The Michelson — Morley Experiment

Let’s consider the Earth, with the Michelson-Morley setup as a frame S’ in
motion with the speed v with respect to another frame S, the Sun. An observer at
rest in S views the Michelson-Morley as follows: the light travels with the speed
c along the rod of length 1,, parallel with v. Because the mirror of the end of
the rod recedes with the speed +v in one direction of light propagation and with
speed —v in the other direction, the observer in S views the roundtrip time as:
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The rod perpendicular on v has the length I,. In S” I,=1l,. From S, the observer
sees (ct)?=1.2+(vt)? from where we obtain:
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The roundtrip time as seen from S is:
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As seen from S, 1;=1;” and [1,=1,"/y

Therefore:
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From the perspective of S,
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(1.4) explains the null result of the Michelson-Morley experiment as viewed from
the frame S, the Sun.

An alternative explanation is the following: due to light speed isotropy in S~”,

we have

— =t (1.5)

Then, applying time dilation:

t,—t, =y(t',-t})=0 (1.6)
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: “How about length contraction for frames moving inertially but along an
arbitrary direction with respect to each other?”. To construct the answer to this question
start with the Lorentz transform for an arbitrary direction of motion between inertial
frames S and S’ (see fig.1). The axis of S and S’ are presumed parallel:
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Fig.1 Arbitrary frames with aligned axes

To make a length measurement in frame S’ we need to mark both ends of the rod
simultaneously, so At'=0. Additionally, we can consider for simplicity that the rod is
aligned with the x axis in frame Sso Ay=Az=0
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Since -1< 1—2/ ,ﬂBXZ < 0formula (3) represents indeed a length contraction that can be

rewritten as:

2 p2
L= e A (4)
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We can quickly verify the correctness by setting 5, = # (S and S’ relative movement
aligned with the x axis):

L=t (5)

Ve
Time dilation

In this case, we are measuring a time interval At at the fixed location (x,y,z) in
frame S. This translates in frame S’ into:
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At' = yAt (7

Thus, we can conclude that the formulas for length contraction, time dilation for the
general case retain the simplicity of the more elementary case when S and S’ move along

their common x-axis.



