6 I. Reflection groups

1 Euclidean reflection groups

The goal of this chapter is to introduce Euclidean reflection groups. This will be
done in two ways. First of all, examples of reflection groups, in'the plane and in’'3-
space, are discussed in detail, Secondly, we provide, via a preliminary discussion
of Weyl chambers and invariant theory, ‘a suggestion of the beautiful structure
theorems that hold for reflection groups, and that explain the interest in such
groups. The dihedral and symmetric groups will receive particular attention.

1-1  Reflections and reflection groups

We shall work in ¢-dimensional Euclidean space E. In other words, E = RY where
R has the usual inner product. M

ore abstractly, E is a £-dimensional vector space
over R provided with a pairing

(L EXE—R #
satisfying:

() (ax+byz)= alx,z) + by, z)
(i) (%, p) = (p,x)
(iif) (x,x) > Oand (x,%) = 0ifand only if_x = Q.

(In the above x, y, z € I, while abeR)

We can define reflections either with respect to hyperplanes or vectors. First
of all, given a hyperplane H < E through the origin, let L = the line through

the origin that is orthogonalto H. (S0 L = H & L.} Then, define the Hnear
transformations sy : £ — F

SH-XxX=x ifxeH
Sgox=—x ifxel.

We can zlso define reflections with respect to vectors. This is the formul

ation we
shali be using. Given 0 # € E, let H, © E be the hyperplane

Ho = {x](x,a)=0}.
We then define the reflection s,: E —+ F by the rules

Sa x=x ifx g H,

S = —a

Observe: Given 0 # ke R then H, = Hy, and s, = 3,.

We shall call H, the reflecting hyperplane or invariant hyperplane of Sy, Here
are some useful properties of s, and H,

e

i. Euclide

Propertie

(A-1} sy
(A-2) sa.
(A-3) det
{A-4) Ife

To prove
prove (A-
(A-4), ob:
Hooo By
second fac
Beside:

On

be the on
reflection |
groups W
linear isol
W' Inot

A reflectic
W, when
by reflecti
QOur treat
finite and

The ¢
Chapter ]
vector spi
flection g
the trigon
Section 1-

Remark:

to our m
Group ac
Such actit

group act
tions of tt




flection groups

5. This will be
plane and in 3~
1ary discussion
tiful structure
aterest in such
attention.

E = Rf where
al vector space

vectors. First
-line through
ine the linear

rmulation we

of 5,. Here

1. Eudlidean reflection groups 7

Properties:

{A-1) s, x=x— %ﬁ—fuferaﬂxe E

(A-2) s, isorthogonal,ie., (s, %, 54 - y) = (x, y) forallx, y € E
{A-3) dets, = —1 _

(A-4) If is an orthogonal automorphism of £ then

@ He = Hy.q
0Sa0 ™ = S

To prove (A-1), check the effect of the RHS of the formula on H,, and on a. To

prove (A-2}, substitute formula {A-1) in (s, - x, 5, - ¥). To prove the first fact of

{A-4), observe that x € H, implies (¢ - x,¢ - o) = (x, ) = 0. Hence, ¢ - H, C

Hg.o. By comparing dimensions, we then have ¢ - H, = H,.,. To prove the

second fact of (A-4), check the effect of psa ™" on Hy,. = ¢ - Hyandon ¢ - o
Besides reflections, we also have the concept of a reflection group. Let

O(E) = {f: £ — Elinear and (f{oa),f(ﬁ)) = (a, ) for all @, 3}

be the orthogonal group of E. Given W < O{E), we say that W is a Fuclidean
reflection group if W is generated, as a group, by its reflections. Two reflection
groups W C O(E) and W' C O(E') will be said to be isomorphic if there exists a
linear isomorphism f: E — E’ preserving inner products and conjugating W to
W', In other words,

(fix), f(3)) = (x,y) forallx,y € E
Wt =w'

A reflection group W C O(E) is reducible if it can be decomposed as W = W x
W, where both W; ¢ O(E) and W, C O(E) are nontrivial subgroups generated
by reflections from W. Otherwise a reflection group will be said to be irreducible.
Qur treatment of reflection groups will include a classification of those that are
finite and irreducible.

The concept of a reflection as defined hiere can be generalized. Beginning in
Chapter 14, we shall deal with pseudo-reflections, the extension of reflections to
vector spaces over arbitrary fields, Our reason for beginning with Fuclidean re-
flection groups is that they possess a theory all their own. In particular, we can use
the trigonometry of the underlying Euclidean space to understand their structure.
Section 1-4 provides a good illustration of this process.

Remark: We shali generally write our groups multiplicatively. The one exception
to our multiplicative notation will be Z/#Z for the cyclic group with n elements.
Group actions on sets, G x § - §, are defined at the beginning of Appendix B.
Such actions will be used extensively throughout this book. We use “” to denote
group actions on a set. See properties (A-1J, {A-2) and {A-4), above, for illustra-
tions of this notation. :



