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Theorem 1 (Nothing but relativity, 1+1 dimensions). Suppose that G is a
subgroup of GL(R2) such that

(1) There’s a V : G → R such that

(a) For all Λ ∈ G, V (Λ) = (Λ−1)10
(Λ−1)00

.

(b) 0 is an interior point of V (G).

(2) For all µ ∈ {0, 1}, we have (Λ−1)µµ = Λµµ.

Then there’s a K ≥ 0 such that

G =

{
σ√

1−Kv2

(
1 −Kv

−ρv ρ

)∣∣∣∣ v ∈ R, 1−Kv2 > 0, (σ, ρ) ∈ S

}
,

where S is one of the sets

Sr = {(1, 1)}
Sp = {(1, 1), (−1, 1)}
So = {(1, 1), (1,−1)}
Sn = {(1, 1), (−1,−1)}
Sf = {−1, 1} × {−1, 1}.

We will state and prove a number of lemmas that together imply that
this statement is a theorem.

Definition 2 (Linear relativistic group). A subgroup G ⊂ GL(R2) is said to
be a linear relativistic group if

(1) There’s a V : G → R such that

(a) For all Λ ∈ G, V (Λ) = (Λ−1)10
(Λ−1)00

.

(b) 0 is an interior point of V (G).

(2) For all µ ∈ {0, 1}, we have (Λ−1)µµ = Λµµ.

Lemma 3 (Members of a linear relativistic group). If G is a linear relativistic
group, then there’s a K ∈ R such that

G ⊂
{

σ√
1−Kv2

(
1 −Kv

−ρv ρ

)∣∣∣∣ (σ, ρ) ∈ {−1, 1}, v ∈ R, 1−Kv2 > 0

}
.
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Proof. Let Λ ∈ G be arbitrary. Denote its components by a, b, c, d.

Λ =

(
a b
c d

)
, Λ−1 =

1

ad− bc

(
d −b
−c a

)
. (1)

Note that

V (Λ) =
(Λ−1)10
(Λ−1)00

= − c

d
, V (Λ−1) =

Λ10

Λ00

=
c

a
, (2)

and that this implies that a ̸= 0, d ̸= 0. Assumption 2 in the definition of
“linear relativistic group” implies that

a =
d

detΛ
, d =

a

detΛ
=

d

(det Λ)2
. (3)

Since d ̸= 0, this implies that det Λ = ±1.
Define ρ = detΛ, γ = |a|, σ = sgn(a), α = b/a and v = −ρc/a. Note

that since d = ρa, this ensures that v = −c/d = V (Λ). Also note that
σ, ρ ∈ {−1, 1}.

Λ =

(
a b
c ρa

)
= a

(
1 b/a
c/a ρ

)
= σγ

(
1 α

−ρv ρ

)
. (4)

Let Λ′,Λ′′ ∈ G be arbitrary.

G ∋ Λ′Λ′′ = σ′σ′′γ′γ′′
(

1 α′

−ρ′v′ ρ′

)(
1 α′′

−ρ′′v′′ ρ′′

)
= σ′σ′′γ′γ′′

(
1− α′ρ′′v′′ α′′ + α′ρ′′

−ρ′v′ − ρ′ρ′′v′′ −ρ′v′α′′ + ρ′ρ′′

)
(5)

ρ′ρ′′ = (detΛ′)(det Λ′′) = det(Λ′Λ′′) =
(Λ′Λ′′)11
(Λ′Λ′′)00

=
−ρ′v′α′′ + ρ′ρ′′

1− α′ρ′′v′′
. (6)

If ρ′ρ′′ = 1, we have ρ′ = ρ′′ and

1 =
−ρ′v′α′′ + 1

1− α′ρ′′v′′
. (7)

This is equivalent to α′ρ′′v′′ = ρ′v′α′′, and therefore also to α′v′′ = v′α′′. If
ρ′ρ′′ = −1, we have ρ′ = −ρ′′ and

−1 =
−ρ′v′α′′ − 1

1− α′ρ′′v′′
. (8)
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This is equivalent to α′ρ′′v′′ = −ρ′v′α′′, and therefore also to α′v′′ = v′α′′.
So α′v′′ = v′α′′ for all Λ′,Λ′′ ∈ G. Since assumption 1b in the definition of
“linear relativistic group” implies that there’s a Λ′′ ∈ G such that v′′ ̸= 0,
this result implies that both of the following statements are true.

(1) For all Λ′ ∈ G, if v′ = 0, then α′ = 0.

(2) For all Λ′,Λ′′ ∈ G such that v′ ̸= 0 and v′′ ̸= 0, we have α′′/v′′ = α′/v′.

(2) implies that α′/v′ has the same value for all Λ′ ∈ G such that v′ ̸= 0.
Denote this value by −K. We have α′ = −Kv′ for all Λ′ ∈ G such that
v′ ̸= 0. This result and (1) together imply that α = −Kv.

The results we have obtained so far imply that

Λ = σγ

(
1 −Kv

−ρv ρ

)
, Λ−1 =

σ

γ(1−Kv2)

(
1 ρKv
v ρ

)
. (9)

Assumption 2 in the definition of “linear relativistic group” implies that

σγ =
σ

γ(1−Kv2)
. (10)

If K > 0, this implies that 1 − Kv2 > 0 (because γ2 > 0). If K ≤ 0, then
1−Kv2 > 0 is obviously true. Since σ ̸= 0 and γ = |a| > 0, the result above
implies that

γ =
1√

1−Kv2
. (11)

Now we can write down the final result for Λ.

Λ =
σ√

1−Kv2

(
1 −Kv

−ρv ρ

)
. (12)

Note that if K > 0 and we define c = 1/
√
K, the inequality 1−Kv2 > 0

is equivalent to v ∈ (−c, c).
We will continue to use the notation for components of members of G

that we used in the proof above. For example, V (Λ′) will be denoted by v′.
We will also use the notation c = 1/

√
|K|.

Definition 4 (Relativity). If G is a linear relativistic group, then the value
of −α/v for all Λ ∈ G such that v ̸= 0 is called the relativity of G.
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Lemma 5 (A formula for the relativity). If G is a linear relativistic group,
and K is its relativity, then for all Λ ∈ G such that v ̸= 0,

K =
1

v2

(
1− 1

(Λ00)2

)
.

Proof. Let Λ ∈ G be such that v ̸= 0. (Assumption 1b in the definition of
“linear relativistic group” implies that there’s such a Λ). Lemma 3 tells us
that

γ =
1√

1−Kv2
. (13)

Since γ = |Λ00| > 0, this is equivalent to

1−Kv2 =
1

γ2
=

1

(Λ00)2
, (14)

which is clearly equivalent to the desired result.

Our next goal is to prove that if K is the relativity of a linear relativistic
group, then K ≥ 0. Our strategy will be to prove that if G is a linear
relativistic group with relativity K < 0, then the following statements are
true.

• There’s no Λ ∈ G such that ρ = 1 and v = c.

• There’s a Λ ∈ G and a n ∈ Z+ such that det(Λn) = 1 and V (Λn) = c.

This contradiction will allow us to rule out the possibility that K < 0.

Lemma 6 (If K < 0, there’s no Λ ∈ G such that ρ = 1 and v = c). Let G
be a linear relativistic group, and denote its relativity by K. If K < 0, then
there’s no Λ ∈ G such that ρ = 1 and v = c.

Proof. Let K < 0 be arbitrary. For all Λ,Λ′ ∈ G,

ΛΛ′ = σσ′γγ′
(

1 −Kv
−ρv ρ

)(
1 −Kv′

−ρ′v′ ρ′

)
= σσ′γγ′

(
1 +Kvv′ρ′ −Kv′ −Kvρ′

−ρv − ρρ′v′ Kvv′ρ+ ρρ′

)
. (15)

This implies that for all Λ ∈ G such that ρ = 1,

Λ2 =
1√

1−Kv2

(
1 +Kv2 −Kv′ −Kv
−v − v′ Kv2 + 1

)
. (16)

If there’a Λ ∈ G such that ρ = 1 and v = c, we have (Λ2)00 = 0 (because
1 + Kv2 = 1 − |K|v2 = 0), and this contradicts the definition of “linear
relativistic group”.
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Lemma 7 (Addition of small velocities when K < 0). Let G be a linear
relativistic group, and denote its relativity by K. Suppose that K < 0. For
all Λ,Λ′ ∈ G such that |vv′| < c2,

V (ΛΛ′) =
ρ′v + v′

1− |K|vv′ρ′
.

Proof. Let Λ,Λ′ be arbitrary members of G such that |vv′| < c2. Note that

1 +Kvv′ρ′ > 1− |Kvv′ρ′| = 1− |K||vv′| > 1− 1 = 0. (17)

This and (15) imply that

ΛΛ′ = σσ′γγ′(1 +Kvv′ρ′)

(
1 −Kv′−Kvρ′

1+Kvv′ρ′
−ρv−ρρ′v′

1+Kvv′ρ′
Kvv′ρ+ρρ′

1+Kvv′ρ′

)

= σσ′γγ′(1 +Kvv′ρ′)

(
1 −K v′+vρ′

1+Kvv′ρ′

−ρρ′ ρ′v+v′

1+Kvv′ρ′
ρρ′

)
. (18)

This implies that

V (ΛΛ′) =
((ΛΛ′)−1)10
((ΛΛ′)−1)00

= −(ΛΛ′)10
(ΛΛ′)11

=
ρ′v + v′

1 +Kvv′ρ′
=

ρ′v + v

1− |K|vv′ρ′
. (19)

Definition 8 (Rapidity when K < 0). Let G be a linear relativistic group,
and denote its relativity by K. Suppose that K < 0. Define θK : R →
(−π

2
, π
2
) by θK(v) arctan(v/c) for all v ∈ R. For all Λ ∈ G, we will call

θK(V (Λ)) the rapidity of Λ.

The point of this definition is that it simplifies the velocity addition law.
It’s especially simple when ρ′ = 1. We have

V (ΛΛ′) =
v + v′

1− |K|vv′
=

c tan θK(v) + c tan θK(v
′)

1− tan θK(v) tan θK(v′)

= c tan(θK(v) + θK(v
′)) (20)

This implies that θK(V (ΛΛ′)) = θK(v) + θK(v
′).

Lemma 9 (Repeated small-velocity ρ = 1 transformations whenK < 0). Let
G be a linear relativistic group, and denote its relativity by K. Suppose that
K < 0. For all n ∈ Z+, if Λ ∈ G is such that ρ = 1 and |nθK(v)| ≤ θK(c),
then

V (Λn) = c tan(nθK(v)).
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Proof. We will prove this by induction. The n = 1 statement is obviously
true. We will prove the n = 2 statement as well. Let Λ be an arbitrary
member of G such that ρ = 1 and |2θK(v)| ≤ θK(c). Since tan is strictly
increasing and odd, we have

|v| = |c tan θK(v)| = c tan |θK(v)| ≤ c tan(θK(c)/2) < c tan θK(c) = c. (21)

This means that we can use the velocity addition law to compute V (Λ2).
Now (20) tells us that V (Λ2) = c tan(2θK(v)).

Let p be an arbitrary integer such that p ≥ 2, and suppose that the n = p
statement is true. Let Λ be an arbitrary member of G such that ρ = 1 and
|pθK(v)| ≤ θK(c).

|θK(V (Λp))| = |θK(c tan(pθK(v)))| = |pθK(v)| ≤ θK(c)

|θK(V (Λ))| = |θK(v)| < |pθK(v)| ≤ θK(c) (22)

This implies that |V (Λp)| ≤ c and |V (Λ)| < c. So lemma 7 tells us that

V (Λp+1) = V (ΛpΛ) =
V (Λp) + V (Λ)

1− |K|V (Λp)V (Λ)
=

c tan(pθK(v)) + c tan θK(v)

1− tan(pθK(v)) tan θK(v)

= c tan(pθK(v) + θK(v)) = c tan((p+ 1)θK(v)). (23)

So the n = p+ 1 statement is true as well.

Definition 10 (Ugly velocity). Let G be a linear relativistic group, and
denote its relativity by K. A real number r is said to be an ugly velocity if
r ∈ V (G), and there’s no Λ ∈ G such that ρ = 1 and v = r.

Recall that assumption 1b in the definition of “linear relativistic group”
tells us that if G is a linear relativistic group, there’s an ε > 0 such that
(−ε, ε) ∈ V (G).

Lemma 11 (There are lots of ρ = 1 transformations when K < 0). Let G
be a linear relativistic group, and denote its relativity by K. Suppose that
K < 0. Let ε ∈ (0, c) be such that (−ε, ε) ⊂ V (G). For each r ∈ (−ε, ε),
there’s a Λ ∈ G such that ρ = 1 and v = r.

Proof. Our goal is to prove is that that there are no ugly velocities in (−ε, ε).
Let r ∈ (−ε, ε) be arbitrary. We will prove that r is not ugly by deriving

a contradiction from the assumption that it is. So supoose that r is ugly. Let
Λ ∈ G be such that v = r. Since r is ugly, we have ρ = −1. c tan(θK(r)/2) is
either ugly or it’s not. We will see that both options lead to a contradiction.
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Suppose that c tan(θK(r)/2)) is not ugly. Since tan and θK are both
strictly increasing and odd, we have

|c tan(θK(r)/2)| = c tan(θK(|r|)/2) < c tan(θK(|r|)) = |r| < ε. (24)

Let Λ′ ∈ G be such that ρ′ = 1 and v′ = c tan(θK(r)/2). (Such a Λ′ exists
because c tan(θK(r)/2) ∈ (−ε, ε)). Since |v′| < ε < c, we can use the velocity
addition law to compute V (Λ′2). We have det(Λ′2) = (det Λ′)2 = 1, and

VK(Λ
′2) =

ρ′v′ + v′

1 +Kv′2ρ′
=

2v′

1− |K|v′2
=

2c tan θK(v
′)

1− tan2 θK(v′)
= c tan(2θK(v

′))

= c tan θK(r) = r. (25)

These results contradict that r is ugly.
Suppose that c tan(θK(r)/2)) is ugly. Let Λ′ ∈ G be such that v′ =

c tan(θK(r)/2)). Since c tan(θK(r)/2)) is ugly, we have ρ = −1. Note that
|v′| < |v| = r < ε < c. This means that we can use the velocity addition law
to compute V (Λ′Λ). We have det(Λ′Λ) = (det Λ′)(det Λ) = 1, and

V (Λ′Λ) =
ρv′ + v

1 +Kv′vρ
=

−v′ + v

1 + |K|vv′
=

c tan θK(v)− c tan θK(v
′)

1 + tan θK(v) tan θK(v′)

= c
tan θK(v) + tan(−θK(v

′))

1− tan θK(v) tan(−θK(v))
= c tan(θK(v)− θK(v

′))

= c tan(θK(r)− θK(r)/2) = c tan(θK(r)/2). (26)

These results contradict that c tan(θK(r)/2) is ugly.

Lemma 12 (No linear relativistic group has a negative relativity). If K is
the relativity of a linear relativistic group, then K ≥ 0.

Proof. Let G be a linear relativistic group, and let K be its relativity. We
will prove that K ≥ 0 by deriving a contradiction from the assumption that
K < 0. So suppose that K < 0. Let ε ∈ (0, c) be such that (−ε, ε) ⊂ V (G).
(Assumption 1b in the definition of “linear relativistic group” ensures that
such a Λ exists). Let n ∈ Z+ be such that θK(c)/n < θK(ε). Note that since
tan is strictly increasing, this implies that

c tan(θK(c)/n) < c tan θK(ε) = ε < c (27)

Let Λ ∈ G be such that ρ = 1 and v = c tan(θK(c)/n). (Since c tan(θK(c)/n) ∈
(−ε, ε), lemma 11 ensures that such a Λ exists). Then |v| < c, and

(det Λn) = (det Λ)n = 1. Since |nθK(v)| = θK(c), lemma 9 tells us that

V (Λn) = c tan(nθK(v)) = c tan(θK(c)) = c. (28)

These results contradict lemma 6, which says that there’s no Λ ∈ G such
that ρ = 1 and |v| = c.
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Our final goal is to prove that for each K ≥ 0, there are exactly five linear
relativistic groups with relativity K.

Definition 13 (Useful functions). Let K ≥ R be arbitrary. Define DK by
DK = {v ∈ R|1−Kv2 > 0}. Define ΛK : {−1, 1} × {−1, 1} × DK → M2(R)
by

ΛK(σ, ρ, v) =
σ√

1−Kv2

(
1 −Kv

−ρv ρ

)
for all σ, ρ ∈ {−1, 1} and all v ∈ DK . Denote the range of ΛK by RK and
define VK : RK → R by

VK(Λ) =
(Λ−1)10
(Λ−1)00

for all Λ ∈ RK .

Note that lemmas 3 and 12 are saying that if G is a linear relativistic
group, then there’s a K ≥ 0 such that G ⊂ RK . Also note that DK = R if
K = 0, and DK = (−c, c) if K > 0.

Definition 14 (Components of RK). Let K ≥ 0 be arbitrary. Define GK
↑
+,

GK
↓
+, GK

↑
−, GK

↓
− by

GK
↑
+ = {ΛK(1, 1, v)|v ∈ DK}

GK
↓
+ = {ΛK(−1, 1, v)|v ∈ DK}

GK
↑
− = {ΛK(1,−1, v)|v ∈ DK}

GK
↓
− = {ΛK(−1,−1, v)|v ∈ DK} (29)

These sets are called the components of RK .

Note that the components are mutually disjoint, and that their union is
RK .

We are going to prove that RK is a group. Then we are going to prove
that if G is a linear relativistic group with relativity K, GK

↑
+ is a subgroup of

G. This involves a few steps that are very similar to what we went through
to rule out K < 0. In particular, we need to find a velocity addition formula
and rule out the possibility of “ugly velocities”.

Lemma 15 (σ, ρ and v). Let K ≥ 0 be arbitrary. For all σ, ρ ∈ {−1, 1}
and all v ∈ DK, we have sgn(ΛK(σ, ρ, v))00 = σ, detΛK(σ, ρ, v) = ρ and
VK(Λ) = v.
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Proof.

sgn(ΛK(σ, ρ, v))00 = sgnσ = σ.

detΛK(σ, ρ, v) =
σ2

1−Kv2
det

(
1 −Kv

−ρv ρ

)
=

ρ− ρKv2

1−Kv2
= ρ.

VK(ΛK(σ, ρ, v)) =
(ΛK(σ, ρ, v)

−1)10
(ΛK(σ, ρ, v)−1)00

= −ΛK(σ, ρ, v)10
ΛK(σ, ρ, v)11

= −−ρv

ρ
= v. (30)

Lemma 16 (Injectivity). For all K ≥ 0 and all σ, ρ ∈ {−1, 1}, the map
ΛK(σ, ρ, ·) : DK → M2(R) is injective.

Proof. Suppose that ΛK(σ, ρ, v) = Λ(σ, ρ, v′). Then

σ√
1−Kv2

(
1 −Kv

−ρv ρ

)
=

σ√
1−Kv′2

(
1 −Kv′

−ρv′ ρ

)
. (31)

The 00 component of this equality tells us that v2 = v′2. This result and the
10 component of the equality tell us that v = v′.

Definition 17 (The rapidity of a member of RK , when K > 0). For each
K > 0 define θK : DK → (−π

2
, π
2
) by θK(v) = arctan(v/c) for all v ∈ DK .

For all Λ ∈ RK , we will call θK(VK(Λ)) the rapidity of Λ.

Lemma 18 (RK is closed under matrix multiplication). Let K ≥ 0 be arbi-
trary. For all σ, σ′, ρ, ρ′ ∈ {−1, 1} and all v, v′ ∈ DK,

ΛK(σ, ρ, v)ΛK(σ
′, ρ′, v′) = ΛK

(
σσ′, ρρ′,

ρ′v + v′

1 +Kvv′ρ′

)
.

Proof. Let σ, σ′, ρ, ρ′ ∈ {−1, 1} and v, v′ ∈ DK be arbitrary. First note that

1 +Kvv′ρ′ > 1− |Kvv′ρ′| = 1−K|v||v′| > 1− 1 = 0.

This implies that

ΛK(σ, ρ, v)ΛK(σ
′, ρ′, v′) =

σ√
1−Kv2

σ′
√
1−Kv′2

(
1 −Kv

−ρv ρ

)(
1 −Kv′

−ρ′v′ ρ′

)
=

σ√
1−Kv2

σ′
√
1−Kv′2

(
1 +Kvv′ρ′ −Kv′ −Kvρ′

−ρv − ρρ′v′ ρKvv′ + ρρ′

)
=

σσ′(1 +Kvv′ρ′)√
1−Kv2

√
1−Kv′2

(
1 −K ρ′v+v′

1+Kvv′ρ′

−ρρ′ ρ′v+v′

1+Kvv′ρ′
ρρ′

)
(32)
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Define ρ′′ and v′′ by

ρ′′ = ρρ′, v′′ =
ρ′v + v′

1 +Kvv′ρ′
. (33)

Note that ρ ∈ {−1, 1}. Since

|v′′| =
∣∣∣∣ ρ′v + v′

1 +Kvv′ρ′

∣∣∣∣ = ∣∣∣∣ρ′c tanh θK(v) + c tanh θK(v
′)

1 + ρ′ tanh θK(v) tanh θK(v′)

∣∣∣∣
= c

∣∣∣∣ tanh(ρ′θK(v)) + tanh θK(v
′)

1 + tanh(ρ′θK(v)) tanh θK(v′)

∣∣∣∣ = c| tanh(ρ′θK(v) + θK(v
′))| < c,

(34)

we also have v′′ ∈ DK . Since |v′′| < c, we have 1−Kv′′2 > 0. Define σ′′ by

σ′′
√
1−Kv′′2

=
σσ′(1 +Kvv′ρ′)√
1−Kv2

√
1−Kv′2

. (35)

Note that

1−Kv′′2 = 1−K

(
ρ′v + v′

1−Kvv′ρ′

)2

= 1− Kv2 +Kv′2 + 2Kvv′ρ′

(1 +Kvv′ρ′)2

=
1 +K2v2v′2 + 2Kvv′ρ′ −Kv2 −Kv′2 − 2Kvv′ρ′

(1 +Kvv′ρ′)2

=
1 +K2v2v′2 −Kv2 −Kv′2

(1 +Kvv′ρ′)2
=

(1−Kv2)(1−Kv′2)

(1 +Kvv′ρ′)2
. (36)

Since 1 − Kv′′2 > 0 and 1 + Kvv′ρ′ > 0, this implies that σ′′ = σσ′ ∈
{−1, 1}.

Corollary 19. For all K ≥ 0, RK is a group.

Proof. Lemma 18 implies that for all σ, ρ ∈ {−1, 1} and all v ∈ DK ,

ΛK(σ, ρ, v)
−1 = Λ(σ, ρ,−ρv). (37)

We also have I = ΛK(1, 1, 0) ∈ RK .

Corollary 20 (Relativistic velocity addition). LetK ≥ 0. For all σ, σ′, ρ, ρ′ ∈
{−1, 1} and all v, v′ ∈ DK,

VK

(
ΛK(σ, ρ, v)ΛK(σ

′, ρ′, v′)
)
=

ρ′v + v′

1 +Kvv′ρ′
.
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Proof. Lemmas 18 and 15 tell us that

VK

(
ΛK(σ, ρ, v)ΛK(σ

′, ρ′, v′)
)
= VK

(
ΛK

(
σσ′, ρρ′,

ρ′v + v′

1 +Kvv′ρ′

))
=

ρ′v + v′

1 +Kvv′ρ′
. (38)

Corollary 21 (Relativistic velocity addition, again). Let G be a linear rel-
ativistic group, and denote its relativity by K. For all Λ,Λ′ ∈ G,

V (ΛΛ′) =
ρ′v + v′

1 +Kvv′ρ′
.

Proof. Let Λ,Λ′ ∈ G be arbitrary. Lemmas 3 and 18 tell us that G is a
subset of RK . So Λ,Λ′ ∈ RK . Now lemma 15 implies that Λ = ΛK(σ, ρ, v)
and Λ′ = ΛK(σ

′, ρ′, v′). So corollary 20 tells us that

V (ΛΛ′) = VK

(
ΛK(σ, ρ, v)ΛK(σ

′, ρ′, v′)
)
=

ρ′v + v′

1 +Kvv′ρ′
. (39)

Definition 22 (Proper, orthochronous, orthochorous). Let K ≥ 0, σ, ρ ∈
{−1, 1} and v ∈ DK be arbitrary. ΛK(σ, ρ, v) is said to be

(a) proper if ρ = 1.

(b) orthochronous if σ = 1.

(c) orthochorous if σρ = 1.

These definitions can also be stated without using the variables σ and
ρ. Λ ∈ RK is said to be proper if det Λ = 1, orthochronous if Λ00 > 0 and
orthochorous if sgn(Λ00) det Λ = 1.

Lemma 23 (Products). Let K ≥ 0 be arbitrary. Let Λ,Λ′ ∈ RK be arbitrary.

(a) If Λ and Λ′ are proper, then ΛΛ′ is proper.

(b) If Λ and Λ′ are orthochronous, then ΛΛ′ is orthochronous.

(c) If Λ is proper, then Λ2 is proper and orthochronous.
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Proof. (a): If ρ = ρ′ = 1, then det(ΛΛ′) = (detΛ)(det Λ′) = ρρ′ = 1.
(b): If σ = σ′ = 1, then (ΛΛ′)00 = σσ′ = 1.
(c): If ρ = 1, then detΛ2 = (detΛ)2 = 1 and (Λ2)00 = σ2 = 1.

Lemma 24 (There are lots of ρ = 1 transformations). Let G be a linear
relativistic group, and denote its relativity by K. Let ε > 0 be such that
(−ε, ε) ⊂ V (G). For each r ∈ (−ε, ε), there’s a Λ ∈ G such that v = r.

Proof. Our goal is to prove is that that there are no ugly velocities in (−ε, ε).
We will deal with the possibilities K = 0 and K > 0 separately. Suppose
that K = 0.

Let r ∈ (−ε, ε) be arbitrary. We will prove that r is not ugly by deriving
a contradiction from the assumption that it is. So suppose that r is ugly.
Let Λ ∈ G be such that v = r. Since r is ugly, we have ρ = −1. r/2 is either
ugly or it’s not. We will see that both options lead to a contradiction.

Suppose that r/2 is not ugly. Let Λ′ ∈ G be such that ρ′ = 1 and
v′ = r/2. Then det(Λ′2) = (detΛ)2 = 1, and V (ΛΛ′) = ρ′v′ + v′ = 2v′ = r.
These results contradict that r is ugly.

Suppose that r/2 is ugly. Let Λ′ ∈ G be such that v′ = r/2. Since r/2
is ugly, we have ρ′ = −1. This implies that det(Λ′Λ) = (det Λ′)(det Λ) = 1,
and also that V (Λ′Λ) = ρv′ + v = v − v′ = r − r/2 = r/2. These results
contradict that r/2 is ugly.

Suppose that K > 0. The proof is essentially the same as for the case
K < 0, so we won’t repeat it here. Since rapidity is now defined using tanh
instead of tan, we have to use the identity

tanh(x+ y) =
tanhx+ tanh y

1 + tanhx tanh y
(40)

instead of

tan(x+ y) =
tanx+ tan y

1− tanx tan y
. (41)

Lemma 25 (Repeated ρ = 1 transformations). Let G be a linear relativistic
group, and let K be its relativity.

(a) If K = 0, then for all n ∈ Z+ and all Λ ∈ G such that ρ = 1,

V (Λn) = nV (Λ).

(b) If K > 0, then for all n ∈ Z+ and all Λ ∈ G such that ρ = 1,

V (Λn) = c tanh(nθK(v)).

12



Proof. (a): We will prove this by induction. The n = 1 statement is obviously
true. Let p ∈ Z+ be arbitrary and suppose that the n = p statement is true.
Corollary 21 tells us that

V (Λp+1) = V (ΛpΛ) = V (Λp) + V (Λ) = pV (Λ) + V (Λ) = (p+ 1)V (Λ).
(42)

So the n = p+ 1 statement is true as well.
(b): The n = 1 statement is obviously true. Let p ∈ Z+ be arbitrary, and

suppose that the n = p statement is true. Corollary 20 tells us that

V (Λp+1) = V (ΛpΛ) =
V (Λp) + V (Λ)

1 +KV (Λp)V (Λ)
=

c tanh(pθK(v)) + c tanh θK(v)

1 + tanh(pθK(v)) tanh θK(v)

= c tanh(pθK(v) + θK(v)) = c tanh((p+ 1)θK(v)). (43)

So the n = p+ 1 statement is true as well.

Lemma 26 (There are lots of σ = ρ = 1 transformations). Let G be a linear
relativistic group, and denote its relativity by K. For each r ∈ DK, there’s a
Λ ∈ G such that σ = ρ = 1 and v = r.

Proof. Let r ∈ DK be arbitrary. Let ε > 0 be such that (−ε, ε) ⊂ V (G).
Assumption 1b in the definition of “linear relativistic group” tells us that
such an ε exists.

Suppose that K = 0. Let n ∈ Z+ be such that r/n ∈ (−ε, ε). Let Λ
be an arbitrary member of G such that ρ = 1 and v = r/(2n). (Lemma
24 ensures that such a Λ exists). Lemma 23 tells us that Λ2 is proper and
orthochronous. It also implies that Λ2n = (Λ2)n is proper and orthochronous.
Lemma 20 tells us that V (Λ2n) = 2nV (Λ) = r.

Suppose thatK > 0. Let n ∈ R+ be such that θK(r)/(2n) ∈ (−θK(ε), θK(ε)).
Since tanh is strictly increasing and odd, we have

|c tanh(θK(r)/(2n))| = c tanh |θK(r)/(2n)| < c tanh θK(ε) = ε. (44)

Let Λ be an arbitrary member ofG such that ρ = 1 and v = c tanh(θK(r)/(2n)).
(Lemma 24 ensures that such a Λ exists). Note that θK(v) = θK(r)/(2n).
Lemma 23 tells us that Λ2 is proper and orthochronous, and implies that
Λ2n = (Λ2)n is proper and orthochronous. Corollary 21 tells us that

V (Λ2n) = c tanh(2nθK(v)) = c tanh θK(r) = r. (45)

Lemma 27 (The restricted subgroup). If G is a linear relativistic group,
and K is its relativity, then GK

↑
+ is a subgroup of G.

13



Proof. First we prove that GK
↑
+ ⊂ G. Let Λ ∈ GK

↑
+ be arbitrary. Let

r ∈ DK be such that ΛK(1, 1, r) = Λ. Let Λ′ ∈ G be such that σ′ = ρ′ = 1
and v′ = r. (Lemma 26 ensures that such a Λ′ exists). Lemma 3 tells us that
Λ′ = ΛK(1, 1, r). So Λ = ΛK(1, 1, r) = Λ′ ∈ G.

Let Λ,Λ′ ∈ GK
↑
+ be arbitrary. Since GK

↑
+ ⊂ G, we have Λ,Λ′ ∈ G.

Since G is a group, this implies that ΛΛ′ ∈ G. Since G is a linear relativistic
group, and Λ,Λ′ are proper and orthochronous members of G, lemma 23 tells
us that ΛΛ′ is proper and orthochronous. Now lemma 3 tells us that there’s
a u ∈ DK such that ΛΛ′ = ΛK(1, 1, u) ∈ GK

↑
+. So GK

↑
+ is closed under

matrix multiplication. Since I ∈ GK
↑
+, this implies that GK

↑
+ is a subgroup

of G.

This group is called the restricted subgroup of RK . Note that what we’ve
done so far is to prove that if G is a linear relativistic group, then there’s a
K ≥ 0 such that

GK
↑
+ ⊂ G ⊂ GK

↑
+ ∪GK

↓
+ ∪GK

↑
− ∪GK

↓
−. (46)

Definition 28 (Inversion matrices). The matrices

P =

(
1 0
0 −1

)
, T =

(
−1 0
0 1

)
, −I =

(
−1 0
0 −1

)
are called the space inversion (or parity) matrix, the time inversion (or time
reversal) matrix and the spacetime inversion matrix respectively.

Lemma 29 (Zero-velocity transformations). For all K ≥ 0,

I = ΛK(1, 1, 0) ∈ GK
↑
+

−I = ΛK(−1, 1, 0) ∈ GK
↓
+

P = ΛK(1,−1, 0) ∈ GK
↑
−

T = ΛK(−1,−1, 0) ∈ GK
↓
−. (47)

Proof. The definition of ΛK implies that for each σ, ρ ∈ {−1, 1},

ΛK(σ, ρ, 0) = σ

(
1 0
0 ρ

)
. (48)

Lemma 30 (Each component is either disjoint from G or a subset of G).
Let G be a linear relativistic group, and let K be its relativity.
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(a) If G contains one member of GK
↓
+, then it contains all of them.

(b) If G contains one member of GK
↑
−, then it contains all of them.

(c) If G contains one member of GK
↓
−, then it contains all of them.

Proof. Lemma 18 tells us that for all σ, σ′, ρ, ρ′ ∈ {−1, 1} and all v, v′ ∈ DK ,

ΛK(σ, ρ, v)ΛK(σ
′, ρ′, v′) = ΛK

(
σσ′, ρρ′,

ρ′v + v′

1 +Kvv′ρ

)
. (49)

This implies that for all σ, ρ ∈ {−1, 1} and all v ∈ DK ,

ΛK(σ, ρ, v)ΛK(1, 1,−v) = ΛK

(
σ, ρ,

v + (−v)

1 +Kv(−v)

)
= ΛK(σ, ρ, 0). (50)

Let v ∈ DK be arbitrary.
(a): Suppose that ΛK(−1, 1, v) ∈ G. Since ΛK(1, 1,−v) ∈ GK

↑
+ ⊂ G we

have

G ∋ ΛK(−1, 1, v)ΛK(1, 1,−v) = ΛK(−1, 1, 0) = −I. (51)

This implies that for all v′ ∈ DK ,

ΛK(−1, 1, v′) = −IΛ(1, 1, v′) ∈ G. (52)

(b): Suppose that ΛK(1,−1, v) ∈ G. Since ΛK(1, 1, v) ∈ GK
↑
+ ⊂ G we

have

G ∋ ΛK(1,−1, v)ΛK(1, 1,−v) = ΛK(1,−1, 0) = P. (53)

This implies that for all v′ ∈ DK ,

ΛK(1,−1, v′) = PΛ(1, 1, v′) ∈ G. (54)

(c): Suppose that ΛK(−1,−1, v) ∈ G. Since ΛK(1, 1, v) ∈ GK
↑
+ ⊂ G we

have

G ∋ ΛK(−1,−1, v)ΛK(1, 1,−v) = ΛK(−1,−1, 0) = T. (55)

This implies that for all v′ ∈ DK ,

ΛK(−1,−1, v′) = TΛ(1, 1, v′) ∈ G. (56)
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Corollary 31 (If an inversion matrix is in G). Let G be a linear relativistic
group, and denote its relativity by K. If −I ∈ G, then GK

↓
+ ⊂ G. If P ∈ G,

then GK
↑
− ⊂ G. If T ∈ G, then GK

↓
− ⊂ G.

Corollary 32 (If an inversion matrix isn’t in G). Let G be a linear relativistic
group, and denote its relativity by K. If −I /∈ G, then G ∩ GK

↓
+ = ∅. If

P /∈ G, then G ∩GK
↑
− = ∅. If T /∈ G, then G ∩GK

↓
− = ∅.

The results we have obtained so far imply that a linear relativistic group
is completely determined by its relativity and its intersection with the set
{−I, P, T}. (The proof of the next corollary will make that perfectly clear).
This raises the question of what subsets of {−I, P, T} can be a subset of G.
Clearly, G will contain 0, 1, 2 or 3 members of {−I, P, T}. There’s 1 way
to choose zero members from that set. There are 3 ways to choose one, 3
ways to choose two, and 1 way to choose three. But we have −IP = T ,
PT = −I, T (−I) = P , so if two inversion matrices are in G, the third one
is too. This implies that the intersection can’t be a set with cardinality 2.
This leaves us with five candidates for G ∩ {−I, P, T} that we haven’t ruled
out: ∅, {−I}, {P}, {T}, {−I, P, T}.

Corollary 33 (Five candidates for eachK ≥ 0). Let G be a linear relativistic
group, and let K be its relativity.

(a) If none of −I, P, T are in G, then G = GK
↑
+.

(b) If −I ∈ G and P, T /∈ G, then G = GK
↑
+ ∪GK

↓
+.

(c) If P ∈ G and T,−I /∈ G, then G = GK
↑
+ ∪GK

↑
−.

(d) If T ∈ T and −I, P /∈ G, then G = GK
↑
+ ∪GK

↓
−.

(e) If two of −I, P, T are in G, then the third one is too, and G = GK
↑
+ ∪

GK
↓
+ ∪GK

↑
− ∪GK

↓
−

Proof. The proofs are very similar, so we will only do one.
(b): Suppose that P ∈ G and T,−I /∈ G. Then corollary 31 tells us that

GK
↑
− ⊂ G, and corollary 32 tells us that G is disjoint from both GK

↓
− and

GK
↓
+. Lemma 27 tells us that GK

↑
+ ⊂ G. So

GK
↑
+ ∪GK

↑
− ⊂ G ⊂ RK − (GK

↓
+ ∪GK

↓
−) = GK

↑
+ ∪GK

↑
−. (57)
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Nothing we have done so far implies that there’s a K ≥ 0 such that the
five sets mentioned in this corollary are linear relativistic groups. In fact, we
still haven’t proved that there are any linear relativistic groups. We ruled
out the possibility that K < 0, but we still don’t know for sure that no other
values of K can be ruled out. Also, we still don’t know for sure that none of
the statements −I ∈ G, P ∈ G, T ∈ G, −I /∈ G, P /∈ G, T /∈ G follow from
the assumption that G is a linear relativistic group. The following lemma
solves all of these problems, and completes the proof of theorem 1

Lemma 34 (Those sets are linear relativistic groups). Let K ≥ 0 be arbi-
trary. The following sets are linear relativistic groups with relativity K.

(a) GK
↑
+.

(b) GK
↑
+ ∪GK

↓
+.

(c) GK
↑
+ ∪GK

↑
−.

(d) GK
↑
+ ∪GK

↓
−.

(e) GK
↑
+ ∪GK

↓
+ ∪GK

↑
− ∪GK

↓
−

Proof. Let K ≥ 0 be arbitrary and let HK be any of the five sets listed in (a)-
(e). We will prove that HK is a group. First note that I = ΛK(1, 1, 0) ∈ HK .
Let Λ,Λ′ ∈ HK be arbitrary. Let σ, σ′ρ, ρ′ ∈ {−1, 1} and v, v′ ∈ DK be such
that ΛK(σ, ρ, v) = Λ and ΛK(σ

′, ρ′, v′) = Λ′. Lemma (49) tells us that

ΛΛ′ = ΛK(σ, ρ, v)ΛK(σ
′, ρ′, v′) = ΛK

(
σσ′, ρρ′,

ρ′v + v′

1 +Kvv′ρ

)
. (58)

If we can prove that the right-hand side is in HK , we can conclude that

ΛK(σ, ρ, v)
−1 = ΛK(σ, ρ,−ρ′v) ∈ HK , (59)

and this will complete the proof thatHK is a group. Since the right-hand side
of (58) is in the same component as ΛK(σσ

′, ρρ′, 0), it’s sufficient to prove
that ΛK(σσ

′, ρρ′, 0) ∈ HK . Define a binary operation ⋆ on {−1, 1}×{−1, 1}
by (σ, ρ) ⋆ (σ′, ρ′) = (σσ′, ρρ′) for all σ, σ′ρ, ρ′ ∈ {−1, 1}. In each of the cases
(a)-(e), define

S =
{
(σ, ρ) ∈ {−1, 1} × {−1, 1}|ΛK(σ, ρ, 0) ∈ HK

}
.

It’s sufficient to prove that (σ, ρ)⋆ (σ′, ρ′) ∈ S for all (σ, ρ), (σ′, ρ′) ∈ S. Since
the ⋆ operation is commutative, we won’t have to check all possible products.

(a): S = {(1, 1)}
(1, 1) ⋆ (1, 1) = (1, 1) ∈ S
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(b): S = {(1, 1), (−1, 1)}
(1, 1) ⋆ (1, 1) = (1, 1) ∈ S

(1, 1) ⋆ (−1, 1) = (−1, 1) ∈ S

(−1, 1) ⋆ (−1, 1) = (1, 1) ∈ S

(c): S = {(1, 1), (1,−1)}
(1, 1) ⋆ (1, 1) = (1, 1) ∈ S

(1,−1) ⋆ (1, 1) = (1,−1)

(1,−1) ⋆ (1,−1) = (1, 1)

(d): S = {(1, 1), (−1,−1)}
(1, 1) ⋆ (1, 1) = (1, 1) ∈ S

(−1,−1) ⋆ (1, 1) = (−1,−1) ∈ S

(−1,−1) ⋆ (−1,−1) = (1, 1) ∈ S

(e): S = {−1, 1} × {−1, 1}
In this case, every product is obviously in S. (60)

We have proved that the five sets are groups. We’re going to prove that
they are linear relativistic groups. They are obviously all subsets of GL(R2).
Again, let HK be any of those five sets. Let Λ ∈ HK be arbitrary. Let
σ, ρ ∈ {−1, 1} and v ∈ DK be such that ΛK(σ, ρ, v) = Λ. Let V : HK → R
be the restriction of the function VK (definition 13) to HK .

V (Λ) = VK(ΛK(1, 1, v)) =
(ΛK(1, 1, v)

−1)10
(ΛK(1, 1, v)−1)00

=
(Λ−1)10
(Λ−1)00

. (61)

Lemma 15 tells us that v = VK(σ, ρ, v) = V (Λ) ∈ V (HK). Since v is an
arbitrary member of DK , this implies that DK ⊂ V (HK). Since DK is an
open set that contains 0, this implies that 0 is an interior point of V (HK).
Since

Λ = ΛK(σ, ρ, v) =
σ√

1−Kv2

(
1 −Kv

−ρv ρ

)
(62)

and Λ−1 = ΛK(σ, ρ, v)
−1 = ΛK(σ, ρ,−ρv), we have (Λ−1)µµ = Λµµ for all

µ ∈ {0, 1}.
Finally, we’re going to prove that the relativity of HK is K. Let v be an

arbitrary member of DK such that v ̸= 0. Define Λ = ΛK(1, 1, v). Lemma 5
tells us that the relativity of HK is

1

V (Λ)2

(
1− 1

(Λ00)2

)
=

1

v2
(1− (1−Kv2)) = K. (63)
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