
> restart;
You can make functions using the arrow "-->" assignment, like this:
f:=(x,y) -> x/y^2

However (for various reasons I won't go into now) I prefer to use the 'unapply' method, like this:
xy:=x/y^2; f:=unapply(fxy,(x,y));
or like this:
f:=unapply(x/y^2,(x,y));
> f:=unapply(x/y^2,(x,y));

 := f → (),x y
x

y2

Now we want to compute and print f(x,y_i) for an array of y = (y_i) values (and for some fixed x). If
the y_i are regularly spaced, we might express
y_i = a + b*i, for example. Alternatively, we can first form an array Y of y-values, then compute and
print the f(x,Y[i]).
Below, I will take x = 2 and y = 1,1.5, 2, 2.5, 3.
> Y:=seq(1+.5*(i-1),i=1..5);

 := Y , , , ,1.0 1.5 2.0 2.5 3.0

If we want a nicely formatted print, we can use the 'printf' command, which is essentially the same as in
the C language.

> for i from 1 to 5 do
 if (i=1) then printf("%5s %5s %10s\n", "x", "y", "f(x,y)"):
 end if:
 printf("%5.1f %5.1f %10.6f\n", 2.0, Y[i],f(2.0,Y[i])):
end do:

 x y f(x,y)
 2.0 1.0 2.000000
 2.0 1.5 0.888889
 2.0 2.0 0.500000
 2.0 2.5 0.320000
 2.0 3.0 0.222222
> i:='i';

 := i i
>

