The governing equation is
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subject to h(t,+L(t)) = 0 and h(¢,0) = 0. Notice
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Introduce the transformation Z = z/L(t) into (3). Notice the transform
takes differential form as
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Applying (4) to the left side of (3) yields
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Similarly, applying (4) to the right side of (3) yields
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Substituting (7) and (10) into (3) yields the following governing equation
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subject to h(t,Z = £1) = 0 and dzh(t, Z = 0) = 0. Before a difference equation
can be obtained L(t) must be expressed in known terms; the method follows.

The following argument is valid in the limit as Z — 1~. Total volume can be
expressed as
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where 0,V = 0 via conservation of mass. The right side of (13) utilizes Leibniz’s
rule for commutation between the derivative and the integral since L = f(¢).
Flow symmetry has also been used. h(t,z = L) = 0 implies (13) becomes
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via the Fundamental Theorem of Calculus. Notice (16) is a new boundary con-
dition. (15) was established using (3).

Expand h in a Taylor series about Z = 1, where the centering is predicated
on satisfying the boundary condition h = 0 at Z = 1. Doing so yields
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Rewriting (11) via (17) yields the following weighted expression:*
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Notice

IThe domain under consideration is Ve(Z = 1) : Z # 1, as the following is valid in the
limit as Z — 17.
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vet h(t, Z = 1) = 0; thus we may write (19) as
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Substituting (20) into (18) yields
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Thus we have an expression for L?(t + At). The time integral was approx-
imated using a left endpoint rule. Next we must find dL?/dt. (22) can be
rewritten as
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Notice the left side term in (23) is approximately dL?/dt. The nonlinear L term
in (11) can be expressed as
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which is approximated numerically from (23) and (22) as
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With the L terms now represented in (11), the next step is to create a
numerical scheme to solve. A finite difference scheme for (11) is computationally
draining. In order to alleviate the computational stress we introduce a transform
that reduces the nonlinearity from (11)
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(26) not only expedites the run time, but the finite difference equations
that result in this approach automatically conserve volume, unlike the scheme



involving h, in which volume is conserved only in the limit of vanishing AZ.
Applying this transform to (11) yields
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Transforming (23) and (25) with (26) respectively yields
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Claim 1. The partial derivative of a function f lifted to the m € R power can
be finitely differenced lucidly as

of™ _ [Mlovas — ™
Ox Az
Proof. Consider a typical method for taking a finite difference of f™:
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Now expand f|z4+a, in a Taylor series about x:
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Substituting (33) into (32) and (31) for f|;4a, demonstrates equality in
both methods to O(Axz?). An inductive argument shows this technique holds
for the n** partial derivative. O

The validity of Claim 1 implies the following forward time centered space
finite difference equation is valid for (30)
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A finite difference scheme for £ in (29) and ¢ in (28) follows:
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where n is the number of spacial nodes predefined by the user. Additionally
the subscript 4 is the i** spacial node and the superscript j is the j¢* time node.
Then it is clear if some initial L% and h° are defined, all subsequent h profiles
can be found.



