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w System Internal Synchronization 

In order to arrive at a test theory of special relativity we shall abandon the 
assumption that the values of a, b are given by their special relativistic values 
(3.2). 

We start from the transformation 

t = a(o) T+ e ( v ) x  
(5.1) 

x = b (v) (X  - vT) 

where a(v) and b(v) remain unspecified at first. 
Our first task will be to determine the values e(v) corresponding to various 

conventions about clock synchronization. Since no relativity principle will be 
assumed to be valid in this section, there will be in general only one preferred 
ether frame ]~, in which synchronization by slow clock transport and by the 
Einstein procedure will agree. 

Consider a clock in the system S, IS is the (t, x )  system] moving with a 
small velocity u along the x axis. This clock will be used (in the limit of in- 
finitesimal u) to synchronize all other clocks in S. Using x = ut and (5.1) we 
obtain 

X = T  b(1--eu) +v ~ T  - - +  = : w T  (5.2) 

if we neglect terms of order u 2 and higher. In (5.2) w is the velocity of the clock 
relative to E. If we consider this clock to be at rest at the origin of the system 
S' :(t', x') moving with velocity w relative to Z we obtain for the time t' which 
the moving clock shows 

t' Ix'=o = a (w) T + e (w) x' Ix'=o = a (w) T (5.3) 

Synchronizing clocks by slow clock transport means that we require t ' (x)  = t(x). 
Therefore we have 

a(v) T+ e ( v ) x  = a(w) T (5.4) 

where 

x = b(v)  ( X -  oT) = b(v) (w - v) T = ua(v) T (5.5) 

Inserting this into (5.4) we obtain 

a(O u da 
a(v) uer = a (w) -  a ( v ) -  

b(v) dv 

1 da(v) 
e T - b ( v )  dv 

(5.6) 
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The index T indicates that the value of  e given by (5.6) refers to transport syn- 
chronization of  clocks. Assuming the special relativistic values for a, b we obtain 
the well-known relativistic result e = -v. 

Next we shall consider the convention for clock synchronization proposed 
by Einstein and we shall calculate the factor eE for this case. Consider two 
clocks A and B at rest in the system S as shown in Figure 3. At t = 0 we send a 
light signal from A to B, where it arrives at time t~ and is sent back to A, where 
it is received at time t2. According to the Einstein procedure we shall define 

t2 = 2t l .  
Since the clock A is at rest at the origin of  S we have according to (5.1) 

t2 =a(v)  T2 + eEX Ix=0 =a(v ) / ' 2  (5.7) 

and furthermore 

tl =a (v)  T1 + eEXl = �89 = �89 r~ (5.8) 

where Xl = b(v) (X1 - vT1). The isotropy of  the propagation of  light in N im- 
plies X1 = T1 and therefore we obtain from (5.7) and (5.8) 

a(v) r l  + eEb(V) (1 - v) r l  = �89 T2 (5.9) 

Now consider clock A, for which X2 = vT2. Inserting this and X1 - X2 =/ '2  - 7"i 
(propagation of  light) into (5.9) we obtain 

va(v) 
eE = -  (1 - ve)b(v) (5.10) 

We thus arrive at the important result that the Einstein procedure in general 
differs from the synchronization by clock transport. The equality of  both pro- 
cedures is neither trivial nor logically cogent. 

If  we require the equality of  eT and eE we have 

a(v) = (1 - v2) 1/2 (5.11) 
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Fig. 3. Einstein synchronization of clocks. 
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Thus clock synchronization by clock transport and by the Einstein procedure 
agree i f  and only i f  the time dilatation factor is given exactly by the special rela- 
tivistic value a(v) = (1 - 02) 1/2. 

w Synchronization in Three Dimensions 

We now turn to the full three-dimensional case. Here the most general linear 
transformation between the ether system ~ and a moving system S involves 16 
coefficients, which have tO be determined by kinematics, convention (synchro- 
nization), and physics. It  is instructive to present the stages of  simplification of  
the transformation in some detail, since a number of  assumptions become trans- 
parent that are usually tacitly made. Our starting point is the general linear 
transformation 

t = aT + ex + e2y + e3z 

x = b l T + b X +  b 2 Y + b 3 Z  
(6.1) 

y = d l T + d 2 X + d Y + d a Z  

z = e l T + e 2 X + e 3 Y + e Z  

The first kinematical restriction is that the x and X axes slide along one another, 
i .e.,  

VT, X: y = z = 0  , Y = Z = 0  (6.2) (Kin 1) 

From this we obtain 

dl = d2 = el = e2 = 0 (6.3) 

Secondly, we postulate that the (x, z) and the (X, Z)  planes coincide at all times, 
i.e., the systems ~ and S slide along these planes: 

(Kin 2) VT, X, Z: y = 0 - Y = 0 (6.4) 

whereupon we obtain 

d3 = 0. 

The third requirement is that  the origin of  S moves with velocity v with respect 
to ~: 

(Kin 3) X = vT, Y = Z = 0 > x = y = z = 0 (6.6) 

This leaves us with the transformation 

t =aT+ ex + e2y + eaz 

x = b(X - vT)+ b2 Y + baZ 
(6.7) 

y = d Y  

z = e Z + e a Y  


