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13 Scattering amplitude at 1-loop, the massless limit and the MS scheme

13.1 2 ! 2 scattering amplitude at 1-loop accuracy

In lecture 7 we computed '' ! '' scattering at tree level (see figure 7 and equation (120) there). The result takes
the form

hk01k02|k1k2i = (2⇡)4 �4(k01 + k02 � k2 � k1) iT (203)

where

iT = (ig)2
"

eDF (s) + eDF (t) + eDF (u)

#

+O(g4) (204)

where we defined the Mandelstam invariants:

s = (k1 + k2)
2 = (k01 + k02)

2 , t = (k1 � k01)
2 = (k02 � k2)

2 , u = (k2 � k01)
2 = (k02 � k1)

2 . (205)

Now, having computed one-loop integrals, we have the means to determine this amplitude at one-loop accuracy,
namely including all O(g4) corrections. The most e�cient way to do this is to use the calculations we have al-
ready done for the propagator, the three-leg vertex function and the four-leg vertex function at one-loop, as shown
schematically in figure 17.

iT = (iV3(s))
2
e�F (s) + (iV3(t))

2
e�F (t) + (iV3(u))

2
e�F (u) + iV4(s, t, u) (206)

We note that computed in this way, each of the components entering the scattering amplitude (which may be
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Figure 17: Skeleton diagrams for '' ! '' scattering in terms of the full propagator �F (double line) the full 3-leg
vertex V3 (round 3-legged blob) and the full 4-leg vertex function V4 (square blob).

computed to any fixed order) is finite by itself. Let us review the results we got for the various ingredients in this
expression at the one-loop order.

Let us start with the four-leg vertex function, shown to be finite in d = 6 space-time dimensions:

V4(s, t, u) = g2↵

Z 1

0

dx

Z 1�x

0

dy

Z 1�x�y

0

dz

"

1

M2(s, t)
+

1

M2(t, u)
+

1

M2(u, s)

#

, (207)

where we defined
M2(s, t) = M2(m2,m2,m2,m2; s, t)

where the latter is the scale appearing in the box integral with all incoming momenta p1+p2+p3+p4 = 0 (computed
in lecture 11) defining pij = (pi + pj)2 and qn =

Pn
i=1 pi, which reads

M2(p21, p
2
2, p

2
3, p

2
4; p

2
12, p

2
13) = m2 + (q1x+ q2y + q3z)

2 � q21x� q22y � q23z (208)
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Let us turn now to the three-leg vertices. Defining the one-loop renormalization constant for the coupling as

Zg = 1 +



� 1

2✏
+

1

2
ln(m2/µ2)� g

�

↵+O(↵2)

we got the renormalized three-leg vertex where p1 + p2 + p3 = 0,

iV3(p
2
1, p

2
2, p

2
3) = ig

 

1�


g +

Z 1

0

dx

Z 1�x

0

dy ln

✓

m2 + (xp1 � yp2)2 � p21x� p22y

m2

◆�

↵+O(↵2)

!

(209)

Note that g is a constant which depend on the renormalization condition chosen, e.g. V3(0, 0, 0) = g is a valid
condition. Based on this (209) we defined

iV3(p
2) ⌘ iV3(m

2,m2, p2) (210)

which enters (221) with three di↵erent assignments of the scale p2, for the three di↵erent diagrams.
Next, the full propagator we used in (221) includes a geometric sum over any number of self-energy insertions,

and it is given by

e�F (p
2) =

i

p2 �m2 +⇧(p2) + i�
(211)

where ⇧(p2) is the renormalized self energy, for which we obtained the following result

⇧(p2) =

"
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(212)

where

Z(1)
' p2 � Z(1)

m m2 = �p2
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were fixed based on the renormalization conditions (158a) and (158b) namely

⇧(p2)
�

�

p2=m2

= 0 ,
d⇧(p2)

dp2

�

�

�

�

p2=m2

= 0 , (214)

fixing the numerical constants ' and m, respectively, as in (176) and (177).
It is clear that the scattering amplitude, while finite, depends on the particular renormalization scheme chosen.

Here we used the on-shell renormalization scheme, which is valid for any finite mass, but becomes ill-defined for
m2 = 0.

Let us consider for example the self energy function in this limit. Dropping all terms that vanish for m2 ! 0 we
get:

⇧(p2) = �p2

"

'

12
+

1

2

Z 1

0

dx x(1� x) ln

✓

�p2x(1� x)

m2

◆

#

↵+O(↵2) . (215)

Evidently, the result is logarithmically divergent for m2 ! 0, and the strict limit cannot be taken. Moreover, we
see that for m2 = 0 the renormalization condition ⇧(0) = 0 is automatically satisfied, independently of the choice of
Z' and Zm, while the condition on the derivative ⇧0(p2) cannot be satisfied at all, since the derivative is ill-defined
for m2 = 0. We need to understand why this is the case, and whether this can be avoided, because we expect the
massless theory should make sense!

The deep reason for the failure of the on-shell renormalization for m2 = 0 is that it was based on the full
propagator having an isolated pole corresponding to the physical single-particle state, p2 = m2. Considering however
the Källen Lehman representation

e�F (p
2) =

i

p2 �m2 + i�
+

Z 1

⇠4m2

ds ⇢(s)
i

p2 � s+ i�
(216)

for m2 = 0 we see that the spectral-density continuum is also starting at m2: there is no more isolated pole, since any
number of massless particles may still be consistent with total energy of exactly zero. The perturbative calculation
indeed reveals that the branch point at p2 = 4m2 now coincides with the pole at p2 = 0. In the next lecture we will
present a di↵erent renormalization scheme, called minimal subtraction, which does not rely on the presence of an
isolated single-particle state, and which therefore allows a consistent description of the massless theory.
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13.2 Exercises

1. Derive an explicit expression for the function M2 in (208) and computed the integral in (220).
Guidance:
Starting with (208) corresponding to the leftmost diagram in figure 15 and the expression in eq. (195) and
using the definition of qi =

Pi
j=1 pj show that

M2 = m2 � (x+ y + z)(1� x� y � z)p21 � (y + z)(1� y � z)p22 � z(1� z)p23
� 2(1� x� y � z)(y + z)p12 � 2z(1� y � z)p23 � 2z(1� x� y � z)p13

(217)

where pij = pi · pj .
Next specialise to the kinematics of the on-shell 2 ! 2 scattering, where p2i = m2 from i = 1..4, and use
momentum conservation:

p12 + p13 + p23 =
1

2
(p24 � p21 � p22 � p23),

to write

M2 = m2(1 + 2xy + 2yz � x(1� x)� 2y(1� y)� z(1� z))� 2y(1� x� y � z)p12 � 2xzp23 . (218)

Recall that the momenta pi were assigned cyclically to the 4 legs (see figure 15), and defined as incoming
(meaning that positive energy p0i corresponds to an incoming particle while negative energy to outgoing one).
Making the identification p1 = k1, p2 = k2, p3 = �k01, p4 = �k02, and then p12 = s/2, p23 = t/2 and p13 = u/2,
show that in the massless limit

M2(s, t)
�

�

m2=0
= �y(1� x� y � z)s� xzt

Next, performing the integral:

V box
4 (s, t)

�
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1
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1

t
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0
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ln(u)

1� u

1

1 + us/t

= g2↵
�1

2(s+ t)

⇣

⇡2 + ln2
⇣s

t

⌘⌘

(219)

Finally, sum over all permutations corresponding to the three diagrams in figure 15 and the three terms in
(220)

V4(s, t, u) = g2↵

"

1

2u

⇣

⇡2 + ln2
⇣s

t

⌘⌘

+
1

2s

✓

⇡2 + ln2
✓

t

u

◆◆

+
1

2t

⇣

⇡2 + ln2
⇣u

s

⌘⌘

#

. (220)

2. Expand the self energy and the vertex functions for m2 ⌧ s, t, u dropping all terms that vanish for m2 = 0.
Derive the corresponding one-loop correction to T (keep log-enhanced terms and constant terms).

Guidance:
Start with the general expression (221)

iT = (iV3(s))
2
e�F (s) + (iV3(t))

2
e�F (t) + (iV3(u))

2
e�F (u) + iV4(s, t, u) (221)

and take the small mass limit of each component. For the self-energy in the on-shell scheme, where

Z(1)
' p2 � Z(1)

m m2 = �p2
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m2, (222)

this was already done in (215), thus the propagator is

e�F (p
2) =

i
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0
dx x(1� x) ln

⇣

�p2x(1�x)
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.
(223)

Performing the integration over x this yields:

e�F (p
2) =

i
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⇣

'
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12 ln
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.
(224)
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For the three-leg vertex function we start with the general expression (209)
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2
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2
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in the on-shell scheme, where

Zg = 1 +



� 1

2✏
+

1

2
ln(m2/µ2)� g

�

↵+O(↵2). (226)

Next specialize to the situation where two momenta are external, namely p21 = m2 and p22 = m2 while p23 =
s = (p1 + p2)2 = 2m2 + 2p1 · p2, getting:

iV3(s) = ig
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Next take the m2 limit wherever possible, and integrate:

iV3(s)|m2!0 = ig
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Next consider the s-channel diagram in (221)
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Finally combine all contributions in (221) showing that
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14 The MS scheme and the renormalization group

In the last lecture we encountered a problem in applying the on-shell renormalization scheme in the massless case.
We analysed it and traced it back to the absence of an isolated single-particle state, corresponding to a simple pole
in the full propagator.

Let us now present a solution, namely a renormalization method that does not rely on having an isolated pole.
We start by recalling the calculation of the self-energy bubble in (153), yielding, after expansion in ✏,

⇧(b)(p2) = �↵
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(231)

We then defined µ2 = 4⇡ e��E
eµ2, and together with the counter-terms we got the following one-loop result:

⇧(p2) = ↵
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If we have no prejudice what ⇧(p2) should be, except that it should be finite, a natural choice is to simply to cancel
the 1/✏ term in (232) by an appropriate choice of the renormalization parameters:

Z(1)
' = � 1

12

1

✏
, Z(1)

m = �1

2

1

✏
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which yields:

⇧MS(p2) = �↵
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This renormalization scheme is called the “modified minimal subtraction scheme”, or the MS scheme. The counter
terms are minimal in the sense that they do not contain any finite terms, only negative powers of ✏.

Recall that when working in the on-shell scheme we extracted the logarithm of µ2/m2 from the integral and
absorbed it along with the 1/✏ singularity in the counterterms. Instead, now we leave µ2 in the integral, so it remain
in the finite expression for ⇧(p2). Thus the MS scheme comes along with a reference scale µ2. The reason for
the name “modified” is that we have defined the reference scale by µ2 = 4⇡ e��E

eµ2 (instead of e.g. using eµ2 as a
reference scale - which is referred to as “minimal subtraction”).

Now we come to the advantage of the MS scheme compared to the on-shell scheme. In the case of the on-shell
scheme we could not take the strict m2 ! 0 limit: in (215) the renormalized ⇧MS(p2) has a log-divergence in this
limit. In contrast the MS self energy (234) is well-defined for m = 0:

⇧MS(p2) = �↵
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Indeed the MS scheme is the most popular one in gauge theories, where massless particles are essential.
Next let us look at the disadvantages of the MS scheme compared to the on-shell scheme. Using (234) in the

propagator we have:

e�MS

F (p2) =
i

p2 �m2 +⇧MS(p2) + i�
(236)

Note that now neither ⇧MS(p2) nor its derivative vanish for p2 = m2. This has two immediate consequences with
far-reaching implications:

• The pole of the one-loop MS propagator does not occur at p2 = m2. Thus we cannot identify the mass
parameter m, which appears in the Lagrangian

L =
1

2
Z'@

µ'@µ'� 1

2
Zmm2'2 +

1

6
Zgg'

3 (237)

as the physical mass mpole corresponding to the pole of the single particle state in the Källen Lehmann
representation. The latter can of course be computed in terms of the former by solving the equation namely
solving

⇣

e�MS

F (p2)
⌘�1

�

�

�

�

p2=m2

pole

= 0 =) m2
pole �m2 +⇧MS(m2

pole) = 0 (238)

for m2
pole(m

2).
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• The residue R
MS

of the pole in (236)
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, (239)

is not one. This means that the expansion of the propagator about the physical pole looks like

e�MS

F (p2) =
i

p2 �m2 +⇧MS(p2) + i�

=
iR

MS

(↵, µ2/m2)

p2 �m2
pole(↵,m

2) + i�
+ terms that are finite for p2 ! m2

pole

(240)

Returning to the definition of the propagator and the derivation of the Källen Lehmann representation (130)

e�F (p
2) =
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d4xeip·x h0|T ('(x)'(0)) |0i
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,
(241)

we are forced to desert our previous assertion that the field ' generates from the vacuum a single particle state
with normalization one. Instead, comparing (241) to (240) we deduce that in MS, the single-particle state is
normalized as:

�

�

�

h0 |'(0)|�0i
�

�

�

2

= R
MS

.

Of course, in the free theory
�

�

�

h0 |'(0)|�0i
�

�

�

2

= 1. So far we have tried to preserve this property in the interacting

theory, but we now see that it is incompatible with renormalization in MS.

Further consequences of this are that the LSZ formula and the (momentum space) Feynman rules needs to
be corrected when working in MS. To explain this it is useful to first reinterpret the normalization of the
MS propagator in eq. (240) in terms of the renormalization factor for the field Z'. The kinetic term in the
Lagrangian has been written as 1

2Z'@µ'@
µ'. This is true in any scheme, but both the bilinear field operator

and the corresponding Z' vary. Thus we have:
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2
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' (@µ'@
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=
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2
@µ'0@
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where in the first expression the field is renormalized on-shell (OS), in the second it is renormalized in MS and
in the third we have used the bare field (non-renormalized field) a concept we shall heavily use in the next
lecture. It is now clear that the normalization found in (240) for the MS propagator
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=
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must be related to the normalization of the on-shell propagator

e�OS
F (p2) =
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d4xeip·x h0|T ('(x)'(0))OS |0i

=
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pole + i�
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through the ratio of the two wave-function renormalization constants:

h0|T ('(x)'(0))
MS

|0i = R
MS

h0|T ('(x)'(0))OS |0i =) R
MS

= ZOS
' /ZMS

' (245)

Let us now turn to the LSZ formula, which was derived in (33) assuming that single-particle states in the far
past and in the far future are generated by the field with the same unit normalization as in the free theory

– see eq. (42) above. This may be contrasted with the MS scheme where
�

�

�

h0 |'(0)|�0i
�

�

�

= (R
MS

)1/2. The

conclusion is that the LSZ formula as written in (33) is correct only in the on-shell scheme. In the MS scheme
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a single-particle state with unity normalization is generated by (R
MS

)�
1

2 ', so the LSZ formula in MS takes the
form:
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⇣
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(246)

instead of (33).

To go further we wish to deduce the momentum-space Feynam rules when computing a scattering amplitude in
MS. Here another factor ot R

MS

pops up as follows. Recall that when computing the correlator in configuration

space (e.g. h0| T
⇣

'(x0
1)'(x

0
2)'(x1)'(x2)

⌘

|0i above) one obtains propagators also between the external points,

say xi and the internal vertices z. At leading order this propagator is just DF (xi � z), but of course, at higher
orders these will be decorated by self-energy insertions thus promoted to be full propagators �F (xi�z). When
using the LSZ formula to deduce the (momentum-space) Feynman rules for the scattering amplitude we have
noticed that the Klein-Gordon operators (@2

xi
+m2) acting on each field remove the corresponding propagator,

producing a d-dimentional � function as follows:

(@2
xi

+m2)DF (xi � z) = �i�(d)(xi � z) ,

which was then used to perform the integration over the corresponding position xi. Consequently, our Feynman
rules for the scattering amplitude did not include a propagator for the external leg. This is obviously correct
at leading order, but beyond leading order one needs to account for the self-energy corrections on that leg.
According to (243), when the Klein-Gordon operator acts on the full MS propagator it yields �iR

MS

�(d)(xi�z)
instead of �i �(d)(xi � z). Thus for each external leg there is an extra factor of R

MS

accounting for self-energy
diagrams on that leg.

This factor comes on top of the R
� 1

2

MS

which we explicitly written as a prefactor in (246), resulting in a total

of R
+ 1

2

MS

for each external leg. Therefore the calculation of a scattering amplitude in the MS scheme proceeds
similarly to the one in the on-shell scheme (meaning in particular that one needs not include propagators on

external legs) except that at the end a factor of R
+ 1

2

MS

needs to be included for each external leg.

14.1 One-loop relation between the on-shell mass and MS mass

Starting with (238) and using (234) we get:

m2
pole �m2 � ↵

2

"

Z 1

0

dx (m2 � x(1� x)m2
pole)

"

1� ln

 

m2 � x(1� x)m2
pole

µ2

!##

+O(↵2) = 0 (247)

We observe that at leading order m2
pole = m2 + O(↵). Therefore, inside the integral of the O(↵) term we may

substitute m2
pole = m2 getting

m2
pole = m2

 

1 +
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9
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p
3⇡

6
+
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6
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✓
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◆

#

+O(↵2)

!

(248)

Now we observe that the lhs is a physical mass, which cannot depend on the renormalization scheme or scale. In
contrast the mass on the rhs, m2, has a di↵erent status. It is a parameter in the Lagrangian, but not directly physical.
For the relation (248) to be satisfied, it is necessary to acknowledge the fact that depending in the renormalization
scale µ2 chosen, m2 will take di↵erent numerical values. We therefore refer to the renormalized MS mass as a running
mass: it depends on the scale: m(µ). This dependence can be read o↵ (248). The easiest way to extract it is to first
take the log:

ln(m2
pole) = ln(m2) + ln
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(249)

and then di↵erentiate:

d ln(m2
pole)

lnµ2
=

d ln(m2)

d lnµ2
+

5

12
↵+O(↵2) (250)
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The lhs must be zero, as explained above, so we deduce:

�m ⌘ 1

m

dm

d lnµ
= � 5

12
↵+O(↵2) (251)

This equation defines the mass anomalous dimension �m. Note that in di↵erentiating (249) we assumed that the
coupling may only depend on the scale such that d↵/d lnµ2 = O(↵2) (or higher powers). We shall verify this below.

Before that, let’s explain the name anomalous dimension. To this end consider the case where the coupling does
not depend on the scale, and solve the equation (251) we get:

ln
m(µ)

m(µ0)
= �m ln

µ

µ0
=) m(µ)

m(µ0)
=

✓

µ

µ0

◆�m

namely, �m determines the scaling of the mass with the scale.

14.2 The residue of the propagator pole in MS at one loop

Next consider the value of the residue given by (239)
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, (252)

The derivative of ⇧MS(p2) is

d⇧MS

dp2
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So at p2 = m2
pole we get
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Thus

R�1
MS

= 1� ↵
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ln
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p
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12
� 17

36

#

+O(↵2) (255)

14.3 Exercises

1. Start from (238) and derive (248).

2. solve
1

m

dm

d lnµ
= �(0)

m ↵ (256)

for the running mass m(µ) in two cases:

(a) Assuming ↵ is constant.

(b) Assuming ↵ admits the equation:
d↵

d lnµ
= �0↵

2

Distinguish the 4 cases corresponding to �
(0)
m and �0 positive and negative.

3. Using the MS for all components (propagator and vertices) derive the one-loop correction to T corresponding
to the 2 ! 2 scattering process in (203) hk01k02|k1k2i in the small mass limit (keep log-enhanced terms and
constant terms).
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Guidance:
You may read o↵ the values of the constants ' and g, respectively, in the MS using the results in question
2 of the previous lecture, which dealt with the same scattering process in the on-shell scheme. According to
(222) we have:

MS

' = �1� ln
µ2

m2

so the propagator is

e�MS
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(257)

Similarly, according to (226), we have

Zg = 1� ↵
1

2✏
(258)

with

MS

g = �1

2
ln
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m2

so the one-loop vertex (259) becomes
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Recalling the modification of the Feynman rules discussed above, we need to multiply my an extra factor of

R
1

2

MS

for each external field, so we deduce that the scattering amplitude (230) becomes:
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where R
MS

is given by (261):
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Comments and additional exercises:

• The fact that the strict zero mass limit cannot be taken – R
MS

has a logarithmic divergence, and therefore
so does T – reflects an infrared divergence. This singularity will only cancel in the corresponding cross
section upon including soft real emission, a 2 ! 3 process, in addition to the 2 ! 2 one computed here.
Additional reading and exercise: read sections 26-27 in Srednicki and show that the observable cross
section corresponding to the sum of the 2 ! 2 and 2 ! 3 process with a given angular resolution of the
detector is indeed finite.

• Note that T computed in (260) must be independent on µ; this means that the explicit dependence on µ2

in (260) must cancel with the dependence on µ2 via the coupling. Therefore, show that the result for T
may be recast as:

T = TLO↵+

✓

3

4
TLO ln(µ2) + TNLO

◆

↵2 + . . .

and then used
@T
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d lnµ2
+

@T
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= 0

to show that
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d lnµ
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2
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