
The governing equation is
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d2h

dz2
+ 2

(
dh
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)2

(1)

subject to h(t,±L(t)) = 0 and h(t, 0) = 0. Notice

h
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3
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dz2
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Introduce the transformation Z = z/L(t) into (3). Notice the transform
takes differential form as

dh =

(
∂h

∂t

)
Z

dt+

(
∂h

∂Z

)
t

dZ. (4)

Applying (4) to the left side of (3) yields
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: (5)(
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)
z

= − z

L2

dL

dt
= −Z

L
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=⇒ (6)(

∂h2

∂t

)
z

=
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∂h2
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)
Z

− Z
(
∂h2

∂Z

)
t

1

L

dL

dt
. (7)

Similarly, applying (4) to the right side of (3) yields

(
∂2

∂z2
h3

)
t

=
∂

∂z

(
∂(h3)

∂Z

∂Z

∂z

)
t

: (8)(
∂Z

∂z

)
t

=
1

L
=⇒ (9)(

∂2

∂z2
h3

)
t

=

(
∂2(h3)

∂Z2

1

L2

)
t

. (10)

Substituting (7) and (10) into (3) yields the following governing equation

∂h2

∂t
= Z

∂h2

∂Z

1

L

dL

dt
+

2

3L2

∂2(h3)

∂Z2
(11)
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subject to h(t, Z = ±1) = 0 and ∂Zh(t, Z = 0) = 0. Before a difference equation
can be obtained L(t) must be expressed in known terms; the method follows.

The following argument is valid in the limit as Z → 1−. Total volume can be
expressed as

V =

∫ L

−L
h2(t, z)dz =⇒ (12)

0 =
∂V

∂t
=

∂

∂t

∫ L

−L
h2dz =

∫ L

−L

∂(h2)

∂t
dz + 2h2(L, t)

dL

dt
(13)

where ∂tV = 0 via conservation of mass. The right side of (13) utilizes Leibniz’s
rule for commutation between the derivative and the integral since L = f(t).
Flow symmetry has also been used. h(t, z = L) = 0 implies (13) becomes

∂V

∂t
=

∫ L

−L

(
∂h2

∂t

)
dz =⇒ (14)

∂V

∂t
=

4

3

(
∂h3

∂z

∣∣∣∣
z=L

− ∂h3

∂z

∣∣∣∣
z=0

)
=⇒ (15)

0 =
∂h3

∂z

∣∣∣∣
z=L

(16)

via the Fundamental Theorem of Calculus. Notice (16) is a new boundary con-
dition. (15) was established using (3).

Expand h in a Taylor series about Z = 1, where the centering is predicated
on satisfying the boundary condition h = 0 at Z = 1. Doing so yields

h =
∑
N
cn(Z − 1)n : cn :=

∂nh

∂Zn

∣∣∣∣
Z=1

. (17)

Rewriting (11) via (17) yields the following weighted expression:1

O(Z − 1) : L
dL

dt
= −2

3
c1. (18)

Notice

1The domain under consideration is Vε(Z = 1) : Z 6= 1, as the following is valid in the
limit as Z → 1−.
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c1(t) :=

(
∂h

∂Z

)
Z=1

≈ h(t, 1)− h(t, 1−∆Z)

∆Z
(19)

yet h(t, Z = 1) = 0; thus we may write (19) as

c1(t) ≈ −h(t, 1−∆Z)

∆Z
. (20)

Substituting (20) into (18) yields

∫ L(t+∆t)

L(t)

L′dL′ =
2

3

∫ t+∆t

t

h(t′, 1−∆Z)

∆Z
dt′ =⇒ (21)

L2(t+ ∆t) = L2(t) +
4

3

h(t, 1−∆Z)

∆Z
∆t. (22)

Thus we have an expression for L2(t + ∆t). The time integral was approx-
imated using a left endpoint rule. Next we must find dL2/dt. (22) can be
rewritten as

L2(t+ ∆t)− L2(t)

∆t
=

4

3

h(t, 1−∆Z)

∆Z
. (23)

Notice the left side term in (23) is approximately dL2/dt. The nonlinear L term
in (11) can be expressed as

1

L

dL

dt
=

L

L2

dL

dt
=

1

2L2

dL2

dt
(24)

which is approximated numerically from (23) and (22) as

1

L2

dL2

dt

∣∣∣∣
t=t+∆t

=
4
3
h(t,1−∆Z)

∆Z

L2(t) + 4
3
h(t,1−∆Z)

∆Z ∆t
. (25)

With the L terms now represented in (11), the next step is to create a
numerical scheme to solve. A finite difference scheme for (11) is computationally
draining. In order to alleviate the computational stress we introduce a transform
that reduces the nonlinearity from (11)

y := h2. (26)

(26) not only expedites the run time, but the finite difference equations
that result in this approach automatically conserve volume, unlike the scheme
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involving h, in which volume is conserved only in the limit of vanishing ∆Z.
Applying this transform to (11) yields

∂y

∂t
= Z

∂y

∂Z

1

L

dL

dt
+

2

3L2

∂2y3/2

∂Z2
. (27)

Transforming (23) and (25) with (26) respectively yields

L2(t+ ∆t)− L2(t)

∆t
=

4

3

√
y(t, 1−∆Z)

∆Z
=: ζ(t) (28)

1

L2

dL2

dt

∣∣∣∣
t=t+∆t

=
4
3

y
√

(t,1−∆Z)

∆Z

L2(t) + 4
3

√
y(t,1−∆Z)

∆Z ∆t
=: ξ(t). (29)

(27) can now be succinctly written as

∂y

∂t
= 2Z

∂y

∂Z
ξ +

2

3ζ

∂2y3/2

∂Z2
. (30)

Claim 1. The partial derivative of a function f lifted to the m ∈ R power can
be finitely differenced lucidly as

∂fm

∂x
=
fm|x+∆x − fm|x

∆x
+O(∆x)2. (31)

Proof. Consider a typical method for taking a finite difference of fm:

∂fm

∂x
= m fm−1

∣∣
x

f |x+∆x − f |x
∆x

+O(∆x)2. (32)

Now expand f |x+∆x in a Taylor series about x:

f |x+∆x =
∑
N

∂nf |x∆xn

n!
= f |x + ∂xf |x∆x+O(∆x)2. (33)

Substituting (33) into (32) and (31) for f |x+∆x demonstrates equality in
both methods to O(∆x2). An inductive argument shows this technique holds
for the nth partial derivative.

The validity of Claim 1 implies the following forward time centered space
finite difference equation is valid for (30)

yj+1
i =

i(yji+1 − y
j
i−1)ξj +

2

3ζj
yji−1

3/2
− 2 yji

3/2
+ yji+1

3/2

∆Z2

∆t+ yji . (34)
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A finite difference scheme for ξ in (29) and ζ in (28) follows:

ζj = Lj−1 2
+

4

3

√
yj−1
n−1

∆Z
∆t (35)

ξj =
4

3

√
yj−1
n−1

ξj∆Z
(36)

where n is the number of spacial nodes predefined by the user. Additionally
the subscript i is the ith spacial node and the superscript j is the jth time node.
Then it is clear if some initial L0 and h0 are defined, all subsequent h profiles
can be found.
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