
March 7, 2013

LQG for (and by) the Bewildered

Sundance Bilson-Thompsona Deepak Vaidb

aSchool of Chemistry and Physics, University of Adelaide, Adelaide SA, Australia

E-mail: sundance.bilson-thompson@adelaide.edu.au, dvaid79@gmail.com

Abstract: We present a pedagogical introduction to the notions underlying the connection

formulation of General Relativity - Loop Quantum Gravity (LQG) - with an emphasis on

the physical aspects of the framework. We explain, in a concise and clear manner, the

steps which lead from the Einstein-Hilbert action for gravity to the construction of the

quantum states of geometry, known as spin-networks, which provide the basis for the

kinematical Hilbert space of quantum general relativity. Along the way we introduce the

various associated concepts of tetrads, spin-connection and holonomies which are a pre-

requisite for understanding the LQG formalism. Having provided a minimal introduction

to the LQG framework, we discuss its applications to the problems of black hole entropy

and of quantum cosmology. A list of the most common criticisms of LQG is presented,

which are then tackled one by one in order to convince the reader of the physical viability

of the theory.

An extensive set of appendices provide accessible introductions to several key notions

such as the Peter-Weyl theorem, duality of differential forms and Regge calculus, among

others. The presentation is aimed at graduate students and researchers who are familiar

with the tools of quantum mechanics and field theory but are intimidated by the seeming

technical prowess required to browse through the existing LQG literature. Our hope is to

make the formalism appear a little less bewildering to the un-initiated and to help lower

the barrier for entry into the field.
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1 Introduction

The goal of Loop Quantum Gravity (LQG) is to take two extremely well-developed and

successful theories, General Relativity and Quantum Field Theory, at “face value” and at-

tempt to combine them into a single theory with a minimum of assumptions and deviations

from established physics. Our goal, as authors of this paper, is to provide a succinct but

clear description of LQG - the main body of concepts in the current formulation of LQG,

some of the historical basis underlying these concepts, and a few simple yet interesting

results - aimed at the reader who has more curiosity than familiarity with the underlying

concepts, and hence desires a broad, pedagogical overview before attempting to read more

technical discussions. As the title suggests, this paper derives from the desire on our part

to clarify our own understanding of the material by attempting to explain it to others.

There are several other reviews of this subject [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], which the

reader may refer to in order to gain a broader understanding of the subject and in order

to sample the various points of view held by researchers in the field.

We will begin with a brief review of the history of the field of quantum gravity in the

remainder of this section. Following this we review some topics in General Relativity in

Section 2 and Quantum Field Theory in section 3, which hopefully fall into the “Goldilocks

zone”, providing all the necessary basis for LQG, and nothing more. We may occasionally

introduce concepts in greater detail than the reader considers necessary, but we feel that

when introducing concepts to a (hopefully) wide audience who find them unfamiliar, in-

sufficient detail is more harmful than excessive detail. We will then sketch a conceptual

outline of the broad program of quantization of the gravitational field in section 4, before

moving on to our main discussion of the Loop Quantum Gravity approach in 5. In section

6 we cover applications of the ideas and methods of LQG to the counting of microstates of

black holes and to the problem of quantum cosmology. Section 7 briefly describes some of

the more recent developments. We conclude with criticisms of LQG and rebuttals thereof

in 8 along with a discussion of its present status and future prospects.

It is assumed that the reader has a minimal familiarity with the tools and concepts of

differential geometry, quantum field theory and general relativity, though we aim to remind

the reader of any relevant technical details as necessary.

Before we begin, it would be helpful to give the reader a historical perspective of the

developments in theoretical physics which have led us to the present stage.

We are all familiar with classical geometry consisting of points, lines and surfaces. The

framework of Euclidean geometry provided the mathematical foundation for Newton’s work

on inertia and the laws of motion. In the 19th century Gauss, Riemann and Lobachevsky,

among others, developed notions of curved geometries in which one or more of Euclid’s pos-

tulates were loosened. The resulting structures allowed Einstein and Hilbert to formulate

the theory of General Relativity which describes the motion of matter through spacetime

as a consequence of the curvature of the background geometry. This curvature in turn is

induced by the matter content as encoded in Einstein’s equations (2.9). Just as the par-

allel postulate was the unstated assumption of Newtonian mechanics, whose rejection led

to Riemmanian geometry, the unstated assumption underlying the framework of general

– 2 –



relativity is that of the smoothness and continuity of spacetime on all scales.

Loop quantum gravity and related approaches invite us to consider that our notion of

spacetime as a smooth continuum must give way to an atomistic description of geometry

in which the classical spacetime we observe around us emerges from the interactions of

countless (truly indivisible) atoms of spacetime. This idea is grounded in mathematically

rigorous results, but is also a natural continuation of the trend that began when 19th century

attempts to reconcile classical thermodynamics with the physics of radiation encountered

fatal difficulties - such as James Jeans’ “ultraviolet catastrophe”. These difficulties were

resolved only when work by Planck, Einstein and others in the early 20th century provided

an atomistic description of electromagnetic radiation in terms of particles or “quanta”

of light known as photons. This development spawned quantum mechanics, and in turn

quantum field theory, while around the same time the special and general theories of

relativity were being developed.

In the latter part of the 20th century physicists attempted, without much success, to

unify the two great frameworks of quantum mechanics and general relativity . For the most

part it was assumed that gravity was a phenomenon whose ultimate description was to be

found in the form of a quantum field theory as had been so dramatically and successfully

accomplished for the electromagnetic, weak and strong forces in the framework known as

the Standard Model. These three forces could be understood as arising due to interactions

between elementary particles mediated by gauge bosons whose symmetries were encoded

in the groups U(1), SU(2) and SU(3) for the electromagnetic, weak and strong forces,

respectively. The universal presumption was that the final missing piece of this “grand

unified” picture, gravity, would eventually be found as the QFT of some suitable gauge

group. This was the motivation for the various grand unified theories (GUTs) developed by

Glashow, Pati-Salam, Weinberg and others where the hope was that it would be possible

to embed the gravitational interaction along with the Standard Model in some larger group

(such SO(5), SO(10) or E8 depending on the particular scheme). Such schemes could be

said to be in conflict with Occam’s dictum of simplicity and Einstein and Dirac’s notions of

beauty and elegance. More importantly all these models assumed implicitly that spacetime

remains continuous at all scales. As we shall see this assumption lies at the heart of the

difficulties encountered in unifying gravity with quantum mechanics.

Rejecting the notion that systems could absorb or transmit energy in arbitrarily small

amounts led to the photonic picture of electromagnetic radiation and the discovery of

quantum mechanics. Likewise, rejecting the notion that spacetime is arbitrarily smooth at

all scales - and replacing it with the idea that geometry at the Planck scale must have a

discrete character - leads us to a possible resolution of the ultraviolet infinities encountered

in quantum field theory and to a theory of “quantum gravity”.

Bekenstein’s observation [12, 13, 14] of the relationship between the entropy of a black

hole and the area of its horizon combined with Hawking’s work on black hole thermodynam-

ics led to the realization that there were profound connections between thermodynamics,

information theory and black hole physics. These can be succinctly summarized by the

famous area law relating the entropy of a macroscopic black hole SBH to its surface area
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A:

SBH = γA (1.1)

where γ is a universal constant and A� Apl, with Apl ∝ l2p being the Planck area. While

a more detailed discussion will wait until 6.1, we note here that if geometrical observables

such as area are quantized, (1.1) can be seen as arising from the number of ways that

one can join together N quanta of area to form a horizon. In LQG the quantization of

geometry arises naturally - though not all theorists are convinced that geometry should be

quantized or that LQG is the right way to do s.

With this historical overview in mind, it is now worth summarising the basic notions

of General Relativity and QFT before we attempt to see how these two disciplines may be

unified in a single framework.

2 Classical GR

General Relativity (GR) is an extension of Einstein’s Special Theory of Relativity (SR),

which was required in order to include observers in non-trivial gravitational backgrounds.

SR applies in the absence of gravity, and in essence it describes the behavior of vector

quantities in a four-dimensional Galilean space, with the Minkowski metric1:

ηµν = diag(−1,+1,+1,+1), (2.1)

leading to a 4D line-element

ds2 = −c2dt2 + dx2 + dy2 + dz2 (2.2)

The speed of a light signal, measured by any inertial observer, is a constant, denoted c.

If we denote the components of a vector in four-dimensional spacetime with Greek indices

(e.g. vµ) the Minkowski metric2 divides vectors into three categories; timelike (those vectors

for which ηµνv
µvν < 0), null or light-like (those vectors for which ηµνv

µvν = 0), and

spacelike (those vectors for which ηµνv
µvν > 0). Any point, with coordinates (ct, x, y, z),

is referred to as an event, and the set of all null vectors having their origin at any event

define the future light-cone and past light-cone of that event. Events having time-like or

null displacement from a given event E0 (i.e. lying inside or on E0’s lightcones) are causally

connected to E0. Those in/on the past light-cone can influence E0, those in/on the future

lightcone can be influenced by E0.

General Relativity extends these concepts to non-Euclidean spacetime. The metric of

this (possibly curved) spacetime is denoted gµν . Around each event it is possible to consider

a sufficiently small region that the curvature of spacetime within this region is negligible,

and hence the central concepts of Special Relativity apply locally. Rather than developing

1Of course the choice diag(+1,−1,−1,−1) is equally valid but we will have occassion later to restrict

our attention to the spacial part of the metric, in which case a positive (spatial) line-element is cleaner to

work with.
2Strictly speaking it is a pseudo-metric, as the distance it measures between two distinct points can be

zero.
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the idea that the curvature of spacetime gives rise to gravitational effects, we shall treat this

as assumed knowledge, and discuss how the curvature of spacetime may be investigated.

Since spacetime is not assumed to be flat (we’ll define “flat” and “curved” rigorously below)

and Euclidean, in general one cannot usefully extend the coordinate system from the region

of one point in spacetime (one event) to the region of another arbitrary point. This can be

seen from the fact that a Cartesian coordinate system which defined “up” to be the z-axis

at one point on the surface of the Earth, would have to define “up” not to be parallel to the

z-axis at most other points. In short, a freely-falling reference frame cannot be extended

to each point in the vicinity of the surface of the Earth - or any other gravitating body. We

are thus forced to work with local coordinate systems which vary from region to region.

We shall refer to the basis vectors of these local coordinate systems by the symbols ei. A

set of four such basis vectors at any point is called a tetrad or vierbein. As these basis

vectors are not necessarily orthonormal, we also may define a set of dual basis vectors ei,

where ei · ej = δij .

Figure 1: The future-pointing and past-pointing null vectors at a point define the future

and past light cones of that point. Slices (at constant time) through the past light cone

of an observer are two-spheres centred on the observer, and hence map directly to that

observer’s celestial sphere .

2.1 Parallel Transport and Curvature

Given the basis vectors ei of a local coordinate system, an arbitrary vector is written in

terms of its components vi as ~V = viei. The metric is used to switch between components

referred to the basis or dual basis, e.g. vj = gijv
i. When we differentiate a vector along a

curve parametrised by the coordinate uk we must apply the chain rule, as the vector itself

can change direction and length, and the local basis will in general also change along the

curve, hence

d~V

duk
=
∂vj

∂uk
ej + vj

∂ej
∂uk

. (2.3)

– 5 –



We extract the ith component by taking the dot product with the dual basis vector (basis

one-form) ei, since ei · ej = δij . Hence we obtain

dvi

duk
=
∂vi

∂uk
+ vj

∂ej
∂uk
· ei (2.4)

which by a suitable choice of notation is usually rewritten in the form

∇kvi = ∂kv
i + vjΓijk. (2.5)

The derivative written on the left-hand-side is termed the covariant derivative, and consists

of a partial derivative due to changes in the vector, and a term Γijk called the connection

due to changes in the local coordinate basis from one place to another. If a vector is

parallel-transported along a path, its covariant derivative will be zero. In consequence any

change in the components of the vector is due to (and hence equal and opposite to) the

change in local basis, so that
∂vi

∂uk
= −vj ∂ej

∂uk
· ei (2.6)

The transport of a vector along a single path between two distinct points does not reveal

Figure 2: The parallel transport of a vector around a closed path tells us about the

curvature of a region bounded by that path.

any curvature of the space (or spacetime) through which the vector is carried. To detect

curvature it is necessary to carry a vector all the way around a closed path and back to its

starting point, and compare its initial and final orientations. If they are the same, for an

arbitrary path, the space (or spacetime) is flat. If they differ, the space is curved, and the

amount by which the initial and final orientations of the vector differ provides a measure

of how much curvature is enclosed within the path. Alternatively, one may transport two

copies of a vector from the same starting point, A, along different paths, γ1 and γ2 to

a common end-point, B. Comparing the orientations of the vectors after they have been

transported along these two different paths reveals whether the space is flat or curved. It

should be obvious that this is equivalent to following a closed path (moving along γ1 from

A to B, and then along γ2 from B to A). The measure of how much this closed path (loop)
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differs from a loop in flat space (that is, how much the two transported vectors at B differ

from each other) is called the holonomy of the loop, c.f. Figure 2

In light of the preceding discussion, suppose a vector ~V is transported from point A

some distance in the µ-direction. The effect of this transport upon the components of
~V is given by the covariant derivative ∇µ of ~V . The vector is then transported in the

ν-direction to arrive at point B. An identical copy of the vector is carried first from A in

the ν-direction, and then in the µ-direction to B. The difference between the two resulting

(transported) vectors, when they arrive at B is given by

(∇µ∇ν −∇ν∇µ)~V . (2.7)

This commutator defines the Riemann curvature tensor,

Rλρµνv
ρ = [∇µ, ∇ν ]vλ. (2.8)

If and only if the space is flat, all the components of Rλρµν will be zero, otherwise the space

is curved.

2.2 Diffeomorphism Invariance

General relativity embodies a principle called diffeomorphism invariance. This principle

states that the laws of physics should be invariant under a remapping of the coordinates -

in fact coordinates have no physical meaning. The relationships between events are more

important than the absolute locations of events. While the latter depend on the choice of

the co-ordinate system, the former do not.

We require that any theory of quantum gravity should also embody a notion of diffeo-

morphism invariance, or at the very least,should exhibit a suitable notion of diffeomorphism

invariance in the classical limit.

2.3 Einstein’s Field Equations

Einstein’s equations equate the curvature of spacetime with the energy density of the matter

and fields present in the spacetime. Defining the Ricci tensor Rρν = Rµρµν and the Ricci

scalar R = Rνν (i.e. it is the trace of the Ricci tensor, taken after raising an index using

the metric gµν). The relationship between energy density and spacetime curvature is then

given by

Rµν − 1

2
Rgµν + Λgµν = 8πGTµν . (2.9)

where G is Newton’s constant, and the coefficient Λ is the cosmological constant, which

prior to the 1990s was believed to be identically zero. The tensor Tµν is the stress-energy

tensor. We will not discuss it in detail, but its components describe the flux of energy

and momentum (i.e. 4-momentum) across various timelike and spacelike surfaces3. The

stress-energy tensor can be defined as

Tµν =
2√
−g

δ
√
−gLmatter

δgµν
(2.10)

3The presence of the stress-energy tensor is related to the fact that it is not merely the mass of matter

that creates gravity, but its momentum, as required to maintain consistency when transforming between

various Lorentz-boosted frames
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where g = det(gµν), and Lmatter is a lagrangian encoding the presence of matter. It is

sometimes preferable to write equation (2.9) in the form

Gµν = 8πGTµν − Λgµν (2.11)

where the Einstein tensor Gµν = Rµν − Rgµν/2 is the divergence-free part of the Ricci

tensor. The explicit form of equation (2.9) emphasises the relationship between mass-

energy, and spacetime curvature. All the quantities related to the structure of the spacetime

(i.e. Rµν , R, gµν) are on the left-hand side. The quantity related to the presence of matter

and energy, Tµν , is on the right-hand side. For now it remains a question of interpretation

whether this means that mass-energy is equivalent to spacetime curvature, or identical to

it. Perhaps more importantly the form of the Einstein Field Equations makes it clear that

GR is a theory of dynamical spacetime. As matter and energy move, so the curvature of

the spacetime in their vicinity changes.

It is worth noting (without proof, see for instance [18]) that the gravitational field

in the simplest case, a static, spherically-symmetric field around a mass M defines a line

element of the form derived by Schwarzschild,

ds2 = −c2

(
1− 2GM

c2r

)
dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (2.12)

For weak gravitational fields, and test masses moving at low velocities (v � c) the majority

of the deviation from the line element in empty space is caused by the coefficent of the dt2

term on the right. This situation also coincides with the limit in which Newtonian gravity

becomes a good description of the mechanics. In the Newtonian picture the force of gravity

can be written as the gradient of a potential:

~F = ∇V. (2.13)

It can be shown that

∂g00 ∝ ∇V, (2.14)

implying that gravity in the Newtonian or weak-field limit can be understood, primarily,

as the amount of distortion in the local “speed” of time caused by the presence of matter.

2.4 The Einstein-Hilbert Action

From classical mechanics we know that dynamics can be described either in the Hamiltonian

or the Lagrangian frameworks. The benefits of a Lagrangian framework are that it pro-

vides us with a covariant perspective on the dynamics and connects with the path-integral

approach to the quantum field theory of the given system. The Hamiltonian approach,

on the other hand, provides us with a phase space picture and access to the Schrodinger

method for quantization. Each has its advantages and difficulties and thus it is prudent to

be familiar with both frameworks.

The form of the Lagrangian, and hence the action, can be determined by requirements

of covariance and simplicity. The volume form dnx over which the lagrangian is integrated,
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must be supplemented by a factor of
√
−g (where g is the determinant of the metric gµν)

in order to remain invariant under arbitrary co-ordinate transformations:

dnx
√
−g(x)→ dnx′

√
−g(x′) (2.15)

Maybe discuss this a bit earlier, to set the scene, and “warm up” the thinking about volume

forms and the metric.Now out of the dynamical elements of geometry - the metric and the

connection - we can construct a limited number of quantities which are invariant under

co-ordinate transformations (state what is the simplest criterion to make them invariant?).

These quantities must be constructed out of the Riemann curvature tensor or its derivatives.

These possibilities are of the form: {R,RµνRµν , R2,∇µR∇µR, . . .}. The simplest of these

is the Ricci scalar R = Rµναβg
µαgνβ . As it turns out this term is sufficient to fully describe

Einstein’s general relativity.

This allows us to construct the simplest lagrangian which describes the coupling of

geometry to matter:

SEH+M =
1

κ

∫
d4x
√
−gR+

∫
d4x
√
−gLmatter (2.16)

where Lmatter is the lagrangian for the matter fields that may be present and κ is a constant,

to be determined. If the matter lagrangian is omitted, one obtains the usual vacuum field

equations of GR. This action (omitting the matter term) is known as the Einstein-Hilbert

action.

It is worth digressing to prove (at least in outline form) that the Einstein field equations

(EFE) can be found from SEH. The variation of the action (2.16) yields a classical solution

which, by the action principle, is chosen to be zero,

δS = 0 =

∫
d4x

[
1

κ

δ
√
−g

δgµν
R+

1

κ

√
−g δR

δgµν
+
δ
√
−gLmatter

δgµν

]
(2.17)

which implies that

1√
−g

δ
√
−g

δgµν
R+

δR

δgµν
= −κ 1√

−g
δ
√
−gLmatter

δgµν
. (2.18)

From equation (2.10) we can immediately see that

1√
−g

δ
√
−g

δgµν
R+

δR

δgµν
= −κ

2
Tµν . (2.19)

We now need to work out the variation of the terms on the left-hand-side. Omitting the

details, which can be found elsewhere (see e.g. the appendix of [18]), we find that

δ
√
−g = − 1

2
√
−g

δ
√
g =

1

2

√
−g(gµνδgµν) = −1

2

√
−g(gµνδg

µν) (2.20)

thanks to Jacobi’s formula for the derivative of a determinant. The variation of the Ricci

scalar can be found by differentiating the Riemann tensor, and contracting on two indices
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to find the variation of the Ricci tensor. Then, since the Ricci scalar is given by R = gµνRµν
we find that

δR = Rµνδg
µν + gµνδRµν . (2.21)

The second term on the right may be neglected when the variation of the metric vanishes

at infinity, and we obtain δR/δgµν = Rµν . Plugging these results into eq. (2.19) we find

that

− 1

2
gµνR+Rµν = −κ

2
Tµν (2.22)

which yields the Einstein equations if we set κ = −16πG.

2.5 The ADM splitting

Since General Relativity is a theory of a dynamical spacetime, we will want to describe the

dynamics of spacetime in terms of some variables which make computations as tractable as

possible. The Hamiltonian formulation is well suited to a wide range of physical systems,

and the ADM (Arnowitt-Deser-Misner) formalism allows us to apply it to General Rela-

tivity. We can think of the action (2.16), which is clearly written in the form of an integral

of a lagrangian, as a stepping-stone to this hamiltonian approach. This hamiltonian for-

mulation of GR takes us to the close of our discussion of classical gravity, and will be used

as the jumping -off point for the quantisation of gravity, to be undertaken in Section 4.

We do not wish to provide a comprehensive discussion of the ADM procedure, which is

used to obtain the 3+1 Hamiltonian description of general relativity, but only to describe its

salient features and emphasize the aspects relevant to the canonical quantization program.

Further details about the ADM splitting and canonical quantization can be found in [18]

(in the metric formulation), [19] (in the connection formulation).

The ADM formalism involves foliating spacetime into a set of three-dimensional space-

like hypersurfaces, and picking an ordering for these hypersurfaces which plays the role of

time, so that the hypersurfaces are level surfaces of the parameter t. This is a necessary

feature of the hamiltonian formulation of a dynamical system, although it seems at odds

with the way GR treats space and time as interchangable parts of spacetime. However this

time direction is actually a “fiducial time”4 and will turn out not to affect the dynamics.

It is essentially a parameter used as a scaffold, which in the absence of a metric is not

directly related to the passage of time as measured by a clock.

To begin, we will suppose that the 4-dimensional spacetime is embedded within a

manifold M (which may be R4 or any other suitable manifold). Next we choose a local

foliation5 {Σt, t} of M, where Σt is a leaf of foliation. The topology of the original four-

dimensional spacetime is then Σ⊗R, while t(s) is a parametrization of the set of geodesics

orthogonal to Σt with s being the affine parameter along each geodesic, c.f. (Fig. 3). In

4The term “fiducial” refers to a standard of reference, as used in surveying, or a standard established

on a basis of faith or trust.
5Generally one assumes that our 4 manifolds can always be foliated by a set of spacelike 3 manifolds. For

a general theory of quantum gravity the assumption of trivial topologies must be dropped. In the presence

of topological defects in the 4 manifold, in general, there will exist inequivalent foliations in the vicinity of

a given defect. This distinction can be disregarded in the following discussion for the time being.
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addition at each point of a leaf we have a unit time-like vector nµ (with nµnµ = −1) which

defines the normal at each point on the leaf.

Figure 3: When performing the ADM splitting, the lapse function N and shift vector Ni

define how points on successive hypersurfaces are mapped together.

Given the full four-metric gµν onM and the vector field nµ the foliation is completely

determined by the requirement that the surfaces Σt of constant “time” are normal to nµ.

The diffeomorphism invariance of general relativity implies that there is no canonical

choice of the time-like vector field tµ which maps a point xµ on a leaf Σt to the point x′µ

on the leaf Σt+δt, i.e. which generates time evolution of the geometry. This property is

in fact the gauge symmetry of general relativity. It implies that we can choose any vector

field tµ as long as it is time-like. Such a vector field can be projected onto the three-

manifold to obtain the shift vector Na = t‖ which is the part tangent to the surface, while

the component of tµ normal to the three-manifold is then identified as the lapse function

N = t⊥. tµ can thus be written as:

tµ = Nnµ +Nµ (2.23)

where, though we have written the shift as four-vector, it is understood that N0 = 0 in a

local basis of co-ordinates adapted to the splitting.

By recognising that nµnν = −1, as n is timelike, we identify gµν+nµnν as the projection

operator that takes any 4-vector and projects out its component normal to the leaf Σt,

leaving only the part tangential to Σt. Writing a general four-vector as a sum of terms

parallel and perpendicular to the surface vµ = v⊥n
µ + v‖

Nµ

|N | (where |N | = NµNµ is the

norm of the shift vector) and acting on it with the projector we have:

(gµν + nµnν)

(
v⊥n

ν + v‖
Nν

|N |

)
=v⊥nµ(1 + nνnν) +

v‖

|N |
(Nµ + nνNν)

=v‖
Nµ

|N |
(2.24)

Since nµ is a time-like unit vector (nµnµ = −1) the first term on the right hand side of the

first line vanishes. In the second term nνNν = 0 by definition and we are left with only

– 11 –



the component of vµ parallel to Σt. We see that this operator projects any vector from the

manifold M down into the subspace defined by a given leaf of foliation.

Now we can determine the components of the four-metric in a basis adapated to the

splitting as follows:

g00 =gµνt
µtν

=gµν (Nnµ +Nµ) (Nnν +Nν)

=N2nµnµ +NµNµ + 2N(Nµnµ)

=−N2 +NµNµ (2.25)

where we have used nµnµ = −1 and Nµnµ = 0 in the third line. Working in a co-ordinate

basis where Nµ = (0, Na), we have g00 = −N2 + NaNa
6. Similarly to obtain the other

components of the metric we project along the time-space and the space-space directions:

gµνt
µNµ = NµNµ ≡ NaNa (2.26)

Since, by definition g0ν ≡ gµνt
µ, this implies that g0a = Na. The space-space components

of gµν are simply given by the intrinsic three-metric hab of the leaf Σt. Thus the full metric

gµν can be written schematically as:

gµν =

(
−N2 +NaNa N

NT hab

)
(2.27)

where a, b ∈ {1, 2, 3} and N ≡ {Na}. The 4D line-element can then be read off from the

above expression:

ds2 = gµνdx
µdxν = (−N(t)2 +NaNa)dt

2 + 2Nadt dxa + habdx
adxb (2.28)

where again a, b ∈ {1, 2, 3} are spatial indices on Σ (hereafter we drop the t superscript as

we will deal with only one, representative leaf of the foliation)

The spacelike hypersurfaces Σ will in general have an intrinsic curvature, measured by

the curvature tensor constructed from the spatial metric hab. Here the indices a, b, c, . . .

on a tensor are used to indicate that the only non-zero components are those which live

on 3Σ. 3Σ will also have a curvature associated with their embedding in M, as shown in

Fig. 4. This is known as the extrinsic curvature, and measured by taking the gradient of

the normal vectors to the hypersurface, symmetrised over the choice of directions.

kµν = ∇µnν +∇νnµ (2.29)

The reader can verify that, as with the intrinsic metric, kµνn
µ = 0, making the extrinsic

curvature a quantity with only spacelike indices: kab. Note that due to the properties

of the Lie derivative (see Appendix B) and the purely spatial character of the extrinsic

curvature we see that kab = Lnhab. So the extrinsic curvature is the Lie derivative of the

6From this expression we can also see that g00 = −N2 +NaNa is a measure of the local speed of time

evolution and hence is a measure of the local gravitational energy density.
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Figure 4: Intrinsiuc curvature measured by parallel transport (left), and extrinsic curva-

ture measured by changes in the normal vectors (right).

intrinsic metric, i.e., it can interpreted as the rate of change of the intrinsic metric along the

evolution generated by normal vector field - rather than the actual time-evolution vector

tµ. We might be tempted to identify the extrinsic curvature with the momentum variable

to conjugate to “position variable” - the intrinsic metric. This is not far off the mark. As

we will see the conjugate momentum will turn to be a function of kab.

As mentioned above, the lagrangian formulaton of General Relativity is used as a

stepping-stone to the hamiltonian formulation. To find the relevant hamiltonian density

we proceed in a manner that parallels the approach in classical mechanics or field theory

- namely we perform a Legendre transform to obtain the Hamiltonian function from the

Lagrangian. In the case of classical mechanics we see that:

H[p, q] = pq̇ − L[q, q̇] where p =
∂L

∂q̇
. (2.30)

Similarly, in the case of scalar field theory, we find that

H[π, φ] =

∫
d4xπφ̇− L[φ, φ̇] (2.31)

and in the case of General Relativity, taking the intrinsic metric on Σ as our configuration

or “position” variable:

H[πµν , hµν ] =

∫
d3xπabḣab − L[hab, ḣab] (2.32)

The Einstein-Hilbert action can be re-written in terms of quantities defined on the

spatial hypersurfaces, by making two substitutions. Firstly we recognise that the four-

dimensional volume form
√
−g is equal to N

√
h (that is, the three-dimensional volume

form multiplied by the distance between hypersurfaces). Analogously to g, we write h for

the determinant of hab. Secondly, using the Gauss-Codazzi equation7, the four-dimensional

7a derivation of which can be found on pg. 13 of [7]
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Ricci curvature scalar R can be re-written in terms of the three-dimensional Ricci scalar

of Σ, (3)R, and the extrinsic curvature of Σ as:

R = (3)R+ kabkab − k2 (2.33)

where k is the trace of the extrinsic curvature taken with respect to the 3-metric k := kabhab.

The Gauss-Codazzi relation is a very general result which is true in an arbitrary number

of dimensions. The reader with too much time on their hands may wish to derive it for

themselves by using the definition of the Ricci scalar in terms of the Christoffel connection

and using the 3-metric hµν to project quantities in 3+1 dimensions down to three dimensions

of Σ.

Using these substitutions, the Einstein-Hilbert action can be rewritten in a form that

is convenient for identifying the parts that depend only on Σ:

SEH =

∫
dt d3xN

√
h
(

(3)R+ kabkab − k2
)

=

∫
dtLEH (2.34)

We next need to find ḣab, which is obtained by taking the Lie derivative (Appendix B)

with respect to the vector field tµ which generates time-translations:

ḣab = £~thab = 2Nkab + £ ~Nhab (2.35)

The conjugate momentum is then found to be:

πab =
δL

δḣab
=
√
h(kabkab − k2) (2.36)

Substituting these results into eqn. (2.32) we obtain

H[πab, hab] =

∫
d3xπabḣab − L[hab, ḣab] (2.37a)

=

∫
d3xN

(
−
√
h(3)R+

1√
h

(πabπab −
1

2
π2)

)
− 2NaDbπ

ab (2.37b)

=

∫
d3xNH−NaCa (2.37c)

where for brevity we have adopted the notation

H =
(
−
√
h(3)R+ 1√

h
(πabπab − 1

2π
2)
)

(Hamiltonian constraint) (2.38a)

Ca = 2Dbπ
ab (Diffeomorphism constraint) (2.38b)

where π is the trace of πab.

We can reverse the Legendre transform to rewrite the action for GR as:

SEH =

∫
dtLEH =

∫
dtd3x

(
πabḣab −H[πab, hab]

)
(2.39a)

=

∫
dtd3x

(
πabḣab −NH+NaCa

)
(2.39b)
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It is now apparent that the action written in this form is a function of the lapse and

shift but not their time derivatives. Consequently the Euler-Lagrange equations of motion

obtained by varying SEH w.r.t the lapse and shift are:

δSEH
δN

= −H = 0 (2.40a)

δSEH
δNa

= Ca = 0 (2.40b)

implying thatH and Ca are identically zero and are thus to be interpreted as constraints

on the phase space! This is nothing more than the usual prescription of Lagrange multipliers

- when an action depends only on a configuration variable q but not on the corresponding

momentum p, the terms multiplying the configuration variable are constraints on the phase

space.

Ca and H are referred to as the vector (or diffeomorphism) constraint and the scalar

(or “Hamiltonian”) constraint, respectively. The diffeomorphism constraint generates dif-

feomorphisms within the spatial hypersurfaces Σt. The Hamiltonian constraint generates

the time evolution which takes the geometry of Σt to Σt+1. A little later, when we cast

GR in the first order formulation we will encounter a third constraint, referred to as the

Gauss constraint.

We see that the Hamiltonian density HEH in eqn. (2.37c), obtained after performing

the 3 + 1 split of the Einstein-Hilbert action via the ADM procedure [19], is a sum of

constraints, i.e. HEH = NH − NaCa = 0. This is a generic feature of diffeomorphism

invariant theories.

2.6 Connection Formulation

In the previous section we worked with GR in second-order form, i.e. with the metric gµν
as the only configuration variable, with the Christoffel connection Γαµν being determined

by the metric compatibility condition:

∇gµν = 0 (2.41)

The passage to the quantum theory is facilitated by switching to a first-order formulation

of G, in which both the metric and the Christoffel connection are treated as independent

configuration variables. An example is the Palatini framework. In this approach the metric

compatibility condition 2.41 arises as the equation of motion obtained by varying the action

w.r.t the connection:
δS[g,Γ]

δΓ
= 0⇒ ∇g = 0 (2.42)

These variables are however inconvenient for the program for quantization. Therefore

we transition to a first-order formulation of gravity in terms of a tetrad or “frame-field”

and a gauge connection both of which take values in the Lie algebra of the Lorentz group.

The connection formulation exposes a hidden symmetry of geometry as illustrated

by the following analogy. The introduction of spinors in quantum mechanics (and the

corresponding Dirac equation) allows us to express a scalar field φ(x) as the “square” of a
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spinor φ = ΨiΨi. In a similar manner the use of the vierbien allows us to write the metric

as a square gµν = eIµe
J
ν ηIJ . The transition from the metric to connection variables in GR

is analogous to the transition from the Klein-Gordon to the Dirac equation in field theory.

The connection is a Lie-algebra valued one-form Aµ
IJτIJ where τIJ are the generators

of the Lorentz group. Our configuration space is then spanned by a tetrad and a connection

pair: {eIµ, A
µ
IJ}. As we shall see, tetrads are naturally identified with basis vectors of a lie

algebra (sl(2,C)) in which case the {I, J, . . .} become lie algebra indices.

2.6.1 Tetrads

We begin by considering the four dimensional manifoldM, introduced in section 2.5, above.

As we know, any sufficiently small region of a curved manifold will look flat8 and so we

may define a tangent space to any point P in M. Such a tangent space will be a flat

Minkowski spacetime, and the point P may be regarded as part of the worldline of an

observer, without loss of generality. This tangent space will be spanned by four vectors,

eµ. Each basis vector will have four components, referred to the locally-defined reference

frame (the “laboratory frame” of the observer who’s worldline passes through P , with

lengths and angles measured using the Minkowski metric), eIµ, where I ∈ {0, 1, 2, 3}. As

noted back in section 1, such a set of four basis vectors is referred to as a tetrad or vierbein

(German for “four legs”)9 Since the tetrads live in Minkowski space, their dot product is

taken using the Minkowski metric. But the dot product of basis vectors is just the metric

itself, so the metric of M at any point is just given by

gµν = eIµe
J
ν ηIJ (2.43)

where ηIJ = diag(−1, 1, 1, 1) is the Minkowski metric. Taking the determinant of both

sides we find that:

det(g) = −det(e)2 (2.44)

where the minus sign on the RHS comes from the determinant of the Minkowski metric.

Alternatively we can write
√
−g = e, where g ≡ det(g) and e ≡ det(e). Due to this fact

the tetrad can be thought of as the “square-root” of the metric.

Tetrads can also be interpreted as the transformation matrices that map between two

sets of coordinates, as can be seen by comparing Eq (2.43) with the standard form for

a coordinate transformation, x∗i = xjAij = xj∂ûj/∂û
∗
i (where the û∗ and û are the basis

vectors of the two coordinate systems). In fact the tetrads perform two roles. They facilitate

the transformation of vector and tensor quantities, just as the Christoffel symbols do, by

encoding information about the tangent space, and they facilitate the transformation of

spinor quantities to vectorial ones and vice-versa, by mapping the tangent space in which

vectors live to the space of spinors10, at a given point. It is this fact which makes the

tetrads a useful tool in modern formulations of GR.
8So long as the manifold is continuous, not discrete. This is an important point to keep in mind for

later.
9 The similar word vielbein (“any legs”) is used for the generalisation of this concept to an arbitrary

number of dimensions (e.g. triads, pentads).
10which be more elegantly stated in the language of fiber bundles, see e.g., [20]
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Any vector vµ can be written as an sl(2,C) spinor vab as:

vab := vµe
µ
Iσ

I
ab (2.45)

where σI = {1, σx, σy, σz} is a basis of the lie-algebra sl(2,C) and a, b are the spinorial

matrix indices shown explicitly for clarity.

2.6.2 Spin Connection

Our ultimate goal is to cast general relativity in the mold of gauge field theories such as

Maxwell or Yang-Mills. Though the Christoffel connection Γαβδ is an affine connection it

does not transform as a tensor under arbitrary co-ordinate transformations (c.f. [18, chapter

4]) and thus cannot play the role of a gauge connection which should be a covariant quantity.

Γ allows us to parallel transport vectors vµ and, in general, arbitrary tensors Tµν...
αβ..., i.e.

it allows us to map the tangent space Tp at point p to the tangent space Tp′ at the point

p′. Of course the map depends on the path connecting p and p′. It is this aspect that

allows us to use curvature to measure local geometric properties of a manifold. However,

in order to allow the parallel transport of elementary particles the Christoffel connection

is not sufficient.

The Christoffel connection does not “know” about lie-algebra value vector fields of the

form ψµ
I (where I is a lie-algebra index). A theory of quantum gravity which does not know

about fermions would not be very useful. Thus we need an alternative to the Christoffel

connection which has both these properties: covariance w.r.t. co-ordinate transformations

and coupling with spinors.

The simplest candidate for such a quantity is an sl(2,C) valued connection Aµ
IJ .

SL(2,C), or the Lorentz group, is the local gauge group of general relativity. While

dynamics on a flat spacetime can be described by the Poincare group, in a general curved

spacetime translational symmetry is broken and only local Lorentz invariance remains as

an unbroken symmetry in general relativity. Thus the choice of an sl(2,C) valued spin

connection11 would seem to be a logical candidate for casting GR as a gauge theory.

Outline for this section:

• Palatini action: [21] Section 2.3 - Equality of internal and spacetime Riemann cur-

vature.

• Self-dual action: [22] Chap 7, Sec 7.3.4 3+1 decomposition of Self-dual action

• Barbero-Immirzi parameter: [23, 24, 25, 26] - generalizing from Ashtekar’s self-dual

connection to arbitrary connections.

11The term “spin connection” may cause some confusion, however it is analogous to the Christoffel

connection familiar from classical GR, with the added functionality that it allows us to parallel transport

spinors around paths in spacetime. This terminology can occasionally trick newcomers into thinking they

have to learn a new concept, when it fact this is nothing more than the notion of parallel transport of a

particle along a Wilson line.
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2.6.3 Preliminaries

In order to be able to parallel transport objects with spinorial indices we need a suitable

extension of the notion of covariant derivative from objects with spacetime indices to spino-

rial objects (we follow [21, Appendix B]). Given the tetrad eµI , the Christoffel connection

Γγαβ and the spin-connection ωIJα , the generalised derivative operator onM is defined such

that it annihilates the tetrad:

DαeIβ = ∂αe
I
β − Γγαβe

I
γ + ωIαJe

J
β = 0 (2.46)

Now one would expect that this operator should also annihilate the (internal) Minkowski

metric ηIJ = eαIe
α
I and the spacetime metric gµν = eIµe

J
ν ηIJ . One can check that requiring

this to the be case yields that the spin-connection is anti-symmetric ω
(IJ)
α = 0 and the

Christoffel connection is symmetric Γα[βγ] = 0.

We can solve for Γαβγ in the usual manner (see for e.g. [18]) to obtain:

Γγαβ =
1

2
gγδ (∂αgδβ + ∂βgδα − ∂δgαβ) (2.47)

Inserting the above into 2.46 we can solve for ω to obtain:

ωIJα =
1

2
eδ[I

(
∂[αe

J ]
δ] + e|β|J ]eKα ∂βeδK

)
(2.48)

Note that in the above expression the Christoffel connection does not occur.

In the definition of D we have include the Christoffel connection. Ideally, in a gauge

theory of gravity, we would not want any dependence on the spacetime connection. That

this is the case can be seen by noting that all derivatives that appear in the Lagrangian

or in expressions for physical observables are exterior derivatives, i.e. of the form D[αe
I
β].

The anti-symmetrization in the spacetime indices and the symmetry of the Christoffel

connection Γγ[αβ] = 0 implies that the exterior derivative of the tetrad can be written

without any reference to Γ:

D[αe
I
β] = ∂[αe

I
β] + ω[α

ILeβ]L = 0 (2.49)

We can solve for ω by a trick similar to one used in solving for the Christoffel connection.

Following [21, Appendix B], first contract the above expression with eαJe
β
K to obtain:

eαJe
β
K

(
∂[αe

I
β] + ω[α

ILeβ]L

)
= 0 (2.50)

Now let us define ΩIJK = eαI e
β
J∂[αeβ]K . Performing a cyclic permutation of the indices

I, J,K in the above expression, adding the first two terms thus obtained and subtracting

the third term we are left with:

ΩJKI + ΩIJK − ΩKIJ + 2eαJωαIK = 0 (2.51)

This can be solved for ω to yield:

ωαIJ =
1

2
eKα [ΩKIJ + ΩJKI − ΩIJK ] (2.52)
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which is equivalent to the previous expression 2.48 for ω.

Next we consider the curvature tensors for the Christoffel and the spin connections and

show the fundamental identity that allows us to write the Einstein-Hilbert action solely in

terms of the tetrad and the spin-connection. The Riemann tensor for the spacetime and

the spin connections, respectively is defined as:

D[αDβ]vγ = Rαβγ
δvδ; D[αDβ]vI = RαβI

JvJ (2.53)

Writing vγ = eIγvI and inserting into the first expression we obtain:

Rαβγ
δvδ = D[αDβ]vγ = D[αDβ]e

I
γvI = eIγRαβI

JvJ = eIγRαβI
JeδJvδ (2.54)

where we have used the fact that DµeIν = 0. Since the above is true for all vδ, we obtain:

Rαβγ
δ = RαβI

JeIγe
δ
J (2.55)

The Ricci scalar is given by R = gµνRµν = gµνRµδν
δ. Using the previous expression we

find:

Rµδν
δ = RµδI

JeIνe
δ
J (2.56)

Contracting over the remaining two spacetime indices then allows us to write the Ricci

scalar in terms of the curvature of the spin-connection and the tetrads:

R = Rµν
IJeµI e

ν
J (2.57)

2.6.4 Palatini Action

Using 2.57 and the fact that
√
−g = e we can write down the EH action for GR in terms

of the connection and tetrad:

SEH [e, ω] =
1

2κ

∫
d4x ? (eI ∧ eJ) ∧ FKL εIJKL

=
1

4κ

∫
d4x εµναβεIJKL eµ

Ieν
JFαβ

KL (2.58)

where FKLγδ is the curvature of the spin-connection:

FKLγδ = ∂[γωδ]
KL +

1

2

[
ωγ

KM , ωδM
L
]

(2.59)

The integrand in 2.58 is a four-form, which can therefore be integrated over a four-

dimensional manifold. Thus this action is valid only for four-dimensional manifolds.

At this point Fµν
IJ is the curvature of ω, but does not yet satisfy the identity 2.57.

The equations of motion obtained by varying the Palatini action are:

δSP
δωνIJ

= εµναβεIJKLDν

(
eα
Ieβ

J
)

= 0 (2.60a)

δS

δeIµ
= εµναβεIJKL eν

JFαβ
KL = 0 (2.60b)
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For the first equation we have utilized the fact that F [ω + δω] = F [ω] + D[ω](δω), where

D[ω] is the covariant derivative defined with respect to the unperturbed connection ω as in

2.49. The resulting equation of motion 2.60a is then the torsion-free or metric-compatibility

condition which tells us that the tetrad is parallel transported by the connection ω. This

then implies that 2.57 holds, i.e. Fµν
IJ ≡ Rµν

IJ . The second equation of motion can be

obtained by inspection, since F does not depend on the tetrad. Already we see dramatic

technical simplification compared to when we had to vary the Einstein-Hilbert action with

respect to the metric as in 2.17.

In order to show that 2.60b is equivalent to Einstein’s vacuum equations, we first note

that the volume form can be written as

εµναβ =
1

4!
εPQRS e[µ

P eν
Qeα

Reβ]
S (2.61)

Contracting both sides with eνJ we find:

εµναβ e
ν
J =

1

4!
εPQRS e[µ

P eν
Qeα

Reβ]
SeνJ

= − 1

3!
εJPQR e[µ

P eα
Qeβ]

R (2.62)

where in the second line we have switched some dummy indices and relabeled others.

Inserting the right hand side of the above in 2.60b and using the fact that 2.57 implies

Fµν
IJ ≡ RµνIJ , we find:

δS

δeIµ
= εµναβ eν

JεIJKLRαβ
KL

= − 1

3!
εJPQR εIJKL e

[µ
P e

α
Q e

β]
R Rαβ

KL

= δP[I δ
Q
K δ

R
L] e

µ
P e

α
Q e

β
RRαβ

KL

= eµ[I e
α
K e

β
L]Rαβ

KL

=
(
eµI e

α
Ke

β
L + eµKe

α
Le

β
I + eµLe

α
I e
β
K

)
Rαβ

KL

= eµIR+ eβIRαβ
µα + eαIRαβ

βµ

= eµIR− 2eβIRβ
µ = 0 (2.63)

In the first step we have used the result in 2.62. In the second step we have used the fact

that the contraction of two epsilon tensors can be written in terms of anti-symmetrized

products of Kronecker deltas. In the third and fourth steps we have simply contracted some

indices using the Kronecker deltas and expanded the anti-symmetrized product explicitly.

In the fifth and sixth steps we have made use of 2.55 and the definition of the Ricci tensor

as the trace of the Riemann tensor: Rβ
µ =

∑
αRαβ

αµ. Contracting the last line of the

above with eνI and using the fact that gµν = eIµe
J
ν ηIJ we find:

Rµν −
1

2
gµνR = 0 (2.64)

Thus the tetradic action in the first-order formulation - where the connection and tetrad

are independent variables - is completely equivalent to classical general relativity.
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2.6.5 Palatini Hamiltonian & Constraints

We can perform a 3 + 1 split of the Palatini action 2.58 and obtain a hamiltonian which,

once again, is a sum of constraints. However, while the resulting formulation appears

simpler than that in terms of the metric variables, there are some second class constraints

which when solved [21, Section 2.4] yield the same set of constraints as obtained in the

ADM framework. Thus, the Palatini approach does not appear to yield any substantial

improvements over the ADM version as far as canonical quantization is concerned. For

this we must transition to the description in terms of complex, self-dual connections.

2.7 Ashtekar Formulation - “New Variables” for General Relativity

At the heart of the formulation of general relativity as a gauge theory lies a canonical

transformation from the phase space variables of the Palatini picture (eai ,Γ
i
a) (which are

the intrinsic metric of the spacelike manifold Σ and its extrinsic curvature respectively) to

the ”new” or Ashtekar variables ( 1
γ e

a
i , A

i
a) where γ is the so-called Immirzi parameter A is

the Ashtekar-Barbero connection:

Γia → Γia + γKi
a eai →

1

γ
eai (2.65)

We begin with tetradic GR whose action is written in terms of a tetrad and connection

in the Palatini form as:

SEH [e, ω] =
1

2κ

∫
d4x ẽI

µẽJ
νF [ω]µν

IJ (2.66)

This action is equivalent to the usual Einstein-Hilbert action on-shell, i.e. for configurations

which satisfy Einstein’s field equations. as shown in the previous subsection. It is easier to

work with connections and tetrads rather than metrics as shown above. The constraints

arising from the 3 + 1 decomposition are also simpler than the original ADM versions.

However, the Hamiltonian constraint is still a complicated non-polynomial function and

canonical quantization does not appear to be any easier in this formalism.

Ashtekar made the remarkable observation that if instead of the real connection ωµ
IJ

one works with a complex, self/anti-self dual connection ±A = ω ± i ? ω, the form of the

constraints simplifies dramatically12:

H = εijke
a
i e
b
j
±F kab (Hamiltonian constraint) (2.67a)

Ca = ebi
±F iab (Diffeomorphism constraint) (2.67b)

Gi = Dae
a
i (Gauss constraint) (2.67c)

where ±F kab is the curvature of the self(anti-self)-dual connection ±A. The second class

constraints which were present in the Palatini framework must now vanish due to the

Bianchi identity and the diffeomorphism constraint becomes a polynomial quadratic func-

tion of the momentum variables - in this case the triad. The phase space configuration

12for the detailed derivation of these constraints starting with the self-dual Lagrangian see for e.g. [19,

Section 6.2]
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and momentum variables are the three dimensional triad ea
i and the spatial connection

Aia. Here Riab is the curvature of Aia. It is instructive to compare the above form of

the constraints to their metric counterparts in 2.38a which are reproduced below for the

reader’s convenience:

H =

(
−
√
h(3)R+

1√
h

(πabπab −
1

2
π2)

)
Ca = 2Dbπ

ab

The price to be paid for this simplification is that the theory we are left with is no longer

the theory we started with - general relativity with a manifestly real metric geometry. The

connection ±A is now a complex connection. However the new concoction is also not too

far from the original theory and can be derived from an action. That this is the case was

shown independently by Jacobson and Smolin [27] and by Samuel [28]. They completed

the analysis by writing down the Lagrangian from which Ashtekar’s form of the constraints

would result:

S± [e,A] =
1

4κ

∫
d4x±Σµν

IJ
±Fµν

IJ (2.68)

Here ±F is the curvature of a self-dual (anti-self-dual) four-dimensional connection ±A

one-form. The field ±Σ is the self-dual (anti-self-dual) portion of the two-form ẽI ∧ ẽJ . The

Palatini action then simply given by the real part of the the self-dual (or anti-self-dual)

action.

SP = Re[S±] (2.69)

We obtain a form for the constraints which is polynomial in the coordinates and momenta

and thus amenable to methods of quantization used for quantizing gauge theories such as

Yang-Mills. The resulting expression for the Einstein-Hilbert-Ashtekar hamiltonian of GR

is:

Heha = Na
i Cia +NH+ T iG〉 = 0 (2.70)

where Cia, H and Gi are the vector, scalar and Gauss constraints respectively.

2.8 (anti)self-dual connections

Let us now show the relation between the (anti)self-dual four-dimensional connection and

its restriction to the spatial hypersurface Σ. We begin by writing the full connection in

terms of the generators {γI} of the Lorentz lie-algebra: ±A := AIJµ γIγJ and expanding

the sum (see [29, Section 2] and A.1):

AIJµ γIγJ = Ai0µ γiγ0 +A0i
µ γ0γi +Aijµ γiγj

= 2A0i
µ γ0γi +Aijµ γiγj

= 2A0i
µ

(
−σi 0

0 σi

)
+ iAjkµ ε

ijk

(
σi 0

0 σi

)
(2.71)

In the second line we have used the fact that AIJµ is antisymmetric in the internal indices

and that the gamma matrices anticommute. In the third we have used the expressions for
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the gamma matrices given in Appendix A.1 to expand out the matrix products. Now, the

(anti)self-duality of the connection implies that Aµ
IJ = ± i

2ε
IJ
KLAµ

KL. For I = 0, J ∈
{1, 2, 3} this gives:

Aµ
0i =

i

2
ε0ijkAµ

jk

This allows us to write the last line in the above expression in the form:

A = AIJµ γIγJ = 2i

(
Ai+µ σi 0

0 Ai−µ σi

)
(2.72)

where:

Ai+µ =
1

2
εijkAjkµ + iA0i

µ (2.73a)

Ai−µ =
1

2
εijkAjkµ − iA0i

µ (2.73b)

2.9 Phase space structure

2.10 Immirzi Parameter

Now there are several problems with the above prescription which must be addressed

before the formulation in terms of constraints and self/anti-self-dual connections becomes a

faithful representation of classical Einstein gravity (CEg). The first obvious problem is that

in CEg, both the metric gµν and the Christoffel connection Γαβγ are both manifestly real

objects. Ashtekar’s original approach, involved complexifying the phase-space of general

relativity in order to simplify the form of the constraints. Consequently, the bivector
±ΣIJ

µν (which encodes the metric degrees of freedom) and the gauge connection ±Aµ
IJ

()which determines how the tetrads change from point to point on the manifold and thus

encodes the curvature of the manifold) are both complex. In order to recover the usual

real general relativity we are thus forced to an extra constraint in addition to those listed

above 2.67a. These are the so-called “reality conditions”:

(2.74)

question is that of the so-called reality conditions

There are several subtleties involved with the crucial step 2.69 where we take the

2.11 Symmetries of GR

It is a truth universally acknowledged, that a student encountering the connection variables

of Loop Quantum Gravity will be in search of an explanation for why these should be labeled

by irreps of SU(2). We will attempt to motivate this choice of gauge group, by noting that

it is an appropriately-chosen subgroup of SL(2, C). The significance of SL(2, C) will now

be described.
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If we wish to construct a theory that encompasses GR under the framework of gauge

field theories we should anticipate that the local symmetries of spacetime will define the

gauge group of our quantum gravity theory. The causal structure of spacetime defines a

future light-cone and past light-cone at each event. The past light-cone of an observer at

any given value of time is the celestial sphere at a fixed distance from the observer. The

celestial sphere can be parametrised by the angles θ, φ, and any point on a sphere can

be stereographically projected onto a plane. For our purposes, this shall be taken to be

the complex plane, so that any point on the celestial sphere corresponds with a complex

number ζ = X+iY . We can write this as the ratio of two complex numbers ζ = α/β, which

can (if we so desire) be written as functions of θ, φ. A change of the complex coordinates

(which is equivalent to a coordinate transformation of the real angles θ, φ) can be effected

by acting on the 2-vector with components α, β with a linear transformation, written in the

form of a 2×2 matrix with complex components. If we take the determinant of this matrix

to be +1 (which we can do, without loss of generality) this is an SL(2, C) transformation.

3 Quantum Field theory

Quantum Field theory should be familiar to most (if not all) modern physicists, however

we feel it is worth mentioning the basic details here, in order to emphasize the similarities

between QFT and GR, and hence illustrate how GR can be written as a gauge theory.

In short, we will see that a local change of phase of the wavefunction is equivalent to the

position-dependent change of basis we considered in the case of GR. Just as the partial

derivative of a vector gave (via the chain rule) a derivative term corresponding to the

change in basis, we will see that a derivative term arises corresponding to the change in

phase of the quantum field. This introduces a connection and a covariant derivative defined

in terms of the connection.

3.1 Covariant Derivative and Curvature

We require that the action for a gauge theory (such as QED) be invariant under local

gauge transformations. This condition is exactly analogous to the freedom to assign a local

basis at each point of space, as we did in GR, and similarly we will find that when we

differentiate a wavefunction along a path, a connection term arises.

Consider for instance the action for a Dirac field ψ of mass m:

S =

∫
d4x ψ̄(i~cγµ∂µ −mc2)ψ (3.1)

A global gauge transformation corresponds to rotating ψ by a constant phase ψ → eiθψ.

Under this change we can see that the value of the action

S →
∫
d4x ψ̄e−iθ(i~cγµ∂µ −mc2)eiθψ (3.2)

does not change because the factor of eiθ acting on ψ and the corresponding factor of e−iθ

acting on ψ̄ pass through the partial derivative unaffected, and cancel out. However if θ
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is allowed to vary and becomes a function θ(x) of position, then we speak of a local gauge

transformation, due to which the partial derivative becomes

∂µ

(
eiθψ

)
= eiθ (∂µ + i(∂µθ))ψ (3.3)

leading to a modification of the action S → S−
∫
d4x~cγµ(∂µθ)ψ̄ψ. Eq. (3.3), analogously

to eq. (2.3), is simply a consequence of the chain rule for differentiation. Now, consider

compensating for the effect of the partial derivative by the addition of a 1-form Aµ, with

the transformation property Aµ(x) → Aµ(x) − g−1∂µθ as ψ → eiθψ. Then the covariant

derivative operator Dµ = ∂µ + igAµ satisfies all the properties required of a derivative

operator (linearity, Leibniz’s rule, etc.), and

Dµψ → Dµ

(
eiθψ

)
= ∂µe

iθψ + ig

(
Aµ(x)− 1

g
∂µθ

)
eiθψ

= eiθ (∂µ + i(∂µθ))ψ + igeiθAµ(x)ψ − ieiθ∂µθψ
= eiθ (∂µ + igAµ(x))ψ

= eiθDµψ (3.4a)

And so the phase factor passes through the covariant derivative as desired. It is now

trivial to show that the Dirac action defined in terms of the covariant derivative,

SDirac =

∫
d4x ψ̄(i~cγµDµ −mc2)ψ (3.5)

is invariant under local phase transformations of the form ψ → eiθ(x)ψ, ψ̄ → ψ̄e−iθ(x),

so long as Aµ(x) transforms as above. The requirement that the action be invariant under

local gauge transformations has introduced a connection Aµ which tells us how the phase

of the wavefunction at each point corresponds to the phase at a different point, in analogy

to the connection in GR which told us how coordinate bases varied from point to point.

The discussion above has been restricted to the case of a simple rotation of the phase

(that is, eiθ ∈ U(1), the rotation group of the plane). In GR, by contrast, the local

bases at different points may be rotated in three dimensions relative to each other (that

is, the basis vectors are acted upon by elements of SO(3)). We can accordingly generalise

the discussion above to include phase rotations arising from more elaborate groups, for

instance if we replace the wavefunction ψ by a Dirac doublet

ψ → ψ =

(
ψ1(x)

ψ2(x)

)
(3.6)

and act upon this with transformations of the form

U(x) = exp(iθI(x)tI). (3.7)

Here tI = σI/2, (with σI the Ith Pauli matrix) and in general the tI will be the appropriate

generators of the symmetry group, and I = 1, 2, . . . N . In this case the covariant derivative

becomes

Dµ = ∂µ − igAIµtI (3.8)
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(summation on the repeated index is implied). In analogy to the case discussed above, for

GR, we can form the commutator of covariant derivatives. In this case, we obtain the field

strength tensor Fµν , the analogue of the Riemann curvature tensor,

[Dµ, Dν ] = −igF IµνtI (3.9)

where we can see (by applying the standard commutation relations for the Pauli matrices)

that

F Iµν = ∂µA
I
ν − ∂νAIµ + gεIJKAJµA

K
ν . (3.10)

When our gauge group is abelian (as in QED) all the generators of the corresponding

Lie algebra commute with each other and thus the structure constants of the group (εIJK

in the above example of su(2)) vanish. In this event the field strength simplifies to:

F Iµν = ∂µA
I
ν − ∂νAIµ (3.11)

For U(1) there is only one group generator and so we can drop the index I in the above

expression.

Now, what we have so far is an action 3.5 which describes the dynamics of spinorial

fields, interactions between which are mediated by the gauge field. The gauge field itself is

not yet a dynamic quantity. In any gauge theory, consistency demands that the final action

should also include terms which describe the dynamics of the gauge field alone. We know

this to be true from our experience with QED where the gauge field becomes a particle

called the photon. From classical electrodynamics Maxwell’s equations possess propagating

solutions of the gauge field - or more simply electromagnetic waves. This basic postulate

of gravitational theory - the equivalence principle - according to which:

“Matter tells geometry how to curve and geometry tells matter how to move”

has a parallel statement in the language of gauge theory. In a gauge theory, matter is

represented by the fields ψ whereas the “geometry” (not of the background spacetime, but

of the interactions between the particles) is determined by the configurations of the gauge

field. The equivalence principle of GR can then be cast into field theoretic terms:

“Matter tells gauge fields how to curve and gauge fields tells matter how to

move”

The field strength F Iµν itself is gauge covariant but not gauge invariant. Under an in-

finitesimal gauge transformation A0 → A0 +δA the field strength also changes by F [A0]→
F [A0 + δA] = F0 + δF where the variation in field strength is given by δF = Dµ[A0] as the

user can easily verify by substituting and expanding in 3.11 or 3.10 Here Dµ[A0] denotes

that the covariant derivative is taken with respect to the original connection A0.

The term giving the dynamics of the gauge field can be uniquely determined from

the requirement of gauge invariance. We need to construct out of the field strength an

expression with no indices. This can be achieved by contracting F Iµν with itself and then

taking the trace over the Lie algebra indices. Doing this we get the term:

Sgauge = −1

4

∫
d4xTr [FµνFµν ] (3.12)
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which in combination with 3.5 gives us the complete action for a gauge field interacting

with matter:

S = Sgauge + SDirac =

∫
d4x

{
−1

4
Tr [FµνFµν ] + ψ̄(i~cγµDµ −mc2)ψ

}
(3.13)

3.2 Wilson Loops and Holonomies

In section 2 we defined a holonomy, as a measure of how much the initial and final values

of a spinor or vector transported around a closed loop differ. The name holonomy is also

used within the LQG community to refer to a closed loop itself. For this reason we will, as

a compromise, adopt the name “piecewise holonomy” to refer to a path or loop along which

a spinor is transported. The piecewise holonomies are therefore another way of referring to

the generalised coordinates (spin connection) we mentioned above. The conjugate momenta

are the metrics, given by tetrads defined along the piecewise holonomies.

Given these constructions of the covariant derivative and the field strength, we must

now proceed to determining the form of the gauge-invariant quantities that will serve as

physical observables and will allow us to calculate measurable quantities such as scattering

amplitudes.

Figure 5: Parallel transporting an object (vector, spinor, etc.) around a closed loop

measures the curvature of a surface bounded by the loop. After a complete loop if the

object returns to its original state the curvature is zero. If not, then the “angular” change

in its state is a measure of the curvature.

The principle tool used in such efforts has already been introduced in Section 2 and

goes by the name of holonomy. The condition for parallel transport of a vector is that its

covariant derivative with respect to the Christoffel connection should vanish, i.e.:

∇kvi = ∂kv
i + vjΓijk = 0

Similarly the condition for parallel transport of a spinor requires that its covariant deriva-

tive with respect to the gauge connection should vanish:

Dµψ = ∂µψ + ıgAµψ = 0

Here Aµ ≡ AIµt
I is the gauge connection. Now we can formally write down a solution to

the parallel transport equation (see e.g. pages 66-68 of [30]). A path γτ , is given by a map
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from the unit interval on the real line to the manifold M , parameterized by τ ∈ [0, 1] such

that γ0 and γ1 are respectively the beginning and end-points of the path. Then the result

of parallel transporting the spinor 13 at ψ|(τ=0) along γ is given by:

ψ|(τ=1) = P exp

{
−
∫
γ
dτ ′(x)Aµ

I(x)TIn
µ(x)

}
ψ|(τ=0) (3.14)

where the P tells us that the integral must be path ordered 14 and nµ is the unit

tangent vector to γ at the point x. The path-ordered exponential of the connection gives

us an element of the relevant gauge group. Thus ψ at τ = 1 is related to the spinor at

τ = 0 by a gauge rotation ψ|(τ=1) = Uγψ|(τ=0), where Uγ is the holonomy of the connection

along the path.

Now consider the situation when the path γ is a closed loop, i.e. its beginning and

its end-points coincide. If the gauge connection vanishes along this path then the gauge

rotation is simply the identity matrix and ψ returns to its original value after being par-

allel transported along the loop. In general, however, the connection will not vanish and

therefore the associated holonomy Uγ need not be trivial. Analogously to the situation for

a curved manifold, where the parallel transport of a vector along a closed path gives us a

measure of the curvature of the spacetime bounded by that path, the parallel transport of

a spinor around a closed path yields a measure of the gauge curvature living on a surface

bounded by this path.

3.3 Observables

Configuration variable: su(2) valued connection 1-form Aia Gauge invariant Wilson loops

(Holonomies):

gγ [A] = P exp

{
−
∫ γ1

γ0

ds na(s)Aa
iτi

}
(3.15)

where γ is the curve along which the holonomy is evaluated, s is an affine parameter along

that curve and na is the tangent to the curve at s. and gγ [A] ∈ SU(2) (for GR). A

calculation that will be useful later on is the functional derivative of the holonomy w.r.t.

the connection:
δ

δAai
gγ [A] = na(s)τigγ [A] (3.16)

Momentum variable - “electric field” Σi
ab = ηabce

ci Regularized by smearing on 2-

surfaces to obtain “flux” variables:

Φ(S,f) =

∫
S
d2x f(x)EiaE

aiηij

13In an exactly analogous way 2.5 has a solution given by vµ|(τ=1) = P
{
e−

∫
γ dτ

′Γµ
ανn

α
}
vν|(τ=0) =

Uµνv
ν
|(τ=0) where the holonomy Uµν is now an element of GL(4,R).

14see Appendix D for the definition of a “path ordered” exponential
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4 First steps to a theory of Quantum Gravity

A significant obstacle to the development of a theory of quantum gravity is the fact that GR

is not renormalizable. The gravitational coupling constant G (or equivalently 1/M2
Planck in

dimensionless units where G = c = ~ = 1) is not dimensionless, unlike the fine-structure

constant α in QED. This means that successive terms in any perturbative series have

increasing powers of momenta in the numerator.

4.1 Lagrangian (or Path Integral) Approach

In the path-integral approach to quantum field theory the basic element is the propagator

(or the partition function when M is a Euclidean manifold) which allows us to calculate

the probability amplitudes between pairs of initial and final states of our Hilbert space.

The prototypical example is that of the non-relativistic point particle in flat space moving

under the influence of an external potential V (x)for which the action is given by:

Spp[γ] =

∫
γ
d3xdt

(
1

2
mẋ2 − V (x)

)
(4.1)

Note that the potential term must be replaced by a gauge field Aµ the relativistic case, in

which case the action takes the form:

SRel[γ] =

∫
γ
d3xdt

(pµ +Aµ)(pµ +Aµ)

m0
(4.2)

where pµ is the energy-momentum 4-vector of the particle and m0 is its rest mass. This is

the familiar action for a charged point particle moving under the influence of an external

potential encoded in the abelian gauge potential Aµ. It is important to keep in mind that

the action integral depends on the choice of the path γ taken by the system as it evolves

from the initial to final states in question. The action can be evaluated for any such path

and not just the ones which extremize the variation of the action. This allows us to assign

a complex amplitude (or real probability in the Euclidean case) to any path γ by:

exp {iS[γ]} (4.3)

Using this complex amplitude as a weighting function we can calculate matrix elements for

transitions between an arbitrary pair of initial Ψi(t) and final Ψf (t′) states by summing all

paths or histories which interpolate between the two states:〈
Ψi(t) | Ψf (t′)

〉
=

∫
D[ψ] exp {iS[γ]} (4.4)
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Here D[ψ] is an appropriate measure on the space of allowed field configurations.

For the point-particle |q, t〉 represents a state where the particle is localized at position

q at time t. The matrix-element between states at two different times then takes the form:〈
q, t | q, t′

〉
=

∫
D[ψ] exp {iSpp[γ]} (4.5)

As show in Section 2.4 the field equations (2.9) for gravitation can be derived from a

Lagrangian formulation. This is necessary in order to make contact with the path-integral

or sum-over-histories approach. For the reader’s convenience let us recall the form of the

Einstein-Hilbert action for GR on a manifold M without matter:

SEH =
1

κ

∫
d4x
√
−g R (4.6)

where κ = −16πG as before, g is the determinant of the metric tensor and R is the Ricci

scalar. For gravity, it is this action which is used in order to calculate the matrix-elements

(as in 4.4) for transitions between two states of geometry.

In gravity we are interested in calculating the transition amplitudes between states of

geometry defined on two spacelike 3-manifolds Σt and Σt′ (see Fig. 3). Let us represent

the quantum states corresponding to the two hypersurfaces as |hab, t〉 and |h′ab, t′〉. Then

the probability that evolving the geometry according to the quantum Einstein equations

will lead to a transition between these two states is given by:

〈hab, t|h′ab, t′〉 =

∫
D[gµν ] exp {iSEH(gµν)} (4.7)

where the action is evaluated over all 4-metrics gµν interpolating between the two hyper-

surfaces Σt and Σt′ . D[gµν ] is the appropriate measure on the space of 4-metrics.

4.2 Canonical Quantization

The alternative to the path-integral approach is the Hamiltonian method. In the context

of general relativity, where the Hamiltonian is a sum of constraints, the Dirac procedure for

quantization of constrained systems comes into play. This approach is generally referred

to as “canonical” quantization.

In the Hamiltonian formulation one works with a phase space spanned by a set of

generalized coordinates qi, and a set of (generalized) momenta pi. For the case of general

relativity, the generalised coordinate is the intrinsic metric hab of the spatial 3-manifold
3Σ and its extrinsic curvature kab induced by its embedding in 4M is the corresponding

generalized momentum. For comparison the phase spaces of various classical systems are

listed in Table 4.2

System Co-ordinate Momentum

Simple Harmonic Oscillator x p

Ideal Rotor θ Lθ
Scalar Field φ(x, t) π(x, t)

Geometrodynamics hab kab = Lthab
Connection- dynamics Aa

i Eai
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Now, given our phase space co-ordinatized by {hab, πab} and the explicit form of the Hamil-

tonian of GR in terms of the Hamiltonian 2.38a and diffeomorphism 2.38b constraints, we

can proceed directly to quantization by promoting the Poisson brackets on the classical

phase space to commutation relations between the operator acting on a Hilbert space

HGR:

hab → ĥab πab → i~
δ

δhab
(4.8a){

hab(x), πa
′b′(x′)

}
= δ(x− x′)δa′aδb

′
b →

[
ĥab, i~

δ

δhab

]
= i~δa

′
aδ
b′
b (4.8b)

f [hab] → |Ψhab〉 (4.8c)

It then remains to write the constraints H and Cµ in operator form using the above sub-

stitutions and find states - functionals of the three-metric |hab〉 - which are annihilated by

the resulting operators:

H, Ca → Ĥ, Ĉa (4.9a)

Ĥ|Ψhab〉 = 0; Ĉa|Ψhab〉 = 0 (4.9b)

States |Ψq〉 which satisfy the above constraints would then be identified with the

physical states of quantum gravity. The physical Hilbert space is a subset of the kinematic

Hilbert space which consists of all functionals of the 3-metrics: |Ψq′〉 ∈ Hphys ⊂ Hkin.

The above prescription is only formal in nature and we run into severe difficulties when

we try to implement this recipe. The primary obstacle is the fact that the Hamiltonian

constraint 2.38a has a non-polynomial dependence on the 3-metric via the Ricci curvature
3R. We can see this schematically by noting that 3R is a function of the Christoffel

connection Γ which in turn is a complicated function of hab:

3R ∼ (∂Γ)2 + (Γ)2; Γ ∼ q∂q ⇒ ∂Γ ∼ ∂q∂q + q∂2q (4.10)

This complicated form of the constraints raises questions about operator ordering and

is also very non-trivial to quantize. Therefore, in this form, the constraints of general

relativity are not amenable to quantization.

This is in contrast to the situation with the Maxwell and Yang-Mills fields, which

being gauge fields can be quantized in terms of holonomies15, which form a complete set

gauge invariant variables. An optimist might believe that were we able to cast general

relativity as a theory of a gauge field, we could make considerably more progress towards

quantization than in the metric formulation. This does turn out to be the case as we see

in the following sections.

4.3 Loop Quantization

The following exposition only gives us a bird’s eye view of the process of canonical quan-

tization. The reader interested in the mathematical details of and the history behind the

canonical quantization program is referred to [31].

15Holonomies were mentioned briefly in Section 1 and will be covered in greater detail in Section 3.2
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The program of Loop Quantum Gravity is as follows. The notion of background inde-

pendence16, which is central to General Relativity, is considered sacrosanct.

1. Write GR in connection and tetrad variables (in first order form).

2. Perform 3 + 1 decomposition to obtain the Einstein-Hilbert-Ashtekar Hamiltonian

Heha which turns out to be a sum of constraints. Therefore, the action of the quan-

tized version of this Hamiltonian on elements of the physical space of states yields

Heha|Ψ〉 = 0. We find that these states are represented by graphs whose edges are

labeled by representations of the gauge group (for GR this is SU(2)).

5 Kinematical Hilbert Space

A state is given by a graph Γ with edges pi labeled by elements of SU(2)

ΨΓ = ψ(g1, g2, . . . , gn) (5.1)

where gi is holonomy of A along the ith edge. The inner-product of two different states on

the same graph can be defined using the Haar measure on group:

〈ΘΓ|ΨΓ〉 =

∫
Gn
dµ1 . . . dµnΘ(g1, . . . , gn)Ψ̄(g1, . . . , gn) (5.2)

For e.g. L2(G) - the space of square integrable functions on the manifold of the group G -

constitutes the kinematical space of states for a single edge.

5.1 Spin Networks

So what are spin-networks? Briefly, they are graphs with representations (”spins”) of some

gauge group (generally SU(2) or SL(2,C) in LQG) living on each edge. At each non-trivial

vertex, one has three or more edges meeting up. What is the simplest purpose of the

intertwiner? It is to ensure that angular momentum is conserved at each vertex. For the

case of four-valent edge we have four spins: (j1, j2, j3, j4). There is a simple visual picture

of the intertwiner in this case.

Picture a tetrahedron enclosing the given vertex, such that each edge pierces precisely

one face of the tetrahedron. Now, the natural prescription for what happens when a surface

is punctured by a spin is to associate the Casimir of that spin J2 with the puncture. The

Casimir for spin j has eigenvalues j(j+1). You can also see these as energy eigenvalues for

the quantum rotor model. These eigenvalues are identified with the area associated with a

puncture.

In order for the said edges and vertices to correspond to a consistent geometry it is

important that certain constraints be satisfied. For instance, for a triangle we require that

16It is important to mention one aspect of background independence that is not implemented, a priori,

in the LQG framework. This is the question of the topological degrees of freedom of geometry. On general

grounds, one would expect any four dimensional theory of quantum gravity to contain non-trivial topological

excitations at the quantum level. Classically, these excitations would correspond to defects which would

lead to deviations from smoothness of any coarse-grained geometry.
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(a) Labelling of edges by group elements(b) Labelling of edges by group represen-

tations

Figure 6: States of quantum geometry are given by arbitrary graphs whose edges are

labeled by group elements representing the holonomy along each edge. The Peter-Weyl

theorem allows us to decompose these states in terms of spin-network states, where edges

are now labelled by group representations (angular momenta).

the edge lengths satisfy the triangle inequality a + b < c and the angles should add up

to ∠a + ∠b + ∠c = κπ, with κ = 1 if the triangle is embedded in a flat space and κ 6= 1

denoting the deviation of the space from zero curvature (positively or negatively curved).

In a similar manner, for a classical tetrahedron, now it is the sums of the areas of

the faces which should satisfy ”closure” constraints. For a quantum tetrahedron these

constraints translate into relations between the operators ji which endow the faces with

area.

Now for a triangle giving its three edge lengths (a, b, c) completely fixes the angles and

there is no more freedom. However, specifying all four areas of a tetrahedron *does not*

fix all the freedom. The tetrahedron can still be bent and distorted in ways that preserve

the closure constraints (not so for a triangle!). These are the physical degrees of freedom

that an intertwiner possesses - the various shapes that are consistent with a tetrahedron

with a given set of face areas. More generally a polyhedron with n faces represents an

intertwiner between the edges piercing each one of the faces.

5.2 Operators for Quantum Geometry

References: [32, 33, 34, 35, 36, 37]

5.2.1 Area Operator

The area operator in quantum geometry is defined in analogy with the classical definition

of the area of a two-dimensional surface S embedded in some higher dimensional manifold

M . In the simplest case S is a piece of R2 embedded in R3. To each point p ∈ S we can

associate a triad - “frame field” - i.e. a set of vectors which form a basis for tangent space

Tp at that point: {~e1,~e2,~e3}.
In abstract index notation this basis can also be written more succinctly as {eai}p

where a, b, c . . . index the vectors and i, j, k . . . label the components of each individual
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vector in the active or “chosen” co-ordinate system. Here it is understood that the basis

need not be the same for all points on S, i.e. the parallel transport of the frame field, as

given by the gauge connection Aa, is non-zero.

The area of a two-dimensional surface S embedded in 3Σ is given by:

AS =

∫
d2x
√
h (5.3)

where hab is the metric on S, induced by the three-dimensional metric gab on 3Σ, and h is

its determinant. Given an orthonormal triad field {eai} on Σ, we can always apply a local

gauge rotation to obtain a new triad basis {e′ai}, such that two of its legs - or “dyad” -

{e′xi, e′yj} are tangent to the surface S and e′z
k is normal to S. Then the components of

the two-dimensional metric hAB (A,B ∈ {x, y} are purely spatial indices) can be written

in terms of the dyad basis {eAI} 17 as:

hAB = eA
IeB

JδIJ (5.4)

The above expression with all indices shown explicitly becomes:

hAB :=

(
hxx hxy
hyx hyy

)
=

(
ex
Iex

J ex
Iey

J

ey
Iex

J ey
Iey

J

)
δIJ (5.5)

Now, the determinant of a n× n matrix Aij can be written as:

det(A) =
∑

i1...in∈P
A1 iiA2 i2 . . . An inε

i1i2...in (5.6)

where the sum is over all elements of the permutation group P of the set of indices {im}
and εi1i2...in is the completely anti-symmetric tensor. For a 2×2 matrix hAB this expression

reduces to:

det(h) =
∑
i1,i2

h1 i1h2 i2ε
i1 i2 = h11h22 − h12h21 (5.7)

as the reader can easily check.

In terms of the dyad basis {eAI}, adapted to the surface S, the above expression

becomes:

det(h) =
(
ex
iex

jey
key

l − exieyjeykexl
)
δijδkl

=
(
εikmε

jl
n − εijmεkln

)
ez
mez

n δijδkl

= εikm εikn ez
mez

n

= δmn ez
mez

n (5.8)

where in the first step we have used the fact that for an orthornormal triad εijkez
k = ex

iey
j .

In the second we have used εijm δij = 0 and in the third step we have used the fact that the

17I, J ∈ {0, 1} label generators of the group of rotations SO(2) in two dimensions. They are what is left

of the “internal” su(2) degrees of freedom of the triad when it is projected down to S.
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contraction of two completely anti-symmetric tensors can be written in terms of products

of Kronecker deltas.

Thus the classical expression for the area becomes18

AS =

∫
S
d2x

√
~ez · ~ez (5.11)

where ~ez · ~ez ≡ ez
iez

jδij . With the classical version in hand it is straightforward to write

down the quantum expression for the area operator. In the connection representation, the

classical vierbein plays the role of the momenta. So just as in usual quantum mechanics

where the quantum operator for the momenta corresponds to derivation w.r.t. the position

co-ordinate p→ p̂ = −i~ ∂
∂q , the quantum operator for the vierbien is given by the derivative

w.r.t. the connection ea
i → −i~ ∂

∂Aai
, giving us:

ÂS =

∫
S
d2x

√
δij

δ

δAzi
δ

δAzj
(5.12)

In order to determine the action of this operator on spin-network state, let us recall the

form of the state 5.1:

ΨΓ = ψ(g1, g2, . . . , gn)

where gn is the holonomy along the ith edge of the graph. Let the edges of the graph Γ

intersect the surface S at exactly k locations. For the time being let us ignore the cases

when an edge is tangent to S or when a vertex of the graph happens to lie on S. Then,

evidently, the action of 5.12 on the state ΨΓ will give us a non-zero result only in the

vicinity of the punctures19. Thus:

ÂSΨΓ ≡
∑
k

√
δij

δ

δAzi
δ

δAzj
ΨΓ (5.13)

At the kth puncture, the operator will act only the holonomy gk. From the definition of

the holonomy 3.15 and using 3.16 we can see that:

δ

δAai
ψ(g1, . . . , gk, . . . , gn) = naτiψ(g1, . . . , gk, . . . , gn) (5.14)

where na is the unit vector tangent to the edge at the location of the puncture. Thus we

have:
δ

δAai
δ

δAbj
ψ = nanbτiτjψ (5.15)

18This is only valid for the case when Σ is a three-dimensional manifold. In a general n-dimensional

manifold, the area is a tensor:

Aµν
ij = e[µ

ieν]
j (5.9)

In order to extract a single number - the “area” - from this tensor we project onto a two-dimensional plane

spanned by {n1
i, n2

j} and contract the Lie algebra indices:

A[S] (5.10)

19since the connection is defined only along those edges and nowhere else!
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Performing the contractions over the spatial and internal indices, noting that nana = 1,

we finally obtain:

ÂSΨΓ ≡
∑
k

√
δij ĴiĴjΨΓ =

∑
k

√
J2ΨΓ (5.16)

where Ĵi is the ith component of the angular momentum operator acting on the spin

assigned to a given edge. J2 is the usual Casimir of the rotation group whose action upon

a given spin state gives us:

J2|j〉 = j(j + 1)|j〉 (5.17)

This gives us the final expression for the area of S in terms of the angular momentum label

jk assigned to each edge of Γ which happens to intersect S:

ÂSΨΓ = l2p
∑
k

√
jk(jk + 1)ΨΓ (5.18)

where l2p (a unit of area given as the square of the Planck length) is inserted in order for

both sides to have the correct dimensions.

5.2.2 Volume Operator

First, let us fix some notation: Consider an ensemble {Γi} of spin-networks which corre-

sponds to a semiclassical geometry {M, gab} in the thermodynamic limit 20.

The volume of a given region S is given by the action of the volume operator V̂S on

the vertices of Γ which lie in S, i.e. for v ∈ S ∩ Γ. γ is the Immirzi parameter and lp the

Planck length. Creg is a regularization constant and Xa
eI

is the operator given by:

Xa
eI

ΨΓ =
d

dt
f
(
Ue1 [A(γ)], . . . , etτaUeI [A

(γ)], . . . , UeE [A(γ)]
)

where the derivative is taken at t = 0. Xa
eI
τa is thus the left-invariant vector field in

the lie-algebra su(2) evaluated along the given edge eI .

The Rovelli-Smolin version [37] of the volume operator is:

V̂ RS
S ΨΓ = γ3/2l3p

∑
v∈S∩Γ

∑
I,J,K

∣∣∣∣ iCreg8
εabcX

a
v,eI

Xb
v,eJ

Xc
v,eK

∣∣∣∣1/2 ΨΓ (5.19)

where εabc is the alternating tensor.

The Ashtekar-Lewandowski [34] version is:

V̂ AL
S ΨΓ = γ3/2l3p

∑
v∈S∩Γ

∣∣∣∣∣∣ iCreg8

∑
I,J,K

εv(eI , eJ , eK)εabcX
a
v,eI

Xb
v,eJ

Xc
v,eK

∣∣∣∣∣∣
1/2

ΨΓ (5.20)

Here εv(eI , eJ , eK) ∈ −1, 1, 0 is the orientation of the three tangent vectors at v to the

curves/edges eI , eJ , eK . The key difference between the two version lies in this term. The

RS operator does not take into account the orientation of the edges which come into the

vertex. This fact is taken into account in the AL version. and it allows us to speak of a

Flesh out follow-

ing section and

mention work in

progress

20when the number of degrees of freedom N →∞, the volume V →∞ and the number density N/V → n

where n is bounded above
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(a) Volume around node in classical ge-

ometry. Edges are labeled by vectors of

the form ax̂+ bŷ + cẑ ∈ R3

(b) Volume operator in quantum geome-

try. Edges are labeled by elements of the

form ασx + βσy + γσz ∈ sl(2,C)

Figure 7: In order to calculate the volume around the vertex we must sum over the volume

contained in the solid angles between each unique triple of edges. Classically this volume

can be determined by the usual prescription ~a · (~b × ~c), where ~a,~b,~c are the vectors along

each edge in the triple. In quantum geometry these vectors are replaced by irreps of SU(2)

but the basic idea remains the same.

phase transition from a state of geometry at high-temperature (T > Tc)where the volume

operator averages to zero for all graphs (which are ”large” in some suitable sense) and

a low-temperature (T < Tc) state where a geometric condensate forms and the volume

operator gains a non-zero expectation value for states on all graphs. The key point here

is that the AL version takes into account the ”sign” of the volume contribution from any

triplet of edges meeting at a vertex. Given any such triplet of edges eI , eJ , eK , by flipping

the orientation of any one edge we flip the sign of the corresponding contribution to V̂ AL
S . If

we take the orientation of an edge as our random variable for the purposes of constructing

a thermal ensemble, then it is clear, that in the limit of high-temperature these orientations

will flip randomly and the sum over the triplets of edges in V̂ AL
S will give zero for most

(if not all) graph states. As we lower the temperature the system begins to anneal and

for some temperature T = Tc the system should reach a critical point where the volume

operator spontaneously develops a non-zero expectation on most (if not all) graph states.

Notes:

a. Since the result of the volume operator acting on a vertex depends on the signs ε(eI , eJ , eK)

of each triplet of edges. A simple dynamical system would then consist of a fixed graph

with fixed spin assignments (je) to edges but with orientations that can flip, i.e. je ↔ −je
(much like a spin).

b. The Hamiltonian must be a hermitian operator. This fixes the various term one can

include in it. We must also include all terms consistent with all the allowed symmetries

in our model.
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c. The simplest tri-valent spin-network has one vertex with three edges, e.g. a vertex of

the hexagonal lattice. One can generalize the action of the vol. op. on graphs which

have vertices with valence v (number of connecting edges) greater than 3. [The vol. op.

gives zero on vertices with v ≤ 2 so these are excluded] To do so we use the fundamental

identity which allows to decompose the state describing a vertex with v ≥ 4 into a sum

over states with v = 3. One example of the decomposition of a four valent vertex into

two three-valent vertices is in the following figure:

Insert

illus-

tration

for 6j-

symbol

Missing

figure

d. This model can help us understand how a macroscopic geometry can emerge from the

”spin” or manybody system described byy a Hamiltonian, which contains terms with

the volume and area operators, on a spin-network.

5.3 Spin-Foams

Spin-foams correspond to histories which connect two spin-networks states. On a given

spin-network one can perform certain operations on edges and vertices which leave the

state in the kinematical Hilbert space. These involve moves which split or join edges and

vertices and those which change the connectivity (as in the “star-triangle transformation”).

One can “formally” view a spin-foam as a succession of states {|Ψ(ti)〉} obtained by the

repeated action of the scalar constraint:

|Ψ(t1)〉 ∼ exp−iHehaδt|Ψ(t0)〉
|Ψ(t2)〉 ∼ exp−iHehaδt|Ψ(t1)〉 . . . (5.21)

and so on [38, 39].

6 Applications

Ultimately, the value of any theory is judged by its relevance for the real world. While

the question of black hole entropy is, as yet, an abstract problem, it is concrete enough to

serve as a test-bed for testing theories of quantum gravity. The ideas of quantum geometry,

which have their origins in the canonical quantisation approach to quantum gravity, allow

us to speak of the microstates of geometry in terms of which we can give a statistical

mechanical description of a black hole horizon.

In addition to the Bekenstein area law, mentioned in 1, by investigating the behaviour

of a scalar field in the curved background geometry near a black hole horizon it was de-

termined [15] that all black holes behave as almost perfect black bodies radiating at a
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temperature inversely proportional to the mass of the black hole: T ∝ 1/MBH . This ther-

mal flux is named Hawking radiation after its discoverer. Since the mass of a black hole

determines the area of the black hole’s event horizon, the discrete nature of electromagnetic

radiation implies that the area of a black hole must also be discrete.These properties of

a black hole turn out to be completely independent of the nature and constitution of the

matter which underwent gravitational collapse to form the black hole in the first place.

These developments led to the understanding that a macroscopic black hole, at equilib-

rium, can be described as a thermal system characterised solely by its mass, charge and

angular momentum.

Bekenstein’s result has a deep implications for any theory of quantum gravity. The

“Bekenstein bound” refers to the fact that 1.1 is the maximum number of degrees of

freedom - of both, geometry and matter - that can lie within any region of spacetime of

a given volume V . The argument is straightforward [17]. Consider a region of volume

V whose entropy is greater than that of a black hole which would fit inside the given

volume. If we add additional matter to the volume, we will eventually trigger gravitational

collapse leading to the formation of a black hole, whose entropy will be less than the

entropy of the region was initially. However, such a process would violate the second law of

thermodynamics and therefore the entropy of a given volume must be at a maximum when

that volume is occupied by a black hole. And since the entropy of a black hole is contained

entirely on its horizon, one must conclude that the maximum number of degrees of freedom

Nmax that would be required to describe the physics in a given region of spacetime M, in

any theory of quantum gravity, scales not as the volume of the region V (M), but as the

area of its boundary [16, 17] Nmax ∝ A(∂M).

In view of the independence of the Bekenstein entropy on the matter content of the

black hole, the origin of 1.1 must be sought in the properties of the horizon geometry.

Assuming that at the Planck scale, geometrical observables such as area are quantized

such that there is a minimum possible area element a0 that the black hole horizon, or any

surface for that matter, can be “cut up into”, 1.1 can be seen as arising from the number

of ways that one can put (or “sew”) together N quanta of area to form a horizon of area

A = kNa0, where k is a constant. In this manner, understanding the thermal properties

of a black hole leads us to profound conclusions:

1. In a theory of quantum gravity the physics within a given volume of spacetime M
is completely determined by the values of fields on the boundary of that region ∂M.

This is the statement of the holographic principle.

2. At the Planck scale (or at whichever scale quantum gravitational effects become

relevant) spacetime ceases to be a smooth and continuous entity, i.e. geometric

observables are quantized.

In LQG, the second feature arises naturally - though not all theorists are convinced

that geometry should be “quantized” or that LQG is the right way to do so. One can

also argue on general ground, that the first feature - holography - also is present in LQG,
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though this has not been demonstrated in a conclusive manner. Perhaps this paper might

motivate some of its readers to close this gap!

Let us now review the black hole entropy calculation in the framework of LQG.

6.1 Black Hole Entropy

While the question of black hole entropy is, as yet, an abstract problem, it is concrete

enough to serve as a test-bed for testing theories of quantum gravity. The ideas of quantum

geometry, which have their origins in the canonical quantisation approach to quantum

gravity, allow us to speak of the microstates of geometry in terms of which we can give a

statistical mechanical description of a black hole horizon. For each macroscopic interval of

Figure 8: A spin-network corresponding to some state of geometry in the bulk punctures

a black-hole horizon at the indicated locations. Each puncture yields a quantum of area

∝
√
j(j + 1) where j is the spin-label on the corresponding edge. The entropy of the

black-hole - or, more precisely, of the horizon - can be calculated by counting the number

of possible configurations of punctures which add up to give a macroscopic value of the

area lying within some finite interval (A,A+ δA)

area [A + δA,A − δA], entropy S is proportional to log of the number of ways in which

we can puncture the sphere to yield an area within that interval. A given set of punctures

with labels {j1, j2, . . . , jn} is permissible if:

l2p
∑
i

√
ji(j1 + 1) ∈ [A+ δA,A− δA]

Counting all such configurations compatible with an area A� l2p yields:

S ∼ log(N) ∝ A

6.2 Loop Quantum Cosmology

One of the first avenues to follow when approaching old problems with new tools is to

select the simplest possible scenarios for study, in the hope that the understanding gained

in this arena would ultimately lead to a better understanding of more complex systems and

processes. In classical GR this corresponds to studying the symmetry reduced solutions of

Einstein’s equations, such as the FLRW cosmologies and their anisotropic counterparts, and

various other exact solutions such as deSitter, anti-deSitter, Schwarzschild, Kerr-Newman
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etc. which correspond respectively to a “universe” (in this very restricted sense): with

Make table for

commonly used

metrics

positive cosmological constant (Λ > 0), a universe with Λ < 0, a non-rotating black hole

and a rotating black hole, both in asymptotically flat spacetimes21. In each of these cases

the metric has a very small number of local degrees of freedom and hence provides only a

“toy model”. Of course, in the real world, the cosmos is a many-body system and reducing

its study to a model such as the FLRW universe is a gross simplification. However, via

such models, one can obtain a qualitative grasp of the behavior of the cosmos on the largest

scales. Consequently, the simplest quantum cosmological model is that which corresponds

to the Friedmann metric whose line-element is given by:

ds2 = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
(6.1)

where the only dynamical variable is the scale factor a(t) which depends only on the time

parameter.

6.2.1 Homogenous Isotropic Models

It is from the application of these ideas to LQG that the first, simplest fully quantum-

mechanical cosmological models were born [42] resulting in the framework now known as

Loop Quantum Cosmology (LQC).

6.3 Semiclassical Limit

The graviton propogator has a robust quantum version in these models. Its long-distance

limit yields the 1/r2 behavior [43] expected for gravity and an effective coarse-grained

action given by the usual one consisting of the Ricci scalar plus terms containing quantum

corrections.

7 Recent Developments

8 Discussion

8.1 Criticisms of LQG

Any fair and balanced review paper on LQG should also mention at least a few of the many

objections its critics have presented. A list a few of the more important points of weakness

in the framework and brief responses to them follows:

1. LQG admits a volume extensive entropy and therefore does not respect the Holographic

principle: This misconception arises due to a lack of understanding of the difference

between the kinematical and the dynamical phase space of LQG. This critique hinges

upon the description of states of quantum gravity as spin-networks which are essen-

tially spin-systems on arbitrary graphs. However, spin-networks only constitute the

kinematical Hilbert space of LQG. They are solutions of the spatial diffeomorphism

21We refer the reader to the extremely comprehensive and well-researched catalog of solutions to Einstein’s

field equations, in both metric and connection variables, presented in [40]. A somewhat older, but still

valuable, catalog of exact solutions is given in [41]
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and the gauss constraints but not of the Hamiltonian constraint which generates

time-evolution.

In order to solve the Hamiltonian constraint we are forced to enlarge the set of

states to include spin-foams which are histories of spin-networks. The amplitudes

associated with a given spin-foam are determined completely by the specification

of its boundary state. Physical observables do not depend on the possible internal

configurations of a spin-foam but only on its boundary state. In this sense LQG

satisfies a far stronger and cleaner version of holography than string theory, where

this picture emerges from much more complicated considerations involving graviton

scattering from certain extremal black hole solutions.

There are some

weak points in

my arguments

which I have to

clarify but the

general picture is

correct.

2. LQG violates local Lorentz invariance/picks out a preferred frame of reference: Lorentz

invariance is obeyed in LQG but obviously not in the exact manner as for a continuum

geometry. A spin-network/spin-foam state transforms in a well-defined way under

boosts and rotations. fill in details

3. LQG does not have stable semiclassical geometries as solutions - geometry ”crumbles”

- CDT simulations (Renate Loll etc.) show how a stable geometry emerges. The

question is exactly how similar is CDT to LQG fill in details

4. LQG does not contain fermionic and bosonic excitations that could be identified with

members of the Standard Model : LQG or a suitably modified version which allows

braiding between various edges will exhibit invariant topological structures which can

be identified with SM particles. In addition in any spin-system - such as LQG - there

are effective (emergent) low-energy degrees of freedom which satisfy the equations of

motion for Dirac and gauge fields. Xiao-Gang Wen and Michael Levin [44, 45] have

investigated so-called “string-nets” and find that the appropriate physical framework

is the so-called “tensor category” or “tensor network” theory [46, 47, 48]. In fact

string-nets are very similar to spin-networks so Wen and Levin’s work - showing that

gauge bosons and fermions are quasiparticles of string-net condensates - should carry

over into LQG without much modification.

5. LQG does not exhibit dualities in the manner String Theory does: Any spin-system

exhibits dualities. A graph based model like LQG even more so. One example of

a duality is to consider the dual of a spin-network which is a so-called 2-skeleton

or simplicial cell-complex. Another is the star-triangle transformation, which can

be applied to spin-networks which have certain symmetries, and which leads to a

duality between the low and high temperature versions of a theory on a hexagonal

and triangular lattice respectively [49].

6. LQG doesn’t admit supersymmetry, wants to avoid extra dimensions, strings, ex-

tended objects, etc: Extra dimensions are supersymmetry are precisely that - “extra”

(as in baggage). Occam’s razor dictates that a successful physical theory should be

founded on the minimum number of ingredients. The fact that LQG does not need

any such structures does not imply that these structures do not have a natural habitat
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in the quantum geometrical picture of LQG. It also bears to note that results from

the LHC appear to have ruled out most supersymmetric extensions of the standard

model.

7. LQG has a proliferation of models and a lacks robustness: Again a lack of extra bag-

gage implies the opposite. LQG is a tightly constrained framework. There are various

uniqueness theorems which underlie its foundations and were rigorously proven in the

1990s by Ashtekar, Lewandowski and others. There are questions about the role of

the Immirzi parameter and the ambiguity it introduces however these are part and

parcel of the broader question of the emergence of semi-classicality from LQG (see

Simone Mercuri’s papers in this regard). It is in fact, string theory, which suffers

from this weakness. There we find not one but at least five different effective theo-

ries which are all supposed to be emerge as the low-energy of a, so far incompletely

understood, “M-theory”.

8. LQG does not contain any well-defined observables and does not allow us to calculate

graviton scattering amplitudes: Several calculations of two-point correlation functions

in spin-foams exist in the literature [43] These demonstrate the emergence of an

inverse-square law.

8.2 Many body physics and gravitational phenomena

“Quantum Gravity” will ultimately be a theory which describes the interactions of large

numbers of quanta of geometry or “atoms” of spacetime and therefore it should be amenable

to the application of the methods of many body physics pioneered in condensed matter.

However, as practitioners of condensed matter physics are well aware, there is a vast gulf

between knowing the exact microscopic interaction hamiltonian of a system and in ex-

ploiting that knowledge to understand the properties of real-world systems. In a related

development, our increasing understanding of the renormalization group has led us to un-

derstand that in order to describe the dynamical behaviour of macroscopic systems the

precise form of the microscopic interaction Hamiltonian is not important. It is instead the

symmetries of the Hamiltonian interaction (the spacetime transformations which remains

which leave it invariant) that determine the structure of the RG flow and the classification

of critical points, lines and surfaces in the phase diagram of the corresponding macroscopic

many-body system.
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A Conventions

Uppercase letters I, J,K, . . . ∈ {0, 1, 2, 3} are “internal” indices which take values in the

sl(2,C) Lorentz lie-algebra. Greek letters µ, ν, α, β ∈ {0, 1, 2, 3} are four-dimensional

spacetime indices. Lowercase letters i, j, k, . . . ∈ 1, 2, 3 are su(2) lie-algebra indices and

a, b, c, . . . ∈ {1, 2, 3} are three-dimensional spatial indices.

A.1 Lorentz Lie-Algebra

For the internal space we use the metric with signature (− + ++). For this signature,

the generators of the Lorentz lie-algebra are the gamma matrices, which, in the Weyl

representation are of the form:

γ0 =

(
0 1

−1 0

)
; γi =

(
0 σi

σi 0

)
; γ5 = γ0γ1γ2γ3 =

(
−1 0

0 1

)
(A.1)

where i, j, k ∈ {1, 2, 3}. These satisfy the commutation relations:{
γI , γJ

}
= 2ηIJ ;

[
γI , γ5

]
= 0 (A.2)

where ηIJ = diag(−1, 1, 1, 1) is the Minkowski metric.

B Lie Derivative

Any vector field va on a manifold M
Basic results:

LXTµ1...µn = Xα∇αTµ1...µn −
n∑
i=1

Tµ1...µi−1 αµi+1µn∇µiXα (B.1)

in particular... LXTµ = Xα∇αTµ − Tα∇αXµ ≡ [X,T ] (B.2)

LXTµν = Xα∇αTµν + Tαν∇αXµ + Tµ
α∇αXν (B.3)

⇒ LXgµν = ∇µXν +∇νXµ (B.4)

(B.5)

C Duality

The notion of self/anti-self duality of the gauge field Fij is central to understanding both

the topological sector of Yang-Mills theory and the solutions of Einstein’s equations in the

connection formulation. Let us review this concept.

C.1 Differential Forms

Duality is a notion that emerges naturally from the construction of the space ⊕nk=0
nΛk of

differential forms on a n-dimensional manifold M . nΛk denotes the subspace consisting

only forms of order k e.g. in three dimensions the space of two-forms 3Λ2 is spanned by the
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basis
{
dx1 ∧ dx2, dx2 ∧ dx3, dx3 ∧ dx1

}
where {x1, x2, x3} is some local co-ordinate patch

- i.e. a mapping from a portion of the given manifold to a region around the origin in R3.

Now one can show [20, 18] that nΛk = nΛn−k, i.e. the space of k-forms is the same as

the space of (n-k)-forms. Thus any k-form Fa1a2...ak , defined on an n dimensional manifold,

can be mapped to an (n-k)-form (?Fa1a2...an−k). This is accomplished with the completely

antisymmetric tensor εx1...xn on M :

(?F )a1...an−k =
1

(n− k)!
εa1...an−k

an−k+1...anF
an−k+1...an (C.1)

A simple illustration of this is the equivalence between one-forms and two-forms on

a three-dimensional manifold. Any two, non-degenerate, vectors a, b ∈ R3 span a two-

dimensional subspace of R3. Using these two vectors we can construct a third vector c

formed by the so-called cross product: c = a× b, where the components of c are given by

ci = εijka
jbk. This construction is taught to us in elementary algebra courses, but never

quite seemed to make complete sense because it seemed to be peculiar to three-dimensions.

We need the language of differential forms to fully comprehend what is happening.

In this language the cross-product × is replaced by the wedge-product denoted by the

∧ symbol. The wedge product of two one-forms is a two-form which is then written as:

c = a ∧ b. In component notation cij = a[ibj]. Now the antisymmetric tensor εijk on R3

allows us to find the dual of this two-form. On a three-dimensional manifold this must

necessarily be a one-form (?c)i = εijkcij . It is this one-form that we then identify with the

vector c.

C.2 Spacetime Duality

In four-dimensions the dual of any two-form is another two-form

?Fαβ =
1

2
εαβ

µνFµν (C.2)

This goes through in for even-dimensional manifold. It is due to this property of even-

dimensional manifolds that we can define self-dual and anti-self-dual n-forms, where a form

is self (anti-self) dual if:

?F = ±F (C.3)

Given an arbitrary 2-form Gµν its self-dual part is given by G+ ?G and the anti-self-

dual part by G− ?G. We can check that these satisfy :

check and fix

this

? {G± ?G} = ?G∓G = ±{G± ?G}

because ?? = 1 in a Euclidean background.

Thus any 2-form can always written as a linear-sum of a self-dual and an anti-self-dual

piece:

G = αG+ + βG− ? G = αG+ − βG−

because ?G+ = G+ and ?G− = −G−. Conversely G± can be determined by inverting

this relationship

G+ =
G+ ?G

2α
G− =

G− ?G
2β
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The above results hold for a Euclidean spacetime. For a Lorentzian background we

would instead have ?? = −1 and the dual of a two-form is given by:

? Fαβ =
i

2
εαβ

γδFγδ (C.4)

and the statement of self (anti-self) duality becomes:

? F = ±iF (C.5)

with the self-dual and anti-self-dual pieces of a two-form G given by G± = G± ?iG
In general, the dual of a k-form F a1...ak is given by a n− k-form which can be written

as:

C.3 Lie-algebra duality

The previous section discussed self-duality in the context of tensors with spacetime indices

Tαβ...γδ.... In gauge theories based on non-trivial lie-algebras we also have tensors with lie-

algebra indices, such as the curvature Fµν
IJ of the gauge connection Aµ

IJ where I, J label

generators of the relevant Lie algebra.. The dual of the connection can then be defined

using the completely antisymmetric tensor acting on the Lie algebra indices, as in:

? Aµ
IJ =

1

2
εIJKLAµ

KL (C.6)

C.4 Yang-Mills

Let us illustrate the utility of the notion of self-duality by examining the classical Yang-

Mills action:

SYM =

∫
R4

Tr [F ∧ ?F ]

Varying this action w.r.t the connection gives us the equations of motion:

dF = 0 ; d ? F = 0

which are satisfied if F = ±?F , i.e. if the gauge curvature is self-dual or anti-self-dual.

Thus for self/anti-self dual solutions the Yang-Mills action reduces to:

S±YM = ±
∫
R4

Tr [F ∧ F ]

which is a topological invariant of the given manifold and is known as the Pontryagin

index. Here the sign ± superscript on the r.h.s. denotes whether the field is self-dual or

anti-self-dual. Again this is a matter of convention and we could equally well choose to

reverse this identification.
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C.5 Geometrical interpretation

Given any (Lie-algebra valued) two-form F Iab (where I, J,K . . . are Lie-algebra indices) we

can obtain an element of the Lie-algebra by contracting it with a member of the basis of the

space of two-forms: {dxi ∧ dxj} where xi denotes the ith vector and not the components

of a vector. The components are suppressed in the differential form notation as explained

in the preceding sections. The resulting lie-algebra element is:

ΦI
ab = F Iabdx

a ∧ dxb

and ΦI
ab is the flux of the field strength through the two-dimensional surface spanned by

{dxa, dxb}.
We can also define:

?ΦI
ab = ?F Iabdx

a ∧ dxb =
1

2
εab

cdF I cddx
a ∧ dxb

which implies that ?ΦI
ab = 1

2εab
cdΦI

cd, i.e. the flux of the field strength through the ab

plane is equal to the flux of the dual field through the cd plane.

D Path Ordered Exponential

The holonomy of a connection along a path (open or closed) γ in a manifold M is defined

as (??):

ψ|(τ=1) = P
{
e−

∫
γ dτ

′Aµnµ
}
ψ|(τ=0) = Uγ ψ|(τ=0) (D.1)

The exponential can be formally expressed in terms of a Taylor series expansion:

e−
∫
γ dτ

′Aµnµ = 1 +
∞∑
n=1

1

n!

{∫ σ1

σ0=0

∫ σ2

0
. . .

∫ σn=1

0
dτ1dτ2 . . . dτn A(σn)A(σn−1) . . . A(σ1)

}
(D.2)

where for the nth term in the sum, the path γ is broken up into n intervals parametrized

by the variables {τ1, τ2, . . . , τn} over which the integrals are performed. The interested

reader is referred to pgs. 66 - 68 of [30].

E Peter-Weyl Theorem

The crucial step involved in going from graph states with edges labeled by holonomies to

graph states with edge labeled by group representations (angular momenta) is the Peter-

Weyl theorem . This theorem allows the generalization of the notion of Fourier transforms

to functions defined on a group manifold for compact, semi-simple Lie groups.

Given a group G, let Dj(g)mn be the matrix representation of any group element g ∈ G.

Then we have (see Chapter 8 of [50]):

Theorem E.1. The irreducible represenation matrices Dj(g) for the group SU(2) satisfy

the following orthonormality condition:∫
dµ(g)D†j(g)mnD

j′(g)n
′
m′ =

nG
nj
δj
′
jδ
n′
nδ
m′
m (E.1)
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where nj is the dimensionality of the jth representation of G and nG is the order of the

group. For a finite group this is simply the number of elements of the group. For e.g., for

Z2, nG = 2. However a continuous or Lie group such as SU(2) has an uncountable infinity

of group elements. nG in such cases corresponds to the “volume” of the group manifold.

This property allows us to decompose any square-integrable function f(g) : G → C in

terms of its components with respect to the matrix coefficients of the group representations:

Theorem E.2. The irreducible representation functions Dj(g)mn form a complete basis

of (Lebesgue) square-integrable functions defined on the group manifold.

Any such function f(g) can then be expanded as:

f(g) =
∑
j;mn

fj
mnDj(g)mn (E.2)

where fj
mn are constants which can be determined by inserting the above expression for

f(g) in E.1 and integrating over the group manifold. Thus we obtain:∫
dµ(g)f(g)D†j(g)mn =

∑
j′;m′n′

∫
dµ(g)fj′

m′n′Dj′(g)m′n′D
†
j(g)mn =

∑
j′;m′n′

fj′
m′n′ nG

nj
δj
′
jδ
n′
nδ
m′
m

(E.3)

which gives us:

fj
mn =

√
nj
nG

∫
dµ(g)f(g)D†j(g)mn (E.4)

F Kodama State

The Kodama state is an exact solution of the Hamiltonian constraint for LQG with positive

cosmological constant Λ > 0 and hence is of great importance for the theory. It is given

by:

ΨK(A) = N e
∫
SCS (F.1)

where N is a normalization constant; SCS [A] is the Chern-Simons action for the con-

nection AIµ on the spatial 3-manifold M , given by:

SCS =
2

3Λ

∫
YCS

where:

YCS =
1

2
Tr

[
A ∧ dA+

2

3
A ∧A ∧A

]
where dA ' ∂[µA

I
ν] is the exterior derivative. The wedge product ∧ between two

1-forms Pa and Qa is:

P ∧Q ' P[aQb]

For identical one-forms the wedge product gives zero. That is why for the Chern-

Simons to have a non-zero cubic term the connection must be non-abelian. Let us write

the various terms in the Chern-Simons density explicitly:

A ∧ dA ≡ Ai[p∂qA
j
r]TiTj A ∧A ∧A ≡ Ai[pA

j
qA

k
r]TiTjTk
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where p, q, r . . . are worldvolume (“spacetime”) indices and i, j, k . . . are worldsheet

(“internal”) indices; and Ti are the basis vectors of the lie-algebra/internal space.

Taking the trace over these terms gives us:

YCS =
1

2
Tr

[
Ai[p∂qA

j
r]TiTj +

2

3
Ai[pA

j
qA

k
r]TiTjTk

]
The trace over the lie-algebra elements gives us:

Tr [TiTj ] = δij Tr [TiTjTk] = fijk

where fijk are the structure constants of the gauge group.

G 3j-symbols

The Wigner 3j-symbol is related to the Clebsch-Gordan coefficients through:(
j1 j2 j3
m1 m2 m3

)
≡ (−1)j1−j2−m3

√
2j3 + 1

〈j1,m1; j2,m2|j3,m3〉

where the (ji,mi) are the orbital and magnetic quantum numbers of the ith particle.

| j1,m1; j2,m2〉 is the state representing two particles (or systems) each with their separate

angular momentum numbers. | j3,m3〉 represents the total angular momentum of the

system. Classically we have two systems with angular momentum ~L1 and ~L2, then the

angular momentum of the combined system is: ~L3 = ~L1 + ~L2.

In quantum mechanics, however, the angular momentum of the composite system can

be any one of a set of possible allowed choices. Whether or not the angular momentum

of the composite system can be specified by quantum numbers j3,m3 is determined by

whether or not the Clebsch-Gordan coefficient is non-zero.

H Regge Calculus

Regge showed in 1961 that one could obtain the continuum action of general relativity ”in

2+1 dimensions” from a discrete version thereof given by [51, 52]:

Si =

6∑
a=1

li,aθi,a

is the Regge action for the ith tetrahedron. Here the sum over a is the sum over the

edges of the tetrahedron. li,a and θi,a are the length of the edge and the dihedral deficit

angle, respectively, around the ath edge of the ith tetrahedron.

The Regge action for a manifold built up gluing such simplices is simply the sum of

the above expression over all N simplices:

SRegge =

N∑
i=1

Si
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It was later shown by Ponzano and Regge [53] that the in the limit that ji � 1, the

6-j symbol corresponds to the cosine of the Regge action [54]:{
j1 j2 j3
j4 j5 j6

}
∼ 1

12πV
cos

(∑
i

jiθi +
π

4

)

I Glossary

A list of terms which are commonly used in the quantum gravity community but which

are likely to be unfamiliar to those without a background in gravitational physics is given

below with a brief descriptions of each term.

Symmetry Reduction the study of solutions of the EFEs possessing strong global symmetries

which reduces the effective local degrees of freedom to a small number.

Asymptotic Flatness a metric with a radial dependence is considered asymptotically flat if it

approaches (in a well-defined sense) a flat Minkowski metric as r →∞
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