order to reduce the number of parameters of the PI
model (five parameters: 4, ay, a4, ¢;, and ¢, ), one might fix
ay=1. That is, the assumption is made that inhibition
decreases with rate 1 during distractions. Since inhibition
18 not a directly observable (or measurable) entity this
assumption is guite reasonable. It amounts to measuring
inhibition in time units of distraction necessary to reduce it.

2. Simulation

2a. In order to understand how the model works, it is
helpful to use the constructive approach and explain how to
do computer simulations of the process involved. To this
end one needs to know the distribution of the lengths of
work intervals and distraction intervals. Since these inter-
vals are terminated by sudden transitions to another state,
first the general problem of finding the distribution of the
waiting time T to the first transition when the transition rate
Alt) changes with time is considered. Let F be the distribu-
tion function of T. The function G(¢)=1—F()=P(T>1)
satisfies

Gii+h=P(T>t+h)
= P(T>¢) P{notransition in (¢, 1 + #))

=GNl =AY R) for A (infinitesimally) small.

This yields

G(t+h) — G(1)

G- H

with /4 tending to zero one gets
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So, by integrating —A({¢} one may oblain In ({¢). Con-
sidering the initial value G(0)=1, In G(0}=0, one gets
In G(r) = — {4 A(s} ds and hence

G(t)=P(T>t)=exp[—.r/1(s) ds]. (3)

To obtain simulated values of the random variable T with
distribution function F, a standard method is applied. Solve
the equation G(t)="U for ¢, where G=1— F. This yields
t=G Y U), where G~ ! is the inverse function of G (which
is assumed to exist). Now, if I/ is a uniform (0, 1} random
variable (the usual random number), then the random
variable G~} U) has the same distribution as 7. This is
obvious from the following:

P(G~(U) > £) = P(U < G (1)) = G(1).

Note the reversal of the inequality sign caused by the fact
that G is a decreasing function; remember G(¢)=2P(7T>t).
This method is sometimes called the inverse distribution
function method, since solving G(z) = U for ¢ is equivalent
with solving 1—F(t)=U or Hi)=1- U=V, yielding
F~ V), where V=1 — Uis also a (0, 1) random variable.

2b.  Work intervals. For a work interval w starting at 1
with inhibition leve! y = ¥{(¢,) the transition rate at time
fo+ tis given by A(t) =1,y +a,¢). Since by (3) one has to
integrate this transition rate, it is convenient to introduce
the integrated forms (or primitive functions) L, (and L) of
I, {and [), which satisfy L'){ y) =/,( ¥} (and Lg(y)=I{(»)).

Integrating A(H)={{y+a,t) from 0 to ¢ gives
(la Y L{y+a,t)—L,{y)) and hence by (3) one gets

P(w>n)=expl —(1/a )(Li(y+a, )= Li{y)]. (4)

where the subscript y indicates that this probability is condi-
tional on the inhibition level y at the start of this work inter-
val. To obtain simulated values for w one has to invert G
defined by G(t}=P,(w>1) to obtain w=G~(U) as an
expression to produce simulated work intervals.

ExampLE a. In the PI model [i(y)=c,, 50 Li{p)=cp
and G(t)= P (w>t)=exp(—c,t). So work intervals may
be simulated by w= G~ U)= —(1/¢;} In U.

ExampLE b. In the BI model one has [{y)=
o M/(M—y), Li{y)=—c;MIn(M—y) Substitution
in {4) gives P (w>0)=((M~y—a,)}{(M— )™=
G(1). Simulation with w=G~'(U) yields w=a[ (M — y)
(1 . UHI/(’IM)_
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Note that the increase in inhibition a, w during this work
interval is always less than M — y, which ensures that the
inhibition in this model always remains below the upper
bound M.

2c. Distraction intervals. In a distraction interval
starting at time ¢4 at inhibition level y = ¥{¢,), the transition
rate is given by

Miy=1o(y —aot).

Integrating from 0 to ¢ gives —{1/ay)(L,{y —agt) — L (¥)), so
by (4) one gets

P(d>t)=exp[{1/ag)(Lo(y —agt) — Lo(¥))].  (5)

ExampLE. In the PI model (and the BI model)

I »y=coy~!, Lo{y}=cy In y. Substituting these functions
in {5) gives

P,(d> 1) =exp[ co/ag(In{y —aot) - 1In{y)))
=[(y—apt)fy]v™.

By invetsion of G (where G(t) = P (d> 1)) one obtains the
expression for the simulation of d (d=G~Y{U)):
d=(1/ag)(1 = U™<) y.

Note that the amount by which inhibition is diminished
during distraction agd = (a1 — U™ y is always less
than y, the inhibition at the beginning of the distraction.
This prevents inhibition from becoming negative. The mean
value of the decrease in inhibition a,d is calculated by
integrating a,d = (1/a,)(1 — U@ y over all values of U
between O and 1. This results in

Efaod)=(coag ' + 1) 7" y. {6)

2d.  Simulation of reaction times (for the PI model).
Let yo=Y(0) be given, the initial inhibition. The first
work interval w, Is generated by w, = —(l/c;)In U. The
subsequent distraction interval 4, is then generated by
d, ={1jag)(1 - U™} y, with y = yo+a,w,. The second
work interval w, is generated like w,. The second distrac-
tion d, is generated ke d, with y=yo+a,w,—a,d, +
a;w, and so on. To obtain a series of reaction times, one
keeps track of the accumulated work time. The first reaction
time is given by T, =4+ D}y, where D, is the sum of the
distractions occurring before the accumulated processing
time reaches A. Likewise T, = 4 +a, D, with D, the sum of
the distractions occurring between the moments when the
accumulated work time reaches {(k —1) 4 and k4.

SMIT AND VAN DER VEN

3. The Inhibition Process Y(t)

Since the completion of tasks is determined by the
accumulated working tune, it is convenient to adopt as time
parameter for the process ¥{f) not real time but accumulated
working time, With this convention, the evolution of the
process ¥(¢) 15 as follows. Let ¥(0) be the initial value of the
inhibition (random or fixed). During the first work interval
(duration w,), ¥(?) increases linearly with rate «,. So, for
0 <1< w,onehas ¥t} = ¥{0) + q,7. At t=w, there is a dis-
continuous downward jump of magnitude ad, caused by the
first distraction (duration 4,). During the second interval,
¥{#) rises again: for w <r<w, +w, one has Y{(r}= Y0} +
a,wy—apdy + a,(t—w) = X0} +a,t —ayd,. During the third
work interval (w, 4w, <t<w;+w,+w;), ¥(t)=Y(0)+
a,f—agyld, +d,), and so on. At completion of the first task,
t=A and

YA =Y0)+a,A4d—a Dy, {7

where D, is the total length of the distraction occurring
while working the first task. So, D, =aja;'4—
ay (Y(A4)— Y(0)), and since T, =4 + D,

T\=A+aa;'A—ay '(Y(4)— Y{0)). (8)
In the same way the nth reaction time T, equals
T,=A+aa;'A—a;(Y(nd)—Y((n—1) 4)). (9)

So, one sees that the sequence of reaction times Ty, T3, ..., 1s
determined by the increments of the process ¥(7) over the
(working) time intervals 0 to 4, 4 to 24, ...

As one wants to study the behavior of the raction time
series, one needs to investigate the distribution of the
inhibition process.

Let Fly, )=P(Y(r}<y) and f(y, t)={(d/dy) F(y,t)
denote the distribution and density function of ¥{¢). One has
the following equation for small /:

Fly+ah t+h)

—Fy, 0+ jw Flu, 1) 1(u) hP fagd > v — v} d.

hd

(10}

By way of explanation, the event “Y(t+h)< y+ah”
will certainly occur if already “¥(1)<y” occurs.
Moreover, it may occur when ¥(#) =u with u somewhere
between y and <o, provided a downward jump occurs
(probability /,(x) h); moreover, this downward jump in
the inhibition should be at least of magnitude u#— y to
ensure that ¥{z+4) is less than y +a,h The probability
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that the jump is large enough is given by P (a,d>u— v).
Making the proper substitutions in formula (5) (subsection
2¢) vields

Pfaod > = y)=exp(ag (Lo ) = Lofu))).
So (10) becomes
Fly+ah t+h)—Fyp, )
= hexpla LoD [ Sl 0 htw)

xexp(man‘l[,o(u)) du. (11)

Divide by # and let 4 tend to O:
a F(y, )+ F(y. 1)

=explay ' Lo(y)) | Al 1) 1i(w)

»

x exp( —ag ' Lo(u)) du.

The subscripts y and 7 in F, and F, stand for partia] differen-
tiation with respect to y and ¢, respectively. Note that
F,(y, )= f(y, t). One more differentiation with respect to y
gives

a] Fyy(y) t) +Fry(y: t)

=ag () F(y, )+ F{y. D)= F(y, ) i(y).  (12)
This partial differential equation might have (among other
solutions) a time-independent solution (for which the
derivatives with respect to ¢ vanish). If such a solution
exists (denoted by G(y), with density g(v}}, it should
satisfy Eq. (12) with F(y, ty=G(y), F,(y, )=g(»), and
£,.(¥, t)=g'(y) while time derivatives are zero:

a, g (y)=ag (y)a,g(p)—L(y)) g(¥),

(13)
gig(y) =ag biy)—ar 'Ly,

Qr

Ing(y)=aq 'Ly} —a; 'Liy)+C,

(14)
gly}=Kexplag'Lo{y)—ay ' Li(y)).
Here K is normalization constant making g a probability
density function. Whether g has a finite integral depends on
the form of L, and L. In the PI and BI models the integral
is finite.
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In the case of the PI model with Lg(y)=cyln y,
L,(y)=rc,y, one gets

g(y)=Ky=® exp(—ec,ar'y). (15)

This time-independent solution represents the so-called
stationary distribution of the process ¥{(r). If Y(¢) has this
distribution at ¢ = ¢4, then ¥(¢) has the same distribution for
all t = 4.

For the Pl process (15) shows that (in the stationary
case) ¢;a; ' Y{r) has a gamma distribution with parameter
p=cody '+ 1. S0, E{c;a; ' Y(1))=pand Var(c,a; " ¥{(2)) =p.
This implies that the stationary mean and variance of the
process Y(r) are given by

u=EY(D)=cr afcoa; +1)
and

o? =Var(Y(1)) =c, *al(coay ' +1). (16)

Note that x is proportional to a;, the rate of increase of
inhibition in state 1. Presumably, this rate of increase is
smaller during leisure periods (before and between the per-
formance of tasks). So, before the person starts working on
the task, the inhibition will fluctuate around a lower mean.
When doing simulations one might draw the initial inhibi-
tion ¥(0} from a distribution with mean value less than z.

4. Moments and Covariance of the Inhibition Process

Let g(¢) = E(Z( Y(t) —u)), where Z is a function of ¥{0)
and p=a,c; (cyay ' + 1), the stationary mean of ¥{(¢). It
will be shown that

g)=g(0)e®  with b=ccoay ' +1) '=au '

(17)

To this end it is sufficient to show that g satisfies
g'(r)= —bg(t). Look at the difference g(r+ A} —g(z) for
small &,

glr+h)y—g(n) = E(Z(Y(1 + 1) - Y(1)))

=E(ZE(YU+h)-Y()),  (18)

where E, stands for expectation given Y(f). For small A
one has Y({+h)— Y()=a,h—layd, where the random
variable J indicates whether or not a downward jump occurs
in (tf,1+h). So P(I=1)=c h If such a jump occurs, its



272

mean magnitude is given by (6) E,(ad) = Y(£)(coay '+ 1) 7!
=Xt)be;'. So, one has E(Y(t+h)—¥Y))=ah—
o hY(§) ber =hla, —bY(£)) = —bA{ ¥(t)—pu). This is sub-
stituted in (18); dividing by A, with # — 0, results in

gty = —DE(Z(Y(t) — 1)) = — bg(s).

Here are two interesting applications of (17). The first one
iswith Z=1:

E(Y(1)~p) = E(Y(0) ~pu) e ™"
or

E(Y(#)) =p +(E(Y(0)) —p)e ™ (19)
This shows that E{( Y(t)) tends to the stationary mean g.
The second application goes with Z = ¥(0)—m, with
my = E( Y(()). As a result one gets the covariance

Cov( ¥(0), ¥(1)) = E((Y(0) — mo)( Y(t) — u})
= E({ Y(0) —mo)( Y(0) —p)) e ™™

= Var( ¥(0)) e %" (20)
Of course, interdependence between ¥{0) and ¥{r) is the
same with ¥{s) and ¥{s +1). So,

Cov(Y(s), Y(s+ 1}y =Var{ ¥(s)) e ™" (2h
With a little more effort one also may derive a rather com-

plicated formula for Var( ¥{¢)) from which it follows that it
tends to the stationary variance as ¢ increases.

5. Moments of the Reaction Times (Stationary Case)

In this subsection the assumption that the process ¥(z) is
fluctuating stationary {as it might well do after running
some time) is made. So, for all ¢ one has E{(Y(1))=pu,
Var( ¥(t)) =2, and Cov( Y(s), Y(s+ 1)) =g’ % From the
relation

T,=(l+aja; ) A—al(Y(nd)~ Y((n-1)4)) (22)
one casily obtains mean, variance, and covariance of the
reaction times:

E{T"):A(1+a,a0"]) {23)
Var(T,)=2a;%6¢*(1—r) with r=e?* (24)
Cov(T,, T, )= —agta’ (1 —r) (25)

In particular, for k=1,
Cov(T,, T, )= —ay 26*(1 —r)% (26)
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Dividing by the variance one gets the correlation between
successive reaction times T, and T, ; {the autocorrelation
lag 1 of the series):

pi=—3(1=r)= =}l —e=)) @7)

So, the PI model predicts negative correlation between
successive reaction times.

6. Trend Phenomena in the Reaction Time Series

If E ¥(0)] =, is not equal to the stationary mean u
then by (19), E(Y(rnA)) =pu + (mg—u) r* with r=e~"4, So,
by (9) this causes an exponential trend in the reaction time
series:

ET)=(1+aa, YA+as (mg—pu)r '(L—r) (28)

This trend {in the expected values) is upward or downward
dependent on whether m, <u or m,>pu. However, since
Y(0} is a random variable, the actual trend observable in a
particular reaction time series depends on the particular
value y taken by ¥(0}. In fact, denoting conditional expecta-
tion given ¥{0)= y by E,, one has

E(T)={1+a1a5 ") A+ag (y—p}r"~(1=r). (29

So, if E( Y(0)) =my is less than u one will, more often than
not, get an initial inhibition y less than x4 and observe
upward trend.

SPEARMAN’S UNIVERSAL FACTORS

The three universal factors postulated by Spearman
(1927, page 327)—the general factor g, perseveration, and
oscillation—can be identified as a natural consequence of
the inhibition process postulated in the present model.

The general factor g (see Spearman, 1927, p. 75} is
related to the level of performance in a test and, for
example, not to the variability of the performance. The
general level of the reaction times can be defined as the
expectation of the reaction time when the process has
become stationary, that is E(7,}=A(1 +a,a;"). Spear-
man explicitly states, when referring to g, that “..that
which this magnitude measures has not been defined by
declaring what it is like, but only by pointing out where
it can be found.” (Spearman, 1927, p. 75). The question
of “what it is like” might now be tentatively answered in
terms of the PI inhibition model as the product of 4 and
{ay+a,)/a,, or, taking the logarithm of E(T,), as the
sum of In(4) and In({a, + a,)/a,). This fits in nicely with
Spearman: “After intelligence, the most widely supported
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interpretation of g seems to be as the power of attention.”
(Spearman, 1927, p. 88). The concepts “intelligence” and
“power of attention” can now be defined in terms of the
two parameters of the inhibition process. “Intelligence”
corresponds to the parameter 4, which 1s inversely related
to the speed of work. “Power of attention” corresponds to
the ratio a,/a,. If g is defined as the product of 4 and
(ao+ ay)/ag, one has to keep in mind that A itself is related
to accuracy (number of correct responses). It is usually
assumed that there exists a trade-off relationship between
speed and accuracy. Se, actually, ong might consider gasa
composition of three factors: 4 (or speed), accuracy, and
power of attention (or mental effort), expressed in the ratio
a fag.

It is generally assumed that these three factors are all
interdependent; e.g., according to Thurstone (1937), speed
and accuracy are dependent on effort {or motivation).
Spending more effort actually implies spending more
mental energy; that is, the rate of inhibition increase during
work intervals will be smalier, which implies that the ratio
a,ja, decreases. Taken together, the interdependency
between the three factors speed, accuracy, and effort might
be formulated as follows:

(1) When effort (visible in the ratio «,/q,) remains
constant, then there exists a trade-off relationship between
speed and accuracy.

{2) When the time nceded to accomplish the task
remains constant, that is, speed remains constant, then
any change in accuracy will be accompanied by a change
in effort. The effect of a change in effort can be measured
by the ratio «a,/a,. When a subject wants to work more
accurately without any loss in speed, then he/she has to
spend more energy. As a result, during work intervals, the
loss of energy at each moment of time will be at a lower
level. This is equivalent to the assertion that the rate of
inhibition increase during work intervals will be smaller.

(3} When accuracy remains constant, then any change
in speed will be accompanied with a change in effort, that is
in the ratio a,/a,. When a subject wants to work faster
without any loss in accuracy, he/she has to spend more
energy. As a result the rate of inhibition increase during
work intervals will be smaller.

If these postulates are true' then it is possible to examine the
relationship between speed, accuracy, and effort, with a
view to appraising mental ability or g independent of speed,
accuracy, and effort.

"' A re-analysis of the data from two experiments {the Bourdon experi-
ment and the Pauli experiment) described in van Brevkelen et al. [1987)
shows corroborating evidence. These results will be published shortly.
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In discussing oscillation Spearman remarks that “the
output of almost any kind of continuous work will
throughout exhibit fluctuations that cannot be attributed
to the nature of the work, but only to the worker himself.”
{Spearman, 1927, p. 321). The size of these fluctuations
can be expressed in terms of the variance of the reaction
times when the process is in its stationary state {formula
24Y). Spearman’s law of inertia, which he postulated to
account for the phenomenon of perseveration, can be seen
as follows: if the initial inhibition at the beginning of the
task deviates from its stationary value, then it will
take some time before the stationary state will be reached.
The speed at which this happens depends on the trend fac-
tor e %4, So, it seems obvious to define perseveration as
et

The general factor g and the factors oscillation and per-
severation are, according to the previously given defini-
tions, all dependent on the latent parameters A4, a,, 4,, ¢,
and ¢,. However, these are the parameters which govern
the underlying inhibition process and in that sense they
are more fundamental than the observable statistics such
as the stationary mean, the stationary variance, and the
growth factor in the exponential trend curve. It therefore
seems more appropriate in future ability measurement to
use direct estimates for these parameters mnstead of the
usual statistics such as the stationary mean.
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