The governing equation is
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subject to h(t,+L(t)) = 0 and h(¢,0) = 0. Notice
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Introduce the transformation Z = z/L(t) into (3). Notice the transform
takes differential form as
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Applying (4) to the left side of (3) yields
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Similarly, applying (4) to the right side of (3) yields
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Substituting (7) and (10) into (3) yields the following governing equation
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subject to h(t,Z = £1) = 0 and dzh(t, Z = 0) = 0. Before a difference equation
can be obtained L(t) must be expressed in known terms; the method follows.

The following argument is valid in the limit as Z — 1T. Total volume can be
expressed as
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where 0;V = 0 via conservation of mass. The right side of the equality utilizes
Leibniz’s rule for commutation between the derivative and the integral since
L = f(t). Flow symmetry has also been used. h(t,z = L) = 0 implies (13)
becomes
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via the Fundamental Theorem of Calculus. Notice (16) is a new boundary con-
dition. (15) was established using (3).

Expand h in a Taylor series about Z = 1, where the centering is predicated
on satisfying the boundary condition h = 0 at Z = 1. Doing so yields
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Rewriting (11) via (17) yields the following weighted expression:*
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Notice

IThe domain under consideration is Ve(Z = 1) : Z # 1, as the following is valid in the
limit as Z — 1%.



er(t) = <§Z> = At 1) = Z(; 1-4%) (19)

yet h(t, Z = 1) = 0; thus we may write (19) as
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Substituting (20) into (18) yields
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Thus we have an expression for L?(t + At). The time integral was approx-
imated using a left endpoint rule. Next we must find dL?/dt. (22) can be
rewritten as
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Notice the left side term in (23) is approximately dL?/dt. The nonlinear L term
in (11) can be expressed as
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which is approximated numerically from (23) and (22) as
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Notice (11) can be rewritten as
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A forward time-centered space finite difference scheme for (26) is
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where i appears since Z/AZ appears and Z = iAZ by definition. A finite

difference scheme for ¢ and ( is
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Note that n is the number of spacial nodes predefined by the user. Addi-
tionally the subscript 4 is the i*" spacial node and the superscript j is the j**
time node. Then it is clear if some initial L and h° are defined, all subsequent

h profiles can be found.



