Lagrangian Dynamics 2008/09

Lecture 14: Rigid Body Motion — Introduction & Euler’s Equations

Section VII: Rigid Body Motion

Nomenclature: the motion of rigid bodies was studied in depth by Euler and Lagrange.
Their names are attached to equations (eg Euler’s equations of motion for a top) which are
unrelated to those met previously (Euler’s equation for stationarity of an integral). This is
confusing, but not as confusing as trying to give these equations new names.

Recap: A rigid body is viewed as a system of N particles, a = 1,---, N, with constraints

|r

T ™ fb| = pPqp = constant

for each pair (a,b). These are not all linearly independent, however. In three dimensions,
we end up with 6 degrees of freedom (see below).

For such a system, we showed )
ME — Eext

(centre of mass motion), and

L — Qext

We also showed, for angular momentum L about some stated axis and for kinetic energy 7T’

L = J+RxP (1)

T = T.ofmom 92 (2)
ie, the value in a general (inertial) frame is the value in the centre of momentum (c-of-mom)
frame plus a contribution from the motion of the centre of mass, treated as though it were
a point particle.

NB Remember that in the c-of-mom frame, the intrinsic angular momentum J does not
depend on the origin chosen (though, because of the second term in equation (1) this will
not be true for L in a general frame). Recall that the c-of-mom frame is an inertial frame (not
a rotating frame) in which the centre of mass is stationary, but not necessarily at the origin.
In such a frame, at least instantaneously, the motion of a rigid body is purely rotational.

Euler’s Theorem: Any displacement of a rigid body with one point fixed in space can be
described as a rotation about some single axis

This is surely obvious(!), and the formal proof is not illuminating. To specify a finite rotation
requires an axis (unit vector, two degrees of freedom) and a magnitude of the rotation (one
dof). Hence we will need 3 generalised coordinates to specify the centre of mass motion
and three for the angular motion. In practice, there are many ways to choose three angular
coordinates: we do not make an explicit choice at this stage.

The velocity of the system is usually specified by R(t) (the centre of mass motion) and w(t)
(the angular velocity about the centre of mass), ie, also six independent components.
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Technical Note: In choosing angular coordinates, there is some subtlety since finite rota-
tions about different axes do not commute. Hence (t) = [; w(#') dt' is not a valid generalised
coordinate; the same value of this quantity can be obtained for different sequences of ro-
tations and hence different actual orientations of the system. Hence the need for “Euler
angles” introduced later.

The Inertia Tensor: Working in the c-of-mom frame and choosing our origin at the centre
of mass, the instantaneous velocity of the a'" particle is

= w(t) xr,
The intrinsic angular momentum is therefore
i = Zza x Qa = Zma(fa X ia)
= D> ma(r,x (Wxr,) = Y margw =3 mar,(r, w) (3)
(using @ x (bx ¢) = (a-c¢)b— (a-b)c). The first term is a vector parallel to w, the second
term is a vector that is, in general, not parallel to w.

The intrinsic angular momentum J is thus a vector which depends linearly on w (for example,
J(2w) = 2J(w)) but need not be parallel to it. So there must be a relationship

J=1Iu (4)

where [ is a rank-2 tensor (which we represent in cartesian coordinates by a 3 x 3 matrix),
called the inertia tensor. In Cartesian coordinates, equation (4) becomes .J; = [;; w;. From
equations (3) and (4)), it is a straightforward exercise to show that

]ij = Z myg {7“(2151'3' - xa,ixa,j} (5>

or, in terms of explicit cartesians r = (24, Ya, za), We have

(yg, + ZCZL) —ZaYa —TgZq
I= Z e —TalYa (37621 + 22) —YaZa <6>
@ —TgZq —YaZa (l‘g + 3/2)

The expression for I explicitly involves the particle coordinates r , which are measured
relative to the centre of mass. For a rigid body, these coordinates can be taken as constants,
though this applies only in a frame of reference in which the body is completely stationary
(te, 7, = 0, Ya). For a body that is actually rotating, this is a noninertial frame, the body
frame which rotates and translates with the body. Despite this inconvenience, one defines
the inertia tensor I to be evaluated in such a frame, that is, with respect to a set of z,y, 2z
axes fized in the body. The inertia tensor is therefore a time independent characteristic of
how the mass is distributed in the body.

Kinetic Energy: In the centre of momentum frame, the KE is

1
T = nga(yXfa)-(gXta)
and (using (a x b)-c=a- (bx¢c))
1
T = gyzmarw(gxra) =

a
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Principal Axes: In this course, we will generally not need the explicit form of I found
above; we take I as given. But it is important that (however irregular the body) the tensor
I is symmetric. Hence there exist three real eigenvalues, Iy, I, I3, and three mutually

perpendicular eigenvectors e, e,, €

5
Choosing these to define new axes, the Principal Azes (PA), fixed in the body, we have the

diagonal form

L 0 0
I=10 Ihb O
0 0 I

Where (14, I3, I3) are the Principal Moments of Inertia. Moreover, in this coordinate system
J = (Lw, Lws, I3ws)
and
T = 1 (Ile + Lw? + Igw?)
9 1 2 3

Here lies the central problem: These “nice” axes are fixed in the body. But the body is
rotating. Hence in lab coordinates (or any other inertial frame), the principal axes have time-
dependent orientations. This is why rigid body motion is not a straightforward application
of linear algebra.

Shift of Origin: We have placed the origin of our coordinate system for the r’s at the
centre of mass O of the body. This is the best choice for a body undergoing arbitrary motion,
or whose centre of mass is constrained to be fixed in space. In systems where some other
point O’ is constrained to be fixed instead (for a spinning top, this is usually the point of
contact with the table) one can use the usual formula L = J + MR x P to calculate the
angular momentum L with respect to O'.

Centre
of Mass

Pivot at O’

However, by Euler’s Theorem, the result is the same as found by writing

L=TIw

where I’ is found by replacing O by O’ as the coordinate origin, in the explicit expressions
for I given in equations (5) and (6) above. The kinetic energy, including that of the centre
of mass motion, becomes, in the PA basis

1 1
T = A I'o = 5 (Lwi + Iw) + I303)
The tensor I’ is called the inertia tensor about the point O, as opposed to the “inertia tensor
about the centre of mass” which is, strictly speaking, the proper name for I. If O’ lies a
distance [ from the centre of mass along (say) the 3-axis, then, again in the PA basis, one
has
I, = I; I=1; Ij=I+ M

This is a simple example of the parallel-axes theorem proved in FoMP /T&F. In our discussion
of spinning tops, we will just write I, meaning I’ relative to the pivot where appropriate.
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Euler versus Lagrange: At this point there are two divergent approaches:

Eulerian Approach: Study equations in a noninertial frame (the body frame) rotating
with the body, so that principal axes are constant in time. Difficulty:

i — Qext

where G is (usually) specified wrt axes fized in space (ie in the lab). We can’t translate
G back into the body frame until after we have found the motion! In practice, the Eulerian
approach is therefore useful only for kinematics (motion without external forces): G = 0.

Lagrangian Approach: Choose a convenient set of generalised coordinates (in practice,
three angles specifying the orientation of the principal body axes with respect to another set,
fixed in space). Then construct £ and differentiate as usual to obtain equations of motion.
This is more powerful but less intuitive; we follow Euler’s approach first.

Euler’s Equations Of Motion: These describe motion in the principal axes frame S
rotating with the body — this is not an inertial frame. Consider Sy, an inertial frame insta-
neously coinciding with S. As we saw previously, if the instantaneous angular velocity of
the body is w, then for any vector A

[Als, = [Als +w x [4]s
Now, in the inertial frame Sy, we have the usual equation of motion
[i)s, =G =G

where G is the external torque on the system. (The label ext is implicit from now on.)
Accordingly in the body frame S

G=[Ls+wx[Ls
Now, since S is the frame of the principal axes (see above)
[L]s = J = (hwi, Iows, Izws)
In this coordinate frame, the equation for G therefore reads
(G1, Ga, Gs) = (L1wy, Laws, I3ws) + (w1, wa,ws) X (Liws, Taws, Izws)
or, expanding this out
Gi = Luw+ (I3 — L) wws
Gy = Luwy+ (I1 — I3) waw
Gs = Lws+ (I — ) wiwe
These are Euler’s Equations of Motion.

For the reasons stated above, the useful case is when G = 0; then Euler’s equations become

[1 d)l = (12 — Ig) Wals
]2(,2)2 = (]3 — Il)W3w1
Igd)g = (Il — _[2) W19



