
The governing equation is
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Introduce the transformation Z = z/L(t) into (3). Notice the transform
takes differential form as
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Applying (4) to the left side of (3) yields
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Similarly, applying (4) to the right side of (3) yields
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Substituting (7) and (10) into (3) yields the following governing equation
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subject to h(t, Z = ±1) = 0 and ∂Zh(t, Z = 0) = 0. Before a difference equation
can be obtained L(t) must be expressed in known terms; the method follows.

The following argument is valid in the limit as Z → 1+. Total volume can be
expressed as

V =

∫ L

−L
h2(t, z)dz =⇒ (12)

0 =
∂V
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=

∂
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−L
h2dz =
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∂t
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(13)

where ∂tV = 0 via conservation of mass. The right side of the equality utilizes
Leibniz’s rule for commutation between the derivative and the integral since
L = f(t). Flow symmetry has also been used. h(t, z = L) = 0 implies (13)
becomes
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∂t
=
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)
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via the Fundamental Theorem of Calculus. Notice (16) is a new boundary con-
dition. (15) was established using (3).

Expand h in a Taylor series about Z = 1, where the centering is predicated
on satisfying the boundary condition h = 0 at Z = 1. Doing so yields

h =
∑
N
cn(Z − 1)n : cn :=

∂nh

∂Zn

∣∣∣∣
Z=1

. (17)

Rewriting (11) via (17) yields the following weighted expression:1

O(Z − 1) : L
dL

dt
= −2

3
c1. (18)

Notice

1The domain under consideration is Vε(Z = 1) : Z 6= 1, as the following is valid in the
limit as Z → 1+.
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c1(t) :=

(
∂h

∂Z

)
Z=1

≈ h(t, 1)− h(t, 1−∆Z)

∆Z
(19)

yet h(t, Z = 1) = 0; thus we may write (19) as

c1(t) ≈ −h(t, 1−∆Z)

∆Z
. (20)

Substituting (20) into (18) yields

∫ L(t+∆t)

L(t)

L′dL′ =
2

3

∫ t+∆t

t

h(t′, 1−∆Z)

∆Z
dt′ =⇒ (21)

L2(t+ ∆t) = L2(t) +
4

3

h(t, 1−∆Z)

∆Z
∆t := ξ. (22)

Thus we have an expression for L2(t + ∆t). The time integral was approx-
imated using a left endpoint rule. Next we must find dL2/dt. (22) can be
rewritten as

L2(t+ ∆t)− L2(t)

∆t
=

4

3

h(t, 1−∆Z)

∆Z
. (23)

Notice the left side term in (23) is approximately dL2/dt. The nonlinear L term
in (11) can be expressed as

1

L

dL
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=

L
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=

1
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(24)

which is approximated numerically from (23) and (22) as

1
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=
4
3
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L2(t) + 4
3
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∆Z ∆t
:= ζ. (25)

Notice (11) can be rewritten as

∂h

∂t
= Z

∂h

∂Z

1

L

dL

dt
+

h

L2

∂2h

∂Z2
. (26)

A forward time-centered space finite difference scheme for (26) is

hj+1
i =

[
i
(
hji+1 − h

j
i−1

)
ζj +

hji
ξj
hji+1 − 2hji + hji−1

∆Z2

]
∆t+ hji (27)
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where i appears since Z/∆Z appears and Z = i∆Z by definition. A finite
difference scheme for ξ and ζ is

ξj = Lj−1 2
+

4

3

hj−1
n−1

∆Z
∆t (28)

ζj =
4

3

hj−1
n−1

ξj∆Z
. (29)

Note that n is the number of spacial nodes predefined by the user. Addi-
tionally the subscript i is the ith spacial node and the superscript j is the jth

time node. Then it is clear if some initial L0 and h0 are defined, all subsequent
h profiles can be found.
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