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The purpose of this short write-up is simply to present the basic Kaluza-Klein theory, with particular
attention given to the five-dimensional metric g̃µν and the terms in the associated Ricci tensor R̃µν . There
seems to be no explicit derivation of these terms on the Internet, so I thought it might help the interested
student to sort things out. You may want to actually compute the various terms yourself and compare them
with the ones presented here, if only to practice your facility with tensor-juggling (I did them by hand, then
checked the results with MathTensor, so I believe they’re correct).

You may also be interested to know that the original 1921 theory has evolved into today’s string theory,
as both share the idea of using multiple extra space dimensions to describe the world. The most advanced
version of strings is known as M-theory, which utilizes an 11-dimensional spacetime having seven compactified
extra space dimensions – a far cry from Kaluza’s original single extra dimension!

By the way, Kaluza originally came up with his idea in 1919 and communicated it to Einstein in hope
that the great scientist would recommend it for publication. But Einstein, who expressed great admiration
for Kaluza’s idea, sat on it for two years before recommending it. I’m sure this did not sit well with Kaluza.

Notation

The notational history of higher spacetimes is annoyingly confusing (like that of early tensor calculus),
mainly because one normally denotes time as the “zeroeth” index and 1,2,3 for the space indices. Using “4” as
the index for the fifth dimension seems to be problematic, but no consensus seems to have ever been reached
by the scientific community. Here I will use “5” to denote the fifth dimension, so that time and the four space
dimensions will go like 0,1,2,3,5, even though this notation then invites the question of what happened to the
“4”.

In denoting the usual 4-dimensional spacetime indices I will use Greek indices (µ, ν = 0, 1, 2, 3), while the
full complement of five dimensions will be expressed by upper-case Latin letters (A,B = 0, 1, 2, 3, 5). When
this is not sufficient, I will place a squiggle over the quantity to denote its five-dimensional provenance (as in

R̃µν). This still does not provide total clarity (for example, the Ricci scalar in five dimensions is R̃ = gABRAB ,

while its four-dimensional form R̃ = g̃µνR̃µν looks the same).

I will denote ordinary partial differentiation with a single subscripted bar, as in

Aµ|ν = ∂νAµ =
∂Aµ
∂xν

while covariant differentiation will be denoted using a double bar, as in

Fλµ||ν = Fλµ|ν − F
λ
α

{
α
µν

}
+ Fαµ

{
λ
αν

}
where the terms in braces are the Christoffel symbols of the second kind.

Assumptions and Conventions

The primary assumption of the Kaluza-Klein theory (besides the fact that a fifth dimension actually exists)
is the independence of all vector and tensor quantities with respect to the fifth coordinate. Consequently, we
have identities such as gAB|5 = 0, gµν|5 = 0, Aµ|5 = 0, etc. This has come to be known as the “cylinder
condition,” since it implies that 4-dimensional spacetime lies along a cylindrical fifth dimension whose spacial
extent is small enough to render it “invisible” to the underlying subspace. It was Klein who first postulated
the idea that the fifth dimension is a cylindrical space having a radius roughly equal to the Planck length
(10−35 meter), a concept that conveniently explains why the fifth dimension has not been directly observed.
This same concept has been carried over to string theory, and it partially explains why this theory has been so
difficult to verify. Indeed, a space having the dimensions of the Planck length would require energies equivalent
to that of the Big Bang to resolve. If not overcome, this restriction may ultimately relegate string theory to
a kind of unprovable religious faith.
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The metric in five dimensions can be viewed symbolically as gAB = (gµν , gµ5, g55). The metric gµν rep-
resents the usual four-dimensional metric field, while the gµ5 is a vector that is to be identified with the
electromagnetic four-potential field Aµ. The remaining quantity g55 appears as a superfluous field; conse-
quently, this field is usually normalized to unity, but I’m going to call it the constant k. Lastly, following both
Kaluza and Klein, all the components of gAB are considered constants under differentiation with respect to
the fifth coordinate: gAB|5 = 0.

Introduction

Shortly after Einstein’s November 1915 announcement of his theory of general relativity, physicists initiated
efforts to generalize it in an attempt to develop a unified theory of the gravitational and electromagnetic
forces (the only two forces known at the time). Notable among these efforts were those of Weyl (1918) and
Kaluza (1921). In 1918, the German mathematical physicist Hermann Weyl used an intuitively-appealing
version of non-Riemannian geometry to embed the entirety of electrodynamics into the affine connection of
general relativity. Then in 1919 the Polish-German physicist Theodor Kaluza came up with another idea that
employed ordinary Riemannian geometry but with five dimensions (one of time, and four of space). Einstein
famously lauded Weyl’s theory, but quickly withdrew his support when he discovered that the theory was
not physical. Einstein similarly praised Kaluza’s idea, although Einstein and other prominent physicists of
the day were uncomfortable with the idea of a five-dimensional world (interestingly, Einstein himself played
with five-dimensional relativity on and off for several decades, even after the scientific community had cooled
toward the idea).

In 1926 the Swedish physicist Oskar Klein came up with some major improvements to Kaluza’s theory,
at which time it became universally known as Kaluza-Klein theory. But the theory languished for decades
until the early advent of string theory in the 1970s, when serious interest in extra dimensions experienced a
resurgence.

Kaluza’s Basic Idea

In early 1919 Kaluza sent a letter to Einstein forwarding a draft paper that he hoped Einstein would
endorse for publication. Kaluza’s paper desc ribed how the inclusion of an additional space dimension in
ordinary Riemannian geometry appeared to produce Maxwell’s equations in free space. Kaluza’s basic idea
was as follows. Generalize the symmetric metric tensor gµν by adding an additional row and column with the
quantities shown as follows:

gAB =


g00 g01 g02 g03 kA0

g01 g11 g12 g13 kA1

g02 g12 g22 g23 kA2

g03 g13 g23 g33 kA3

kA0 kA1 kA2 kA3 k

 (1)

where Aµ is an as-yet undefined vector and k is a constant. If we now fully expand the five-dimensional form
of the geodesics

d2xA

ds2
+

{
A
BD

}
dxB

ds

dxD

ds
= 0

(which can be derived by extremalizing the integral form of the line element ds2 = gABdx
AdxB), we get

d2xλ

ds2
+

{
λ
µν

}
dxµ

ds

dxν

ds
= −kFλµ

dxµ

ds

dx5

ds
− kgλ5Aµ|ν

dxµ

ds

dxν

ds
(2)

where Fλµ is the upper-index form of the Maxwell tensor Fµν = Aµ|ν − Aν|µ (a similar expression results for
the A = 5 geodesic). The first term on the right side looks just like the familiar Lorentz force term of a charged
particle if we identify k dx5/ds with the charge to mass ratio e/m. Largely on the basis of this result, Kaluza
believed the fifth dimension had something to do with electrodynamics, with the gµ5 being identified with the
electromagnetic four-potential and dx5/ds as a kind of charge current.

Unfortunately, (2) contains an additional term involving Aµ|ν , which is not a tensor quantity. Consequently,

Kaluza’s gAB cannot be a true tensor unless we set gλ5 = 0, which is also problematic. Indeed, Kaluza did
not identify the inverse metric field gAB (and I have not been able to elucidate its form, either). Further-
more, Kaluza’s form for the metric determinant |g|, which is necessary for the Kaluza action integral, is a mess.
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Klein’s Modification

Overall, Kaluza’s basic idea seemed promising, but it exhibited problems, the biggest of which seems to be
the fact that the metric is not a tensor. In 1926, the Swedish physicist Oskar Klein produced the first of two
papers that seemed to alleviate this problem (remarkably, he seems to have been unaware of Kaluza’s work).
Klein asserted that the metric actually takes the forms

g̃AB =


g00 + kA0A0 g01 + kA0A1 g02 + kA0A2 g03 + kA0A3 kA0

g01 + kA0A1 g11 + kA1A1 g12 + kA1A2 g13 + kA1A3 kA1

g02 + kA0A2 g12 + kA1A2 g22 + kA2A2 g23 + kA2A3 kA2

g03 + kA0A3 g13 + kA1A3 g23 + kA2A3 g33 + kA3A3 kA3

kA0 kA1 kA2 kA3 k

 (3)

g̃AB =


g00 g01 g02 g03 −A0

g01 g11 g12 g13 −A1

g02 g12 g22 g23 −A2

g03 g13 g23 g33 −A3

−A0 −A1 −A2 −A3 1/k +AµA
µ

 (4)

which, happily enough, give us the familiar identity g̃AB g̃
AD = δDB . More importantly, the metric determinant

of Klein’s metric is
g̃ = kg (5)

which can be verified by direct calculation. This, in itself, is something of a miracle: Klein’s five-dimensional
determinant g̃ is independent of the vector field Aµ. In my opinion, this is the key characteristic of the Klein
metric.

Klein’s four-dimensional geodesic comes out as

d2xλ

ds2
+

{
λ
µν

}
dxµ

ds

dxν

ds
= −kFλµ

dxµ

ds

dx5

ds
− 1

2
k AνF

λ
µ

dxµ

ds

dxν

ds
(6)

which again reproduces the Lorentz force term. This expression is now fully covariant, although the AνF
λ
µ

term does not have any classical correspondence.

Identification of Aµ with Electrodynamics

So far we have no real reason to believe that the Kaluza-Klein vector Aµ is related to electromagnetism.
In response to this, both Kaluza and Klein considered an infinitesimal change in the fifth coordinate,

x5 → x5 = x5 + ζ(xµ), or

δdx5 = dx5 − dx5 = ζ|µdx
µ

where ζ is some arbitrary scalar field such that |ζ| � 1. The five-dimensional line element ds2, given by

ds2 = g̃ABdx
AdxB = gµνdx

µdxν + 2kAµdx
µdx5 + kAµAνdx

µdxν + k
(
dx5
)2

must be invariant with respect to this variation. The subspace line element gµνdx
µdxν is automatically

invariant so we are left with

δds2 = 2kdxµdx5 δAµ + 2kAµdx
µ δdx5 + 2kAµdx

µdxνδAν + 2kdx5 δdx5

It is a simple matter to show that δds2 vanishes if and only if the variation of the vector Aµ satisfies δAµ = −ζ|µ;
that is,

Aµ = Aµ − ζ|µ (7)

This is the well-known gauge transformation property of the electromagnetic four-potential, and it strengthens
the identification of the Kaluza-Klein vector Aµ with the electromagnetic field. This, together with the ap-
pearance of a Lorentz force-like term in the geodesic equations, provided both Kaluza and Klein a tempting, if
still tentative, reason to believe that the fifth dimension has something to do with electrodynamics. But any
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hesitation these physicists may have had at this point was to be erased when Klein investigated the action
Lagrangian for the theory.

The Kaluza-Klein Action

It is well-known that Einstein’s path to the final expression of his theory of general relativity would have
been significantly shortened if he had simply considered the action approach to gravitation, which lies in
extremalizing the integral

IG =

ˆ √
−g R d4x (8)

where R = gµνRµν is the Ricci scalar. Variation of this integral with respect to the metric gives

δ IG =

ˆ √
−g

[
Rµν −

1

2
gµνR

]
δ gµν d4x (9)

from which we get the celebrated Einstein field equation for free space,

Rµν −
1

2
gµνR = 0 (10)

Klein naturally a ssumed that the action would generalize in five dimensions via

IKK =

ˆ √
−g̃ R̃ d5x (11)

=
√
k

ˆ √
−g R̃ d5x (12)

But before Klein could actually perform the variation, he had to calculate all the terms in the five-dimensional
Ricci scalar R̃ . This tedious but straightforward effort results in the following Christoffel identities, which I
will just write down without bothering with the details:{̃

λ
µν

}
=

{
λ
µν

}
+

1

2
k
[
AµF

λ
ν +AνF

λ
µ

]
,

{̃
λ
µλ

}
=

{
λ
µλ

}
+

1

2
k AλF

λ
µ{̃

5
µ5

}
= −1

2
k AλF

λ
µ,

{̃
A
55

}
=

{̃
λ
55

}
= 0,

{̃
λ
µ5

}
=

1

2
k Fλµ{̃

λ
λ5

}
= 0,

{̃
5
µν

}
=

1

2

[
Aµ||ν +Aν||µ

]
− 1

2
k Aλ

[
Aµ F

λ
ν +Aν F

λ
µ

]
This done, we can now calculate the Ricci terms. The Ricci tensor in our five-dimensional notation is

R̃AB =
˜{ D
AD

}
|B
−

˜{ D
AB

}
|D

+
˜{ D
AE

} ˜{ E
BD

}
−

˜{ D
DE

} ˜{ E
AB

}
from which we get (this is the only hard part!)

R̃µν = Rµν −
1

2
k
[
Aµ F

λ
ν||λ + Aν F

λ
µ||λ

]
+

1

4
k
[
FλνFλµ + FλµFλν

]
− 1

4
k2AµAνFαβF

αβ ,

R̃µ5 = −1

2
k Fλµ||λ −

1

4
k2Aµ FαβF

αβ , R̃55 = −1

4
k2 FαβF

αβ

Now, using
R̃ = g̃ABR̃AB

we get the simple result

R̃ = R+
1

4
k FαβF

αβ
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Klein did this exact same calculation, and at this point he must have fallen off his chair. He immediately saw
that, without even doing the variational calculation, the five-dimensional action (11) immediately leads to the
correct four-dimensional action for the combined gravitational-electromagnetic field:

IKK =

ˆ √
−g̃ R̃ d5x (13)

=
√
k

ˆ √
−g

[
R+

1

4
k FαβF

αβ

]
d4x

ˆ
dx5 (14)

Klein was initially bothered by the integral term over dx5(which gives infinity) but he quickly recognized that
if the fifth dimension was cylindrical, x5 could be viewed as an angular coordinate having the period 2πr,
where r is the cylinder’s radius. Upon further consideration (which I won’t repeat here), Klein determined
that this radius must be on the order of the Planck constant. Klein thus concluded that the fifth dimension
would be strictly unobservable.

The collapse of Klein’s five-dimensional Lagrangian to four dimensions is an example of dimensional re-
duction. This phenomenon has proved to be a powerful tool in modern gauge theories, because a coordinate
transformation in the higher space leads to a gauge transformation in the subspace. For the Kaluza-Klein
model, the gauge transformation in (7) is the result of an infinitesimal transformation of the coordinate x5.

Aftermath and Conclusions

The Kaluza-Klein model spurred considerable theoretical interest in the fifth dimension in the 1920s, and
numerous physicists (including Einstein) tried to advance the theory, particularly with regard to the problem
of matter and the possibility that gravity and the then-emerging field of quantum mechanics might somehow
be connected via the fifth dimension. But in spite of its startling formal mathematical beauty, the theory
made no new predictions with respect to gravity or electromagnetism, and the quantum connection seemed to
lead nowhere. By the early 1930s, researchers had lost interest, and the Kaluza-Klein model had joined the
ranks of other failed unified field theories.

In the early 1950s, Pauli tentatively proposed a six-dimensional Kaluza-Klein theory in an attempt to
develop a non-abelian theory that would accommodate the weak and strong interactions. This too failed, and
the concept of higher dimensions was pretty much scra pped until the 1970s, when string theory began to make
its appearance. The first string theories described only bosons, and to accomplish this theorists had to assume
the existence of 26 spacetime dimensions. Subsequent developments in string theory brought that number
down to ten, but there were still problems involving uniqueness. In 1995, Witten showed that a consistent,
unique theory of strings would require an additional spacial dimension, bringing the total to eleven. Since
the elucidation of a single compactified spacial dimension would require energies far beyond what are now
possible, the experimental detection of seven compactified spaces seems truly hopeless. Consequently, string
theory may never be testable.

Nevertheless, the Kaluza-Klein approach shows that compactified extra dimensions lead naturally to locally
gauge-invariant theories. If we view the fifth dimension x5 as an angular coordinate Θ, then the smallness
of the space makes the angle impossible to determine. The associated four-dimensional space sees this as
a local symmetry, and indeed it is a type of local gauge symmetry, as Kaluza-Klein demonstrated for their
assumed four-potential Aµ. This gauge-invariant aspect of compactified dimensions persists whether the extra
dimensions are real (as in the Kaluza-Klein theory) or some kind of internal degrees of freedom, like particle
spin.

The Kaluza-Klein theory is certainly tantalizing, and demonstrates that there may indeed be a profound
connection between gravitation and electromagnetism, involving perhaps the fifth dimension. My personal
feeling is that the theory’s seemingly magical ability to produce the combined gravititational-electrodynamic
Lagrangian may be nothing more than a lucky coincidence. The mathematical consistency of the Klein metric
in five dimensions, however, tempts one into thinking that there may be something to extra dimensions after
all. Hopefully, the renewed start-up of the European Large Hadron Collider, now scheduled for summer 2009,
will resolve the issue once and for all.
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