
The governing equation is
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d2h

dz2
+ 2

(
dh

dz

)2

(1)

subject to h(t,±L(t)) = 0 and h(t, 0) = 0. Notice

h
dh
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dz2
+ 2h
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=

2

3

d2(h3)

dz2
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Introduce the transformation Z = z/L(t) into (3). The transform takes
differential form as

dh =

(
∂h

∂t

)
Z

dt +

(
∂h

∂Z

)
t

dZ. (4)

Applying (4) to the left side of (3) yields
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)
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∂h2
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: (5)(
∂Z
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)
z
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L2

dL

dt
= −Z

L
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dt
=⇒ (6)(

∂h2

∂t

)
z

=

(
∂h2
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)
Z

− Z

(
∂h2

∂Z

)
t

1

L

dL

dt
. (7)

Similarly, applying (4) to the right side of (3) yields

(
∂2

∂z2
h3

)
t

=
∂

∂z

(
∂(h3)

∂Z

∂Z

∂z

)
t

: (8)(
∂Z

∂z

)
t

=
1

L
=⇒ (9)(

∂2

∂z2
h3

)
t

=

(
∂2(h3)

∂Z2

1

L2

)
t

. (10)

Substituting (7) and (10) into (3) yields the following governing equation

∂h2

∂t
= Z

∂h2

∂Z

1

L

dL

dt
+

2

3L2

∂2(h3)

∂Z2
(11)
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subject to h(t, Z = ±1) = 0 and ∂Zh(t, Z = 0) = 0. Before a difference equation
can be obtained L(t) must be expressed in known terms; the method follows.

The following argument is valid in the limit as Z → 1−. Expand h in a Taylor
series about Z = 1, where the centering is predicated on satisfying the boundary
condition h = 0 at Z = 1. Doing so yields

h =
∑
N

cn(Z − 1)n : cn :=
∂nh

∂Zn

∣∣∣∣
Z=1

. (12)

Rewriting (11) via (12) yields the following weighted expression:1

O(Z − 1) : L
dL

dt
= −2

3
c1. (13)

Notice

c1(t) :=
∂h

∂Z

∣∣∣∣
Z=1

≈ h(t, 1)− h(t, 1−∆Z)

∆Z
(14)

yet h(t, Z = 1) = 0; thus we may write (14) as

c1(t) ≈ −h(t, 1−∆Z)

∆Z
. (15)

Substituting (15) into (13) yields

∫ L(t+∆t)

L(t)

L′dL′ =
2

3

∫ t+∆t

t

h(t′, 1−∆Z)

∆Z
dt′ =⇒ (16)

L2(t + ∆t) = L2(t) +
2

3

h(t, 1−∆Z)

∆Z
∆t. (17)

Thus we have an expression for L2(t + ∆t). The time integral was approx-
imated using a midpoint rule in time at ∆t/2. Before continuing observe that
the nonlinear L term in (11) can be expressed as

1

L

dL

dt
=

L

L2

dL

dt
=

1

2L2

dL2

dt
. (18)

Thus we seek an expression for dL2/dt. Notice (17) can be rewritten as

1The domain under consideration is Vε(Z = 1) : Z 6= 1, as the following is valid in the
limit as Z → 1−.
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L2(t + ∆t)− L2(t)

∆t
=

2

3

h(t, 1−∆Z)

∆Z
(19)

where the left side term is approximately dL2/dt.

The L terms from (11) are now expressed in terms of known quantities; the
next step is to create a numerical scheme to solve for h. A finite difference
scheme for (11) is onerous and computationally draining. In order to alleviate
numerical stress, introduce a transform that rids the nonlinearity in the time
derivative in (11) as

y := h2. (20)

(20) not only expedites the run time, but the finite difference equations
that result in this approach automatically conserve volume, unlike the scheme
involving h, in which volume is conserved only in the limit of vanishing ∆Z.
Applying (20) and (18) to (11) yields

∂y

∂t
= Z

∂y

∂Z

1

2L2

dL2

dt
+

2

3L2

∂2y3/2

∂Z2
. (21)

Transforming (17) and (19) with (20) respectively yields

L2(t + ∆t) = L2(t) +
2

3

√
y(t, 1−∆Z)

∆Z
∆t (22)

dL2

dt

∣∣∣∣
t

=
2

3

√
y(t, 1−∆Z)

∆Z
. (23)

Note (22) is evaluated at t + ∆t yet (23) is evaluate at t. Before continuing
to a finite difference technique for (21) the following claim is stated and proved.

Claim 1. The partial derivative of a function f lifted to the m ∈ R power can
be finitely differenced lucidly as

∂fm

∂x
=

fm|x+∆x − fm|x
∆x

+O(∆x)2. (24)

Proof. Consider a typical method for taking a finite difference of fm:

∂fm

∂x
= m fm−1

∣∣
x

f |x+∆x − f |x
∆x

+O(∆x)2. (25)

Now expand f |x+∆x in a Taylor series about x:
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f |x+∆x =
∑
N

∂nf |x∆xn

n!
= f |x + ∂xf |x∆x +O(∆x)2. (26)

Substituting (26) through O(∆x) into (25) for f |x+∆x yields

∂fm

∂x
= m fm−1

∣∣
x

f |x + ∂xf |x∆x− f |x
∆x

+O(∆x)2 (27)

= m fm−1
∣∣
x

∂xf |x∆x

∆x
+O(∆x)2. (28)

Substituting (26) through O(∆x) into (24) for f |x+∆x yields

∂fm

∂x
=

(f |x + ∂xf |x∆x)m − fm|x
∆x

+O(∆x)2 (29)

=
fm|x + mfm−1|x∂xf |x∆x− fm|x

∆x
+O(∆x)2 (30)

=
mfm−1|x∂xf |x∆x

∆x
+O(∆x)2. (31)

The equality of (28) and (31) demonstrate equality in both methods to
O(∆x2). An inductive argument shows this technique holds for the nth partial
derivative.

The validity of Claim 1 implies the following forward time centered space
finite difference equation is valid for (21)

yj+1
i = yji +i(yji+1 − yji−1)

1

2 Lj 2

(
dL2

dt

)j

+
2

3 Lj 2

yji−1

3/2
− 2 yji

3/2
+ yji+1

3/2

∆Z2

∆t.

(32)

A finite difference scheme for (23) and (22) follows:

Lj 2
= Lj−1 2

+
2

3

√
yj−1
n−1

∆Z
∆t =⇒ (33)

Lj =

√√√√
Lj−1 2

+
2

3

√
yj−1
n−1

∆Z
∆t (34)

(
dL2

dt

)j

=
2

3

√
yj−1
n−1

∆Z
(35)
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where n is the number of spacial nodes predefined by the user. Additionally
the subscript i is the ith spacial node and the superscript j is the jth time node.
Then it is clear if some initial L0 and h0 are defined, all subsequent h profiles
can be found.
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