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Abstract

This details methods by which we can calculate logarithms by hand.

1 Definition and Basic Properties

A logarithm can be defined as follows: if bx = y, then x = logb y. In other
words, the logarithm of y to base b is the exponent we must raise b to in order
to get y as the result. Exponentiation will “undo” a logarithm, and vice versa:
blogb x = logb (bx) = x. The logarithm inherits certain useful properties directly
from exponents.

1.1 Property 1: Sum of Logs

We have the property

logb x + logb y = logb (x · y)

Notice here that both logs are to the same base b. That is an absolute
requirement of this property. It is a result of the property bx · by = bx+y, as
shown in the following:

blogb x+logb y = blogb xblogb y

blogb x+logb y = x · y
blogb x+logb y = blogb(xy)

logb x + logb y = logb (xy)

In the last step, we noted that the algebra works for arbitrary base b, which
is only possible if the exponents are equal.

1.2 Property 2: Logarithms with Exponents within the
Argument

The argument in any function is the input, which is properly written in brackets
after the function, though brackets are often omitted if there is little or no
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chance of confusion. (For example, logb y is properly written as logb (y).) If the
argument (y in this case) has an exponent, that exponent can be extracted from
the logarithm:

logb ya = a logb y

This property can be shown in two ways. For positive whole number values
of a, we can apply property 1 in reverse as follows:

logb y2 = logb (y · y) = logb y + logb y = 2 logb y

(This can be easily extended from the specific a = 2 case to all positive whole
number exponents through proof by induction, if you know how that works.)
However, it is entirely possible that the exponent a is neither positive nor a whole
number. For this, we use the property of exponents that (bx)a = bax = bxa.

blogb(y
a) = ya = (y)a =

(
blogb y

)a
= ba logb y

Again, if this is true for arbitrary base b, then the exponents on the far left
and far right must be equal, and the property is proven.

1.3 Property 3: The Difference of Logarithms

The third property is as follows:

logb x− logb y = logb

(
x

y

)
If we combine our first two results with the property of exponents that

x−a = 1
xa , then we are left with the following:

logb x−logb y = logb x+(−1) (logb y) = logb x+logb y−1 = logb

(
x · y−1

)
= logb

(
x

y

)
which is exactly what we want.

1.4 Property 4: Changing the Base of a Logarithm

The final property of logarithms is the following:

loga x =
logb x

logb a

This one can be proven using only results and properties we have already
used.

a
logb x

logb a =
(
blogb a

) logb x

logb a = b
logb x

logb a

logb a = blogb x = x = aloga x

Again, we compare exponents of the first and last steps, noting that a is
arbitrary, to complete the proof.
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2 Method 1: Euler’s Method

Most techniques for calculating logarithms by hand require reference to the
natural logarithms of base e, and some sort of means to evaluate one particular
base (often 10) to keep as a reference. To my mind, if one of the steps in a
procedure to teach someone how to calculate logarithms by hand is “memorize
the fact that ln 10 = 2.302585092994...” then you aren’t really learning how to
calculate logarithms by hand. Thankfully, Leonhard Euler1 developed a means
to calculate logarithms using square roots and the properties above.

Imagine we wish to calculate the logarithm of 64 to the base 3. We start by
using property 4 of logarithms:

log3 64 =
log10 64
log10 3

This turns the logarithms into logarithms of base 10. Euler’s method makes
logarithms to base 10 remarkably easy to calculate. We then simply need to
take the ratio of the two numbers.

Let’s start by calculating log10 64. The general idea is to pin the logarithm
down between two logarithms that are easy to calculate, and systematically
narrow the range of the endpoints to make things easier for us. We have two
approaches that we can try here. One is to leave the 64 as is, and pin it down
between the logarithms of 10 and 100. This will lead to some nasty square roots
down the road, so we’ll use the first property of logarithms to break it down
instead:

log10 64 = log10 (10 · 6.4) = log10 10 + log10 6.4 = 1 + log10 6.4

Now we only need to compute the logarithm of 6.4, which makes for easier
square roots to deal with. We know that 1 < 6.4 < 10. This means that
log10 1 < log10 6.4 < log10 10. The next step is the one that illustrates Euler’s
mathematical brilliance:2

log (
√

xy) = log
√

x + log
√

y = log x
1
2 + log y

1
2 =

log x + log y

2

Now, we get down to the nitty gritty: calculating log10 6.4. We know it’s be-
tween log10 1 = 0 and log10 10 = 1. Euler’s observation tells us that log10

√
1 · 10

is also in this range. Well, we know3 that
√

10 ≈ 3.16228. Additionally,

log10

√
10 =

log10 1 + log10 10
2

=
0 + 1

2
=

1
2

= 0.5

1“Euler” is pronounced “oiler,” which is why virtually every sports team assembled by the
University of Alberta’s math department has been named “the Edmonton Eulers.”

2I’m not exaggerating. I’ve taken no less than 13 University level math courses, and Euler’s
name showed up in at least 10 of them. The man’s contributions to mathematics are probably
more significant than Einstein’s contributions to physics. Find him on Wikipedia when you
have a minute or thirty.

3Or can calculate using the method detailed in http://www.bureau42.com/view/7396.
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Well,
√

10 < 6.4 < 10, so 0.5 < log10 6.4 < 1. We’ve effectively cut the range
of values that we need to search by half: 6.4 does not fall between 1 and

√
10,

so that interval can now be ignored. We can do so again, by working out the
logarithm and value of

√
3.166228 · 10.
√

31.66228 ≈ 5.623413

log10

√
3.166228 · 10 =

0.5 + 1
2

= 0.75

Well, 5.623413 < 6.4 < 10, so we can narrow it down further:
√

56.23413 ≈ 7.49894

log10

√
5.623413 · 10 =

0.75 + 1
2

= 0.875

We now work with 5.623413 < 6.4 < 7.49894, and so find that:
√

5.623413× 7.49894 ≈ 6.4938

log10

√
5.623413 · 7.49894 =

0.75 + 0.875
2

= 0.65625

The process would continue with 5.623413 < 6.4 < 6.4938 and so forth,
narrowing the region with each step. We ultimately find that log10 6.4 ≈ 0.80618
and log10 3 ≈ 0.47712, so that

log3 64 =
log10 64
log10 3

=
1.80618
0.47712

≈ 3.78558

It takes a lot of iterations to really start to pin the value of our logarithm
down, but we can certainly get there. Of course, we can also do this to any
base: we could have, instead, used the base 3 to begin with, and calculated the
logarithm of 64 by saying it’s between 33 = 27 and 34 = 81. Base 3 logs are not
always the most convenient logs to work with, but if you are more familiar with
them, it could be more comfortable to work with. While certainly advantageous
for something like log2 3, given that 21 < 3 < 22, it could be hard to work in the
function’s original logarithm if you need to calculate something like log17 2489.

3 Method 2: Taylor Expansions

There are some methods which can arrive at an answer in fewer iterations, but
they require some special circumstances. For example, if we work with the
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natural logarithm ln x = loge x,4 then we can exploit the Taylor expansion56

ln (x) =
∞∑

n=1

(−1)n+1 (x− 1)n

n

This has one major caveat, however: this Taylor expansion only converges7

if 0 < x ≤ 2. What if we want to calculate log3 64 this way?
This is where logarithm property 2 comes into play: if x > 2, then 0 < 1

x =
x−1 ≤ 2. We can combine properties 2 and 4 of logarithms to arrive at the
following means of calculating the logarithm in question:

log3 64 =
ln 64
ln 3

=
− ln 1

64

− ln 1
3

=
ln 1

64

ln 1
3

Note that, not only have we transformed our arguments into numbers be-
tween 0 and 2, but we’ve canceled the negative signs because both numbers
in question were reciprocated. We can now expand the Taylor series above to
as many digits as needed to achieve the required accuracy. Unfortunately, the
closer x gets to 0 or 2, the longer it takes the series to converge to something
useful. We find that ln 1

3 rounds accurately to 4 decimal places (−1.0986) after
20 iterations, while ln 1

64 rounds accurately to 4 decimal places (−4.1589) after
a whopping 377 iterations! If, however, we look for ln 1, the series is exactly
accurate in a single term. ln 1.1 is accurate to 4 decimal places after a mere 3
iterations.

So, the methods for calculating logarithms by hand are out there, and they
work. The actual algebra involved is not terribly complicated. However, there’s
going to be a lot of it. If you need the logarithm of a number close to 1, use
method 2. For others, method 1 is more likely to reach a satisfactory conclusion
more quickly.

4If you aren’t familiar with e, know that it appears naturally in calculus. If you aren’t
familiar with calculus, don’t worry. You’ll have to take parts of the explanation on faith, but
you’ll still be able to use the method.

5If you aren’t familiar with Taylor expansions either, you only need to know this: a Taylor
expansion is an infinitely long polynomial that approximates another function. Essentially,
if we take the first few terms of this polynomial, we’ll be accurate to the first few decimal
places. If you need more accuracy, take more terms.

6If you are not familiar with the series notation used here, you can find it explained in
http://www.bureau42.com/view/7363.

7A series that converges is a series that adds up to a finite, and therefore useful, number.
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