
m*|B|/kT , 1. Therefore, tanh(m*|B|/kT) ≈ m*|B|/kT, and eq
7 becomes

The average magnetic energy per dipole, 〈UM〉j, in the distribu-
tion of dipoles is given by eq 9.4d Meanwhile, the unit volume

element of the electrolyte contains CjNA dipoles of species j, where
Cj is the concentration and NA is Avogadro’s number. So the total
magnetic energy per unit volume containing jmax dipolar species
(all with spin 1/2) is given by

Reasoning by analogy to the method of deriving FB (eq 6) from
the FL forces acting on individual ions, the total force, F∇, on the
unit volume element containing jmax kinds of paramagnetic species
is described by the sum of all forces on individual dipoles and is
given by eq 11.4d

Because of eqs 8 and 10, eq 11 gives eq 12.14

Because of the first term of eq 12, F∇B, a volume element
containing paramagnetic species is attracted toward areas of
higher B, and because of the second term, F∇C, is attracted toward
areas of higher concentration.

Overall, the three possible types of magnetic forces acting upon
a unit volume element are given by eqs 6 and 12. The first type
of force, FB, is exerted when the unit volume element carries
electric current (i * 0), the second type of force, F∇B, is exerted
when the volume element (a) contains radicals and (b) is located
in a magnetic field gradient where B‚∇B * 0, and the third type
of force, F∇C, is exerted when the concentration of radicals is
nonuniform.2d,16 Importantly, F∇C is present in homogeneous fields
as well, and in typical electrochemical systems, it acts upon the
diffusion layer.

The motion of the unit volume element accelerated by the total
force Fmag ) FB + F∇B + F∇C, is described by the Navier-Stokes

equation (eq 13) expressing Newton’s second law of motion (mass

× acceleration ) sum of all forces) in an incompressible fluid
(∇‚v ) 0) of constant density, F, and viscosity, η.17 The velocity
of the unit volume element is denoted as v, and ∇P is the gradient
of the dynamic pressure (the thermodynamic pressure gradient
plus gravity). At steady state, ∂v/∂t ) 0, and the v‚∇v term
describes the centripetal acceleration that maintains the vortices
in the solution. The η∇2v term assumes that the electrolyte is a
Newtonian fluid and expresses the frictional forces between the
unit volume element and the surrounding liquid.

It is noted now that the bulk migration current density, i (eq
6), is ultimately due to a faradaic process. Assuming for simplicity
that the electrolytic solution contains a single diamagnetic redox-
active species, O, that undergoes a one-electron reduction to yield
paramagnetic R (eq 14), i is given in terms of the flux of species
O at the electrode,

JO|at the electrode, via eq 15.

In general, the flux of diamagnetic O is given by the Nernst-
Plank equation (eq 16),18a where all previously defined symbols

have their usual meaning, while CO(r,φ,z,t), DO, and zO are the
concentration profile, the diffusion coefficient, and the ionic charge
of O, respectively, and ∇φ is the gradient of the electric potential.

With conventional disk millielectrodes, only the flux component
normal to the electrode (in the z direction, Chart 1) contributes
to the current density. One of the boundary conditions for the
velocity profile v of eq 13 dictates that, at z ) 0, vz ) 0|z)0 (no slip
condition). Furthermore, in the presence of a large excess of
supporting electrolyte, there are no potential gradients in the
electrolytic solution beyond the diffuse layer, i.e., ∆φ ≈ 0.
Therefore, eq 15 is simplified to eq 17.

The concentration profile of species O cannot be calculated
independently of the profile of species R, because the two profiles
are coupled to one another via their boundary conditions at the
electrode, which are as follows: (1) the flux balance of O and R
(JO|z)0 + JR|z)0 ) 0) and (2) the Nernst equation, if the O/R couple(14) Note that ∇(〈m〉j‚B) ) (〈m〉j‚∇)B + (B‚∇)〈m〉j + 〈m〉j × ∇ × B + B × ∇

× 〈m〉j.15 But since ∇ × B)0 (i.e., B is not due to currents within our
system), ∇(〈m〉j‚B) ) (〈m〉j‚∇)B + (B‚∇)〈m〉j. Because of eq 8, ∇(〈m〉j‚B)
) 2[(m*)2/kT] B‚∇B.

(15) Borisenko, A. I.; Tarapov, I. E. Vector and Tensor Analysis with Applications;
Dover Publications: New York, 1979; p 180.

(16) Waskaas, M.; Kharkats, Y. I. J. Phys. Chem. B 1999, 103, 4873.

(17) Newman, J. S. Electrochemical Systems, 2nd ed.; Prentice Hall: Englewood
Cliffs, NJ, 1991; Chapter 15.

(18) Bard, A. J.; Faulkner, L. R. Electrochemical Methods, Fundamentals and
Applications 2nd ed.; John Wiley and Sons: New York, 2000. (a) p 29. (b)
138.

〈m〉j ) [(m*)2/kT]B (8)

〈UM〉j ) - 〈m〉j‚B (9)

UM|per unit volume ) -NA ∑
j)1

jmax

Cj〈m〉j‚B (10)

F∇ ) -∇UM|per unit volume (11)

F∇ ) F∇B + F∇C ) 2NA ∑
j)1

jmax

Cj[(m*)2/kT]B‚∇B +

NA ∑
j)1

jmax

[(m*)2/kT]|B|2∇Cj (12)

F(∂v/∂t + v‚∇v) ) -∇P + η∇2v + i × B + F∇B + F∇C

(13)

O + e a R (14)

i ) -FJO|at the electrode (15)

JO ) -DO∇CO(r,φ,z,t) - [zOCO(r,φ,z,t)DOF/NAkT]∇φ +

CO(r,φ,z,t)v (16)

i ) |iz|ẑ ) FDO ∂CO(r,φ,z,t)/∂z|z)0 (17)
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