
Derivation: Lorentz Transformations of Motion  

To reconcile the solutions of the Maxwellian equations of electromagnetism with the known 

laws of physics, the physicist Hendrik Lorentz derived a new set of equations for motion based 

upon the two following postulates: 

 Postulate one - The laws of physics hold true for every inertial frame of reference. 

 Postulate two - The velocity of light is magnitude (c) in a vacuum independent of the 

motion of any frame of reference. 

Let us begin by imagining two observers, one with relative motion to the other of velocity (v) 

along the x axis. Let us track events by defining the time and spatial coordinates: for observer 

one, the time elapsed and distance traversed can be defined as (x,t). In a similar manner, for 

observer two, the time elapsed and distance traversed can be of definition: (x′,t′). Let the origin 

of the observer’s coordinates coincide, x = t = x′= t′= 0 

Let us now track the time and spatial coordinates of a beam of light relative to the two observers. 

As the beam propagates along the positive x axis, the coordinates are (x – ct) = 0, and similarly, 

(x′ - ct′) = 0 

Along the negative x axis is (x + ct) = 0, and (x′ + ct′) = 0 

It is of importance to recognize that for the concision of the origins to remain, a number of 

change gamma (γ) must be applied to the equations: 

(x′ - ct′) = γ(x – ct) and along the negative axis, in a similar manner (x + ct) = γ(x′ + ct′) 

The easiest way to conceptualize the placement of the number gamma in the equations is to 

understand that the sign of propagation along the x axis is relative to which observer you are 

thinking about, and recognizing that the velocity relative to one observer is of the same 

magnitude to that of the other. 

Solving for gamma in one equation, and substituting it into the other produces: 

(x′ - ct′) = 
(𝑥−𝑐𝑡)(𝑥+𝑐𝑡)

(𝑥′+𝑐𝑡′)
, or 

 

x′2 - c2t′2 = x2 – c2t2 

It is the equation of the form above that allows for us to solve for how the coordinates are 

relative to each other. Understanding that velocity v = 
𝑥′

𝑡′
 = 

𝑥

𝑡
 and solving for t′ yields: 

t′2 = t2(1-
𝑣2

𝑐2) + x′2 

Allowing for x′ to go to zero, we obtain: 

Eq 1) t′γ = t = 
𝑡′

√1−𝛽2
 , where β = 

𝑣

𝑐
 and γ = 

1

√1−𝛽2
 (time dilation) 



In a similar manner, solving for x yields: 

x′γ = x = 
𝑥′

√1−𝛽2
 (length contraction) 

Let us now track the position of an observer relative to the other. Taking a general case of an 

object in motion, Eq 2) x = γ(x′ + vt'). Now assuming that 
𝑥′

𝑡′
 = k, the velocity of a third body 

moving relative to the second, we search for an equation of the velocity of the third relative to 

the first.(w = 
𝑥

𝑡
 ). Working with Eq 1), we obtain: 

t′ = γ(t - 
𝑣𝑥

𝑐2) 

Understanding what happens when we exchange places with the prime observer, we obtain: 

Eq 3) t = γ(t′ + 
𝑣𝑥

𝑐2
 ) 

Dividing Eq 2) by Eq 3), we arrive at a useful velocity addition equation: 

w = 
𝑥

𝑡
 = 

𝑘+𝑣

1+(𝑣𝑘)/𝑐2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Derivation: Special Theory of Relativity  

Were Lorentz is credited with the transformations of motion, Einstein takes the transformations 

and applies them. We begin by noting the momentum of a particle in motion, p = mv. As 

consequence of the Lorentz transformations, the particle, and its attributes will likely change as it 

has relative motion to an observer. Let us note that the particle’s momentum at time (t) is at rest, 

and (t′) represents the particle’s motion relative to an observer. 

Since t = 
𝑡′

𝛾
 , and p = mv = m

𝑑𝑥

𝑑𝑡
, we obtain: 

p = m
𝑑𝑥

𝑑𝑡′
(𝛾) = mvγ 

Recall that Force dotted with displacement is of equivalence to work, 

dw = Fdx = m
𝑑𝑣

𝑑𝑡
dx = (mv) dv = (v) dp 

We have concluded that an infinitesimal amount of work being done is equivalent to the object’s 

velocity multiplied into the infinitesimal momentum being changed. 

Differentiating p with respect to v yields: 

dp = (mγ + 
𝑚𝑣2

𝑐2(1−𝛽2)
3
2

 
 )dv 

Multiplying though by v, and applying the work equation: 

dw = vdp = (mvγ)dv + (
𝑚𝑣3

𝑐2(1−𝛽2)
3
2

 
)dv 

By summing the infinitesimal work being applied from zero velocity to the observed velocity, 

we get the energy it takes for the particle to reach velocity v, or the kinetic energy of the particle: 

∫ 𝑑𝑤
𝐾𝐸

0
 = ∫ (

𝑚𝑣

(1−𝛽2)
1
2

)𝑑𝑣
𝑣

0
 + ∫ (

𝑚𝑣3

𝑐2(1−𝛽2)
3
2

 
)𝑑𝑣

𝑣

0
 

Taking m to be a constant scalar multiple from any frame of reference, recalling that   β = 
𝑣

𝑐
 and  

γ = 
1

√1−𝛽2
, and applying integration by parts to the integral furthest right, we obtain: 

KE = -mc2 + mc2√1 −  𝛽2 +mv2γ 

Algebraic steps yield: 

KE = mc2(γ-1) = mc2(
1

√1−𝑣2/𝑐2
− 1) 

Allowing for the relative motion to fall to zero, we get the energy of potential to be: 

PE = mc2, using the knowledge that the total energy of an object is PE + KE, 

E = mc2γ 



We have now arrived at the famous mass-energy equivalence equations. Let us now take a 

further step in an attempt to relate momentum to energy. Recall in classical mechanics that     

 KE = 
𝑚𝑣2

2
, and p = mv, where the common relation between momentum and energy is 2KE = 

𝑝2

𝑚
, 

now understanding the new relativistic momentum and energy equations, we know that v = 
𝑝𝑐2

𝐸
 , 

where this substitution into E = 
𝑚𝑐2

√1−𝑣2/𝑐2
 yields: 

E2 = (pc)2 + (mc2)2 

We have thus achieved the relativistic equations of energy and momentum. One step further 

shows to us that the classical equations which predict the energy and momentum of particles are 

in accordance with the relativistic equations of motion. 

γ = 
1

√1−𝛽2
 

Using the Taylor expansion form of gamma, we obtain the γ = 1 + 
𝑉2

2𝑐2 + 
3𝑣4

8𝑐4 … 

Understanding the equation E = mc2γ, we see that when v≪c, E ≈ mc2 + 
𝑚𝑣2

2
, where the energy 

of gain under application of a force is 
𝑚𝑣2

2
 which is consistent with the classical equations of 

motion. 

 

 

 


