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1. Introduction

The symmetries in quantum field theory can be classified both as discrete and continuous
symmetries. The well known example of discrete symmetries in the elementary particle
theory is the invariance under the CPT transformations.

Continuous symmetries are of two kinds: the symmetry under continuous coordinate-
independent transformations of field functions and coordinates and the symmetry under
coordinate-dependent transformations.

Transformations of the first type are specified by a finite set of numerical parameters.
The invariance of the field theory under these transformations leads to the conservation
laws the number of which is equal to the number of transformation parameters.

The parameters of the second kind transformations are functions of coordinates. The well
known examples of these transformations are the local gauge transformations in electro-
dynamics, and the general coordinate transformations in the gravitation theory. The
invariance of the field theory with respect to these transformations gives rise, in addition

i
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to the conservation laws, to certain conditions on the Lagrangian density. Therefore
the symmetries of this kind are called sometimes dynamical symmetries.

Tt is convenient to formulate and explore the symmetry properties of the field models
in the framework of the Lagrangian method when the dynamical system is specified by
its Lagrangian function. The symmetry in the theory is introduced by the requirement
that the action integral of the system should be invariant under the corresponding
group transformations. Consequences of the action functional invariance with respect to
the continuous transformations were studied on the basis of variational methods by
D. Hiusert [1--3], F. KLEiNy [£4—6], H. A. LorexTz [7], H. WEIL {§, 9] in the first
quarter of this century. The results in this field were formulated more precisely by
E. Noether in the form of two theorems [ 10, 11]. These inevstigations were stimulated to
a considerable extent by the general theory of relativity worked out at that time by
Einstein, Hilbert, Lorentz, Weil and others.

Attempts to construct the quantum theory of gravitation and investigations of nonabe-
lian gauge fields evoked in the fifties the interest in the study of consequences of the
invariance of field theories again.

The invariance of the theory under coordinate-dependent transformations gives rise
to singular Lagrangian densitles in the corresponding action functional (BERGMANN
[12—18Y, GoLpBERG [19]). The generalized Hamiltonian treatment of these systems
and their quantization were developed by Dirac [20, 21).

‘On the other hand, the requirement of this invariance leads, as it was mentioned
above, to constraints on the Lagrangian-density dependence on field functions. Actually
these constraints are the Noether identities which follow from the second Noether theo-
rem. In the casge of the local nonabelian gauge invariance these problems were considered
by Urrvama {22], KiBBLE [23], KoNOPLEVA [24] and others.

In the last time attempts were taken to enlarge the scope of the Noether theorems to a
more general class of transformations in order to obtain more reach sets of conservation
laws [2 3—42]

The survey is dealing with the consequences of the fieldtheories symmetry with respect
to the continuous coordinates and fields transtormations. The transformations of both
kinds, coordinate-dependent and coordinate-independent ones, are treated. The first
seven sections of the survey are devoted to the general consideration of this problem
without specifying the form of the functional. In the remaining sections some applica-
tions of the general approach are given.

In section 2 the variational formalism for transformations acting onfunctions and inde-
pendent variables (coordinates) is represented. The proof of both the Noether theorems
is given in section 3. Some attempts to generalize the theorems are discussed in section 4.
Section 5 is dealing with the Noether classification of conservation laws (proper and im-
proper laws). Strong and weak conservation laws are considered in section 6. The rela-
tionship between the action invariance under coordinate-dependent transformations and
the singular Lagrangian densities is shown in section 7.

Sections 8 —15 are devoted to examples of applications of both the Noether theorems.
We consider here an N-body system with central forces in classical mechanics, relati-
vistic particles interacting with electromagnetic field, conservation laws and the Noether
identities in electrodynamics, Yang-Mills field theory, gravitation theory, and in rela-
tivistic string model. In section 14 we discuss the Hilbert procedure of obtaining the
symmnetric energy-momentum tensor in Minkowskispace-time. Some concluding remarks
are given in section 16.

Tt should be noted that in literature there are many review articles dealing with the
conservation laws and the first Noether theorem [43—47]. Therefore we tried to pay
more attention to the second. Noether theorem and to its applications in field theory
models.
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2. Variation of a Functional under Simultaneous Transformations of Functions and

Independent Variables
We shall consider functionals of the form [4§]
Ifu(@)] = [ det(x, u, bu, 8°u), (2.1)
9
where u(x) is a set of N functions u,(z), 4 = 1, ..., N depending on 7 variables x = (x;,
Ty vy Tp). Symbols du and 82u denote any partial derivative du, /0w, == u,,, or d*u,/ox,ox,

= uy,,,,, respectively, p, »,0,... =1,2,..,n
The functions u,(x) and independent variable x will be subjected to the following trans-
formations depending on r parameters &, &, ..., &

Yy = Dulx, u, Ou, *u,...;8) =x, +06x,, p=1,...,n,
(2.2)

vu(y) = Pulx, w, Ou, 2u, ..., €) = uy(r) + ouy, A=1,..,N.

As usual, we suppose that the identical transformations correspond to zero values of
the parameters ¢;, 1 = 1, ..., 7.

The transformations (2.2) may be of two kinds: coordinate-independent and coordinate-
dependent ones. In the first case parameters g; are numbers but in the second case they
are arbitrary coordinate functions e;(z). The groups of coordinate-independent trans-
formations will be denoted by &, and the group of coordinate-dependent transformations
by Geor. A

The variations dx, and du, in Eq. (2.2) in the first order with respect to ¢; are given by

od .
6;3” — & ?:‘ amo = &; 61:#1’
(2.3)
0¥ )
6?LA = &; —4 = &; 6uA‘.
Os; 6,=0

The repeated indices denote the summation in the corresponding range. In addition to
the total variations of functions

duy(x) = vy(y) — uylw)
we shall use the form variations of functions
duy(x) = va(x) — ugle).

From this definition it follows that the operation & commules with the differentiation
duy, ,(x) = B.0uy(x). Between these variations there is the following connection

Suylz) = v(y) — ua(x) = va(y) = ugy) + ugly) — wal®) (2.4)
~ BU(Y) + 4,08, ~ Suy(®) + Uy, 0,.

The sign ~ means the equality up to the first-order terms with respect to ¢;. Recall
that in deriving the equation of motion from the least action principle one uses the form
variations of the field functions, the independent variables being unchanged.

The first term in Eq. (2.4) is the variation of u,(«) due to the variation of the functional
dependence but the second term gives the variation of u(x) due to the variation of
the argument x. This rule is valid for the total variations of the partial derivatives of
the functions also. In order to prove this we obtain at first some auxiliary formulae.



538 B. M. BarBasaov and V. V. NESTERENEO

According to (2.2) the derivative dy,/ox, can be represented as follows

oy, 00z,
ox, ox,

Further we have

therefore

Analogously for the second derivatives one obtains

A K 80z, 0 7 0dz, &
ox,0x, "\, ox, 0y,) \oy, or, 0y,

2

Q2

& o0x,  O? o [odx,\ © oox,
Ty, 0y,  Ox. Oy, Oy, 0y \ O, | By, ox, Y, 0y,
In the last three terms the derivatives with respect to x can be replaced according to

(2.5) by the derivatives with respect to y. As a result, we get

&2 o2 eom, & #0x, o | oox, & 26)
o, 0x, Oy, 0y, &x, Ox,0r,  Ox, 0w, O, ox, Ox, 0%y )
Let us consider now the total variation of the first derivative of u,(x)
valy)  Ouy(x)
0 = —
s (®) = =5 22,
0 1% 0 0
= o o) — 0]+ 7 Do) — s + (51 = o
0 - o [ou,(y) 0dx, 0
=—=—090 — = - 0x, | — .
2, w(y) + E ( . L 2z, ug(2)
Up to the first-order terms in ¢ this expression can be rewritten as follows
N &% 4(x)
Oy, (k) = o, duy(x) + o, o, - 0x,. (2.7)

In the same way using Eq. (2.6) one gets for the second derivatives of u(z)

Poy)  Bugw) @
8 () = _ f — s _ ,
Ha(®) = g = i = o o) — )
o2 0? 02
5. o0 fualy) — wal2)] + (83;,, oy, Bm, axv) uy(2)
- o? Ou4(x)
- — o
ay‘u ayv éu4(y) + ay" ayv ( ax,, 2

06z, 0%u4(x) Rox, oOuylr) Odx, O*uy(x)
ox, Ow,ox, Ox,0r, 0z, dx, 0x, 0x,
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Substituting 0/0y by 8/6x we obtain up to the first order terms in ¢
6’"/‘4‘/"(%) = 5W’A,m + uA./waéxa- (2.8)

Analogously the total variation of the partial derivative of any order d#y4,,,.., can be
represented as a sum of two terms

6“A,uvg... = suA,me... -+ uA,uvg...uaxa- (29)

Here the first term is the form variation of w4, ..., the second one is the variation of
%4, urp..., due to the variation of the argument x.
In what follows we shall use often the total derivatives with respect tox,. These derivatives
take into consideration the explicit and implicit dependence on x and they will be denoted
by ‘

d 0

.0 o
d, = —;c: = —8x_,, + U4, P, + 4, Fu,. + Ud, e m-

We suppose that under transformation (2.2) the integrand in (2.1) transforms as fol-
lows [11]

£(x, u, ou, 2u) —1'(y, v, ov, %) = Ly, v, ov, O¥) Z—g—’f + Uy, v, &v, 0%), 1(2.10)
]

where C,, is linear in parameters ¢;, ¢ = 1, ..., 7 and [ contains ¢ and higher terms. This
means that £ is forminvariant up to divergence. In the field theory Eq. (2.1) gives the
action functional the integrand of which ¥ is the Lagrangian density. It is the transfor-
mation (2.10) that will lead to covariant equations of motion for the field functions
wy(x).

The total variation of ¥ by the transformations (2.2) can be written in the form

d¥ ac
—_ | Sty [od
88 = 8,7 +! y bz, + 7

(2.11)

where 0,7 is the variation of ¥ due to the variation of the functional arguments u, du,
0%y i
_ar < of

8l = ——Bug + ——— - Suy, -

T 2.1
3uA auA'“ 6““"“ ( 2)

3uA,#,
The formula (2.11) can be easily proved
88 = %'(y, v, B, %) — L(x, u, Ou, 8%u)

~ f(y, v, ov, %) — L (2, u, ou, O%*u) + &
. dx,

ar da,

— buy, + 5.
Uy, o +dx”

or af af
~ s = .
z, + T, S + Puns Ouy,, +

oy (2.13)

Making use of Egs. (2.4), (2.7), (2.8) one obtains immediately Eq. (2.11).
Now we return to the functional (2.1). Using the transformations (2.2) we correlate to

it a new functional
Ty = fA Ayt (4> v(y), 20(y), B*0(y)), (2.14)
+
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where 2 + 10 is a region in the coordinate space into which 2 transforms by the trans-
formations (2.2). To prove the Noether theorem, we shall calculate the difference
ITv(y)] — I[u(z)]. It can be shown that the difference in the first order with respect to
£;, 1.e. the variation of the functional Iu(x) ], is given by

o = f dx [6 £t (..fax + 0,,)] (2.15)

where 8,7 is defined by Eq. (2.12). The second term of the integrand in Eq. (2.15) has
the following full form

d a.’f of of
d (f(sx + C ) = %, 6(13“ + -a-/zb—; uA,,ﬁxM + -é-u—A':- . uA,,.“(Sx#
of odx
vou * O £ £ “ —
e B2 L 81:,, + Ui +

Let us prove Eq. (2.15)
Q49 2
(2.16)

The integration over y in the first term can be replaced by the integration over x. The
Jacobian of this change of variables according to (2.2) is

Yty +ver Yn) | dozx, » dozx, * ddx,
v I et =7J7 (1 ?) = | 2
22y, vvy Xy) O + v, ,,1:71 + s + oleh) +,‘£ dz, +oleh)
Equation (2.16) takes now the form
8f = fdx [.Z’(y, o(y), dv(y), B*(y)) — £, wl@), du(x), u(x (x)) .

dac,

+ #(z, u(z), dulz), Ou(x )d‘sx" + =
m

] fdx[df + fdox, + d,C,].
a (2.17)

Substituting in Eq. (2.17) the total variation 6. by 6,¢ according to (2.11) we get
(2.15).

In Eq. (2.15) there appear only the form variations of the functions uy(x) and their
partial derivatives. It is this equation that must be used for obtaining the relation of
the total variation 81 with the variation of I in the least action principle.

If the mdependent variables z, are not transformed, then the second term in Eq. (2.15)
vanishes and we get the usual expression for the functional variation by changing
only the form of the functions u,(x). Supposing that du,(x) vanishes on the boundary
of the integration region 2 and integrating by parts one obtains

81 = [ daxLy(w, u, ou, ...) Suy(x), (2.18)
2

where L, are the Lagrangian expressions

of d of d? of
Ly = ou, d—.v; (6u4,,,) + dxz, dx, (8uA,#,)' (2.19)
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According to the least action principle 6 = 0 and Eq. (2.18) gives the equation of mo-
tion (or the Euler equations) for the field functions u,(x)

Lylx, u, u,..) =0, A4=1,2,...,N. (2.20).

In what follows we shall use the new quantitry F (x, u, 0u, ...) which we introduce in
the following way

(Suj == LABMA - (leF

: 2.21)
Ly

For the functionals under consideration ¥, is given by

2
P, — (i. r _a;f_) Su, — 631’ Su,. (2.22)

dx,, a’ll/A’,# 8u_4,,, uA,vp

Substituting (2.22) and (2.19) into (2.21) one easily verifies that these formulae give the
right expresswn (2.12) for 6,7. Thus the variation of the functional (2. 15) can be repre-
sented in the form

oI = | de LA'Su_{——d—(F — Pox, — CH|. (2.23)
dll? H L 3
{7

It is this equation that will be used for proving Noether’s theorems.

Equation (2.23) can be generalized to the Lagrange function ¥ depending on the deriva-
tives of the u,’s up to an n-th order. In this case 07 is given by (2.23), but L, and F,
should be modified in the following way [27, 32]

n of
o dy, T———, 2.24)
‘; & He OU g, yypiyooig ( ) )
a} or -
Fo=3 2 (=10t d,d, - d, [5—_] By -+ By B0s. (2.25)
a=1 b=0 [ uA,,,h.__h_,“

3. The Noether Theorems

We say that the functional I [u(x)] is tnvariant') under the transformations (2.2) tf 61 = 0
for an arbitrary integration region 2. Such transformations will be called the symmetry
transformations for the functional (2.1). Thus for these transformations we have from

Eq. (2.23) | |
oI =fdx [Lﬁu,, —_ g{ﬂ} =0, (3.1)
g

Ty

where J, = F, — C, — £6z,. As the integration region £ is arbitrary, we obtain here
the basic identity

Lbu, — %E . (3.2)

"
We shall prove here only the direct statements of the Noether theorems referring to the
original Noether paper [10, 11] and to more recent papers [24—42] where the proof of
the converse theorems can be found.

1) If C, in Eq. (2.10) does not vanish identically then one says sometimes that the functionak
I [u(z)] is invariant up to the divergence under the transformations (2.2).
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The first Noether theorem. If the functional I[u(x)] is invariant under r-parameter group
@, of continnous transformations of coordinates and field functions, then r linear inde-
pendent combinations of the Lagrangian expressions turn into the divergences. And con-
versely, from the last condition the invariance of under some transformations group G,
follows.

The total variations du,, duy,,, 0, as it was supposed above, are linear in the group
parameters &;. Therefore by virtue of Egs. (2.4) and (2.7) the form variations du,, duy,,
are linear in ¢; also

duy = giduyl, duy,, = &duy,, 6x, = ez,
_ _ _ . (3.3)
6uA == é‘iéuAI, (SuA'v = e,-éu:{_,,

In a similar fashion the vector F, in Eq. (2.22) and C, in (2.10) can be represented by

expansions
F,=¢F} C, =0,k (3.4)

Substituting (3.3) and (3.4) into (3.2) and equating to zero the coefficients of ¢; one ob-
tains r divergence relations
aJ

LA ‘ Su:li = - s 7 == 1, 2, P o . (3.5)
dzx,
where
; o af \ < ef - . ) .
i g H o Ve — s O
J oy ( " Oy, 311,‘4‘“) ouy o ou’y, ox, c,

af of ot ' )
- dv A, 0 vo T o | 05t
= {(61&,,,,, 61LA‘,,,,) Udio T+ OUy, uy . o ] bx

_(af 4 af)au/_

Fup, * Tum duly, — O, (3.6)

Tt should be noted here that we have used the fact that in the first Noether theorem the
«coordinate-independent transformations are considered. Inthis case the parameters ¢;
are numbers which can be removed from under the divergence symbol in Eq. (3.2).
In divergence relations (3.5) the functions u,(z) are not supposed to obey the equations
of motion (2.20). If these equations are satisfied, then the left-hand sides in (3.5) vanish
and we get r conservation laws

a7

= =1 ceey 7 .
i, 0, < 22,000 3.7)

Let us go to the coordinate-dependent transformations forming the general infinite
parametric group Gy, These transformations are defined by r arbitrary functions &;(x),
2 =1,..., 7. In this case there takes place the second Noether theorem. If the integral
I[u(zx)] is invariant under the general group Gy, that is to say, under transformations
.of coordinates and field functions which depend on r arbitrary functions &;(x), 1 = 1, 2,
..., 7, and their derivatives up to a k-th order, then there are r identities containing the
Lagrangian expressions and their derivatives up to the k-th order. The inversion of this
theorem is possible also.
For simplicity we consider the case when k = 1. The form variation of functions is
given now by

6uA(x) =74 £i(x) + 'J/A,‘S,,M(x), (3‘8
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where the coefficients y,* and y%, are functions of u, du, *u, ... A similar formula
is valid for éx,but in what follows we shall not use the manifest form of these variations.
Substituting (3.8) into (3.1) and using the equality

. d . d .
LYy 8i0 = T (Layh,ei) — T (Layy,) €

u [

we obtain

. d . d .
é[ = fd:l? {[LA‘}/AL —-— Zi?t— (LA’}/:“‘):I 65('1?) hand %(F,‘ - C‘“ — LA]/;”:S‘;(QJ))} ES 0. (3.9)
“ “

Now we take such functions e(x), 1==1,...,7 that they themselves and their deri-
vatives entering into .F, — C, — Ly’ &; vanish on the boundary of the integration
region 2, for example, &;(x) ~ 6™ (x — z;), z € £2. As a result, one gets

4 iy
ol = f dr [LA;:A‘ - (Lmu)} ex) =0,
B

whence r identities follow

: d ; .
LA}’A" —d—x:(LA‘}/h#)EO, = 1,...,7'. (3.10)

These equalities are usually referred to as the Bianchi identities [39, 40].

The Bianchi identities (3.10) do not exhaust all the consequences of the invariance of
the functional (2.1) under the coordinate-dependent transformations Geor [4, 49]. New
identities will appear if in the integrand in Eq. (3.9) or (3.1) the coefficients of functions
£i(x) and of each their derivatives & u...,(%) Will be equated to zero separately. This
procedure corresponds obviously to the following choice of the functions &;(x):

gi(1) ~ 2T, ..o oo

" Let us obtain these identities for the transformations (3.8) that do not affect the coor-
dinates. For simplicity we suppose that ¥ depends on x, u,(x), du,(x) and it does not
depend on the second derivatives of the field functions u,(z) and put C, in (2.10) zero.
In this case by virtue of (3.6) and (3.8) formula (3.1) takes the form ‘

i i d | o i i
oI = | da YL(y4tei + viuein) + 5— |7 (va'ei + Vg [¢ = 0. [(3.11)
dz, [Oug,.
g
In the integrand the coefficients of &(x) and of its first and second derivatives must
vanish separately. This gives new identities

: d of .
LAVA' + E‘;‘: (311«.4,;. yAi) = O) 1= 11 2, seey 15 (3'12)
. d of . . )
L -v+____(____ .')+ im0, i=1,.,r nu=12..m1; (3.13)
A7 4 dx,, au‘4.,‘ Y4 auA,v Y4 H
%y2“+%y;’50) 7":1!"'97': ‘V’,u:1’2,---,n- ’ (3.14)
24 4 .

[n the last identities (3.14) there appear] two terms lbecause &; ,, is symmetric with
respect to u, ».

3 Fortechr. Phys., Bd. 31, Heft 10
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The Bianchi identities (3.10) follow from (3.12)—(3.14). Indeed, acting on (3.13) by
d/dx, and taking into account that quantities (87 [0uy,,,) 7%, are skew symmetric with
respect to u, v, we get
d (ef N d i

iz (8—%‘7 Ya ) = T (Laviy,)-
Substitution of this expression into (3.12) gives (3.10).
The identities (3.14) do not contain the Lagrangian expresions but they impose con-
straints on the dependence of the Lagrangian density on its arguments (see section 13).
It appears practically that the most important identities are the Bianchi identities
(3.10) which are homogeneous and linear in L. :
The identities (3.10), (3.12), (3.13) establish the dependence of the left-hand sides L,
of the Euler equations (2.20). This means that some of these equations are consequences
of the other ones. Therefore the number od independent Euler equations is less than the
number of unknown functions u,(x). Thus, in order to obtain u4{x), one has to supple-
ment the equations of motion {2.20) by some conditions. In the physical literature these
conditions are called usually the gauge fiaing conditions.
In what follows we write the Noether identities for some field models.

4. Generalization of the First Noether Theorem

This theorem can be generalized in the following way [25].

If the r-parameter group of the coordinates and functions transformations (2.2) changes
any solution of the Euler equations (2.20) (any extremal) into another solution of these
equations again, the functional /[u(x)] considered on the extremals only being invariant
under these transformations, then there are » conservation laws (3.7).

In contrast to the Noether formulation of the first theorem the conservation laws ob-
tained here should not be independent because the limited set of functions (only the
extremals) on which the functional I{u(x)] is invariant is considered.

This group of transformations of extremals leaving the functional Ifu(x)] invariant
may be more general than the group in the Noether formulation of the first theorem.
And as a consequence, we may obtain here more conservation laws compared to the
Noether case.

The proof of this generalized theorem and the corresponding examples of new conser-
ved currents can be found in papers [26—42].

5. Proper and Improper Conservation Laws

Let us consider a special case when the r-parameter (Lie) group G, is obtained from the
general group of transformations G, if we suppose that the functions &;(x) in G, are
constants. We assume that the functional (2.1) is invariant under coordinate-dependent
transformations from G,. As a consequence, it will be invariant under G, group also.
In this case both the Noether theorems are valid and there are the divergence relations
(3.5) and the Noether indetifies (3.10), (3.12)—(3.14), the divergence relations being
consequences of the Noether identities. The conserved currents J,(x), corresponding
to symmetry under @, group have now a remarkable property: they are linear combi-
nations of the Lagrange expressions plus the divergence of an antisymmetric tensor.
Such conservation laws E. Noether [10] called smproper ones in contrast to other proper
conservation laws.
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Consider improper conservation laws for the Lagrangian density ¥ = £ (x, u, du) the
action functional for which is invariant under transformations (3.8). For simplicity we
assume that dx, = 0 and C, = 0. By Virtue of Eqgs. (2.22) and (3.8) F, can be written
in the form

or . ) . or .
Fy = —5— (vded@) + viuei,(@)) = Lleil@) — —— vieinl@), (8.1)
ouy,, Oy,
where we have introduced by Eq. (3.6) the conserved currents
. or .
Jb= _3uA,,‘ v, =12 ..,r (5.2)

corresponding to the invariance of I[u(x)] under G, group. Substituting (5.1) and (5.2)
into (3.9) and equating to zero the coefficients of &;(x), ¢;,,(x) and ¢; ,,(x) one obtains the
identities

aJ .t

dz, = Lyyi, : (5.3)
i . d [ ef .
JSb= Ly, + T (%;— 7/:4,‘) (5.4)
n -

and identities (3.14) according to which the quantity (8f/duy,,) Y, is antisymmetric in
indices 4 and ».

The identities (5.3) are the divergence relations (3.5) with du,¢ = y,* corresponding to
the invariance under transformation group G,. From Eq. (5.4) it follows that J,*(x) is
a linear combination of the Lagrangian expressions L, plus the divergence of the skew-
symmetric quantity (8/0u,,) 7Y,

When the equations of motion (2.20) are satisfied, then Eq. (5.4) becomes

, aui
t puncteg _i
T dx, ’

(5.5)

where U, are the superpotentials [18, 19, 50]

. or
==, =12, 5.6
ur auA,v 74/4 l( )
It should be noted that the superpotentials permit us to write the integral conserved
quantities @* corresponding to improper conservation laws in Minkowski space-time -
as a surface two-dimensional integral

i . 3 dU} 3 .
@ :fJo‘(x) dix = fdaxz -——d[io"‘ =fd20'2 n g, 5.7)
/ v a=1 3 Y =1

where n,, « = 1, 2, 3 is a unit normal to the surface o which encloses the three-dimen-
sional volume V3. As it will be shown further this possibility corresponds to the Gauss
law in electromagnetic theory (see Section 10).

Equation (5.7) enables us to avoid difficulties connected with the field singularities due
to the pointlike sources of the fields in V,.

3%



546 B. M. BarBasuOV and V. V., NESTERENKO

6. Weak and Strong Conservation Laws

Weak conservation laws are the usual conservation laws (3.7) that take place when the
equations of motion (2.20) are satisfied. Strong conservation laws are laws which are
valid whether the field equations are satisfied or not. These laws are combinations of
the Noether identities (3.10), (3.12)—(3.14) which have the form of a divergence. From
the Bianchi identities (3.10) and (3.12) we obtain r strong conservation laws [19, 39, 40]

d(af

dx,‘ yAi —+ L,{}lhu) = 0, 1= 1, 2, ceey T (61)

OUg,u
What is more, we can construct the strong conservation laws containing arbitrary

functions &;(x), 7 = 1, 2, ..., r [40]. Multiplving the Bianchi identities by ¢;(x) and sub-
stituting them into (3.9) one obtains

d )
o (Fu — Liy'yei(@) =0, (6.2)
"

where F, by virtue of (2.22) and (3.8) is

af < 5
F/‘:— ud aqu—aa

8’“‘4,# UA,#

(yaeitz) + yipei (). (6.3)

7. Singular Lagrangian Densities

The Lagrangian density ¥ (u, &u) is called singular if

det ||[A45]] = O, ‘ (7.1
where
o Ouy
Ayp = m, Uy,0 = 770 xy = t. (7.2

The invariance of the action functional under infinite group Gu, of coordinate-depen-
_ dent transformations indicates that the corresponding Lagrangian density is singular

[12]. We show this for the transformations (3.8) with coefficients y%, depending on u
and du. Making use of (7.2) one can decompose L s0 as to exhibit ug g, thus

Ly= —Augeo + Ly =0, (7.3)

where L, does not involve wu,4y. We assume here that the rank of the matrix A,z is
not equal to zero, as in this case Eqgs. (7.3) will be the first order with respect to the time
derivatives, On substituting (7.3) into the Bianchi identities (3.10) the terms containing
second time derivative will lead to terms containing third time derivative coefficients
of which must vanish

N ) )
B§1AAW.BO =0, 1=12,...,7r. (7.4)
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Thus, there are r different sets of N quantities y%,, ¢t = 1,...,7; B=1,..,, N, which
are zero eigenvectors of the matrix 4 ,5. As a consequence, we get (7.1) and the Lagran-
gian density £ (u, ou) is singular.

The Euler equations (7.3) for singular Lagrangian densities cannot be solved with respect
to the second time derivatives of the field functions u, 4. Therefore the usual Cauchy
problem for these equations cannot be solved uniquely. Tndeed for given Cauchy data
at the initial moment ¢ = ¢,

uglly )e=mp = @),  wgoll, Di=p = pa(x),
(7.5)

r= (xh Loy ovay xn-l)

it is impossible to calculate all the derivatives of the function u,(x) at this moment,
More precisely, we do not obtain at ¢ = ¢, the values of the derivatives containing two
and more differentiations with respect to time ¢. As a result, the field functions (¢, x)
cannot be obtained at the moment ¢ by summing the Taylor series. Hence the hyper-
surface ¢ = 9 appears to be characteristic for the system (7.3).

Tt should be noted here that for the singular Lagrangian densities the Cauchy data
(7.5) cannot be taken arbitrary because there are r linear combinations of the Euler
equations which do not involve the second time derivatives. Multiplying (7.3) by ',
and summing over 4 one gets

LAYE{O = EA‘V‘:{O =0. , (7.6)

The initial data (7.5) must obey these conditions.

For the singular Lagrangian densities there appear the following difficulties in the
“transition to the Hamiltonian formalism. As is customary, the derivatives of ¥ with
respect to u,, are designated as the canonical momenta

o
4= 8uA'0 )

(7.7)

Tn view of (7.1) Eqgs. (7.7) cannot be solved with respect to the “velocities’ w4,0(x) and
the momenta n (x) and ‘“‘coordinates” u,(x) obey r relationships. To obtain these
constraints on m,(x) and u,(z), we consider the identities (7.4) substituting into them
the definitions (7.2) and (7.7)

Y =0, i=1..,7r A=12..,N. , (7.8)

If the yi,’s do not depend on the “velocities” w4, then the straightforward integration
of these relationships gives r contraints

”AVf{O - Ki(uC: uC,s) =0,
(7.9)
8#:0; 7::192;---;Ty

where the K¥s are functions introduced by the integration, but actually determined in
any theory.

The Hamiltonian treatment of such systems was considered by Dirac [20], BERGMANN
[12—18] and in papers [21, 51, 62].
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8. The Classical System of N Massive Points

If the particles are interacting by central pair forces, then the Lagrangian of this
system can be taken in the form

1y . dry
L:T-—‘U—_—-——Z‘"lir 2‘ I '—"'jl), Tiz—:'v,-. (8.1)
2 i=1 i<j dt
The action
ty
S[ri(H] = [ deL(p) (8.2)
I

is invariant with respect to the 10-parameter group of the coordinate #; and time ¢
transformations (the Newton-Galilei group). The infinitesimal transformations are given

by

¢ =t+ ét, (8.3)

ri'(t) = ri(t) + or, (8.4)
r(t) = ri(t) + [6p Xri(H)], (8.5)
r/(t) = ri(t) + v L. (8.6)

Under the proper Galilei transformations (8.6) the Lagrangian (8.1) is invariant up to
the total divergence only [11].,The consequence of this symmetry is the well known 10
integrals of motion in an N point system. The invariance under time translation (8.3)
gives rise to the conserved total energy

N
E:T—FU:l 2maE 4 3 V(r; —rl).
2 & i<j

The invariance with respect to the coordinate translations (8.4) results in the conserved
total momentum

N
2 l i(t
The conservation of the total angular momentum of this system
N y .
M = ) mjlr; X 4]
j=1

is the consequence of the invariance under rotations (8.5).
The proper Galilei transformations (8.6) lead to the following alteration of the Lagran-
gian function

N
LI("'i,, 'i']’) = L(’r,;, T",) —|— i (6”2 771jr,~(t)) .
dit j=1
In this case the quantity C in Eq. (2.13) is given by

N
C =év 3 mpr;. (8.7

i=1
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Making use of Egs. (3.6), (3.7) and (8.7) we find
. d N N
— —2 nl,-’i'it —}—Zmﬂ'i = 0.
dt \ = i=1
This formula can be rewritten in the form

N N
2 marit)y Y m
=1 i

— P
Ri=""0— ==Lt Ry = -t + Ry,

N ]
where M = 3’ m; is the total system mass. Thus the invariance under proper Galilei
=1
transformations results in the law of the uniform and rectilinear motion of the system
centre of mass R(¢).

9. The Charged Particles Interacting with Electromagnetic Field

The action in this case is given by

. N N
S = ——Z; ??lif Viiz(Ti) dTi e %‘fd‘leMVF’" - Cz;fAF(Zj) éj“(T,‘) dT;,
i= . - i=

g =dz#(r))de;,, w©=0,1,2,3,

(9.1)

where z;#(t;) are parametric representations of the particle trajectories. This action is
invariant under the ten-parameter Poincare group of the coordinate transformations,
under the local gauge transformations of the electromagnetic potentials 4, and with
respect to reparametrizations

7 =filz), i=1,2,.., N, (9.2)

where f; are arbitrary functions. Let us dwell on the consequences of the invariance of
this theory under the reparametrizations (9.2). According to the second Noether theorem
the equations of particle motion

. d {24 L :
Lizm,-— A —CF,,(Z,')Z"(Ti):O, Zzl,...,N
o (Véﬁ(n)) o
have to satisfy &V identities. Taking into account that dz#(r;) = —£#(z;) ¢;(r;) we obtain
from (3.10)
3
2L =0, j=12..,N. (9.3)
w=0

Here there is no summation over j. These identities can be easily proved because F,, is
a skewsymmetric tensor and the derivative of the unit Lorentz vector 2;*‘/ W is ortho-
gonal to it. ’
By virtue of the identities (9.3) we can impose on the dynamical variables z;#(z;) N con-
ditions, for example 2,2 = 1,7 = 1, 2, ..., N. In this case the parameter t; is the proper-
time of an ¢-th particle.
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In addition to the identities (9.3) in the theory under consideration there are the follo-
wing identities, whicl are consequences of the invariance of (9.1) under the transfor-
mations (9.2)

Li(z) —

afi Zi) é]'ll = 0) 7. = 1, 2) LR N’ (9'4)

aé][‘
where .7; is the Lagrangian function of the j-th particle
f,»(z;) = —m é;,'z — eA#(Z]) é’-“.

If we distract ourselves from the specific form of the Lagrangian function in Eq. (9.1)
and demand the invariance of the action S under the transformations (9.2) only, then
we obtain a constraint onr the form of the admissible Lagrangian ¥;. Indeed, according
to Egs. (9.4) the Lagrangian .¥; must be a homogeneous function of the first degree of the
particle velocity £,7;).

The particle canonical momenta are defined by

or 2¢4(t)
-3 =my
0z,4t;) ‘

pt(T) = + ed#(z;).

%2
We obtain immediately the following constraints for p#
[pif(z;) — ed ()R =m?, i=1,2,."45N.

Thus, the Lagrangian (9.1) is singular.

10. Electrodynamics

The Maxwell-Dirac Lagrangian density is .
. T _ . . _ - 1 .
£ = > [By#(0, — 1ed,) p — (0, + ved,) py*yp] — mpy — T FFe,  (10.1)

where F,, = 6,4, — 8,4,. IP gives rise to the following equations of motion
Ly =(—10, +ed,) py* —mp =0,
Ly = ("0, + edyt —m)yp =0, (10.2)
L,, = *4* — o* 0,4" + epyryp = 0.

The action with Lagrangian (10.1) is invariant under the gauge transformations of the
second kind

Y'(x) = e y(x), P'(x) = e ip(x),
(10.3)

1
A, () = Aulx) — ;-a,‘,x(x).

In this case the form variations of the field functions are defined by

Byla) = in(@) pla), B = —in() P@), 3du@) = —— Dyala).
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The coefficients y,* and %, in Eq. (3.8) are

Vo =W, Yyu=0, y5=—19, y; =0,
yAv = O’ yAvl‘ = _?6#"

According to (3.10) we obtain the following Noether identity

Lyp(@) — $@) Ly + ~= Ly, = 0. (10.4)

d
da’
It means that at least one equation in the system (10.2) is a consequence of others.
Therefore Eqs. (10.2) do not determine $(z), y(x), 4,(x) completely and these functions
can be subjected to one condition, for example, the Lorentz condition

8,4M(x) = 0. (10.5)

However, the identity (10.4) does not exhaust all the consequences of the electrodyna-
mics invariance under gauge transformations (10.3). Equations (3.12)—(3.14) give rise
to the more general class of identities

of (_ 3.?’)
) =P + Lyp — pLly =0, (10.6)
(a’f"n y)-!‘ P u v Y
of of of
) el vy —F—)= 10.

rot (ean), a9 =0 101
of af :

T . 10.8

o, Taa, =0 (10.8)

The last identity (10.8) is trivial as it means that F,, = —F,,. Differentiating with re-

spect to z, Eq. (10.7) and making use of (10.6) and (10.8) one obtains easily the identity
(10.4). Therefore we have here only one new identity. Consequently in the system (10.2)
actually two equations are consequences of others. And in addition to Eq. (10.5) one
may impose one more condition, for example, we can take the Coulomb gauge

Ao(x) =0. (10.9)

Only in this case the equation of motion (10.2) together with the conditions (10.5) and
(10.9) will define the functions %(x), (), and A,(x) to be found.

The invariance of (10.1) under the global gauge transformations with &(2) = const.
results in the conserved current.

H(x) = —eﬁ(x) V'“"P(x)) ay?"(x) = 0.

According to the Noether classification it is 7mproper current, i.e. it can be expressed in
terms of the left-hand sides of the Euler equations and the divergence of a skewsym-
metric tensor. It follows directly from (10.2)

jH(@) = —Ly, + A% — 24 8,47 = —L, — 8,F.

The role of superpotential (5.6) is played here by the tensor of electromagnetic
field F,,. The total electric charge is given by the two-dimensional surface integral
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(Gauss’ law) :
3
Q= fdsxjo(;v) = —~f ddx 3] 08y, = fd"x div E = fd2o En,
Vl Vl V% a

a==1

where K, = Foo, &« = 1, 2, 3 is electric field and m is unit normal to o.
Making use of (6.1) we find here the strong conservation law

0,(024r — o 3,4) = 8, 0, = 0:

11. The Vector Neutral Massive Field Interacting with the Dirac Field

This system is described by the Lagrangian

- 1 m? T, . . _ _
I=—5 4,48 + ?A,[“ +3 [Py(0, — 1gd) v — (0u + 194,) Fy*y] — Mpy.
(11.1)

The action functional in this model is invariant up to divergence under gauge transfor-
mations (10.3) with the function satisfying the equation [53]

2,(6% + m?) a(x) = 0. ' (11.2)

In this case the Lagrangian (11.1) transforms in the following way
£ =7 + g 18,(A(z) o oa()).

The divergence relation (3.5) by virtue of the equation of motion has the form

-

i
d%- (julz) — 14,(2) 8, &a(2)) = 0,

where ju(x) = —gpy.p. If &(x) = const., then this equation is reduced to the usual con-
servation law for current j,(x) '
Ouji(x) = 0.

The Noether identities (3.10) and (3.12)—(3.14) cannot be obtained in this model, as
x{x) is not an arbitrary function but it obeys Eq. (11.2). The equations of motion obtai-
ned by variation of (12.1) determine the fields 4,(x) and p(x) completely. The subsidiary
condition 8,4#(x) = 0 is imposed in this theory only for physical reasons. It is used for
the elimination of the 0-spin particles from the model.

12. Nonabelian Gauge Fields

For the invariance of the theory of the multicomponent field ¢(x) under the local trans-
formations

¥ (x) = o{x)p(x) (12.1)

with the matrices w(z) from the compact semisimple group @, the interaction of y(x)
with the gauge vector field W, (x) taking values in the Lie algabra of ¢ should be intro-
duced [44—57]. In the Lagrangian thisinteraction is introduced by the following sub-
stitution of the derivatives 9, acting on field y(x)

8y — V=08, + igW, (2). (12.2)
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The covariant derivative V, will be transformed by the simple rule
V() = o) Pp() (12.3)
if the transformation of the gauge field W (x) is defined by
W, = oW,o! + ig(8,0) o™ (12.4)

Thus, the field W (z) is transformed inhomogeneously. Alternatively the strength ten-
sor of the field W,
Gux) =0, W, — oW, + ig[W,, W] (12.5)

is transformed homogeneously
@ (x) = o(r) Go™Y(2). {12.6)

Further we shall consider the Yang-Mills fields with gauge group SU(2). In this case

1 1
W= oW, G =5 o0l

ue?

(12.7)
G, =o0,W.* — oW, — ge®* W bW.,e, a,b,c=1,2,3,

where o® are the Pauli matrices. If (z) is the Dirac field describing the SU(2) doublet,
then the total Lagrangian invariant under transformations (12.1), (12.4) is

1 7 . o . g%\ _ _
f=—T @ +5 {W‘ (% + gWw,e 5) P — (3/‘ — igW o —2—) w'“w} — my
1 7
= =5 TrGuG” + o (V. — (V.9) vyl — mipy. (12.8)
It leads to the following equations of motion

a
L = Lyer = 9G%, — gW»G,e% — gy, Ty = 0,

(12.9)
. o?
L, = (w" Cu — gE W,y — m) p =20,
In the matrix notation these equatrion\s can be rewritten in the form |
DeG,, = g,
(12.10)

(ppV, —m)yp =0,

where D+ = ¢# + 1g[W,# ...] is the covariant derivative for the fields with values in Lie
algebra of the group @ and

Do O e = gy, 2 12.11

7" 7" 2 » 7" glpy’ ‘2 y)' ( . )

The action with the Lagrangian (12.8) is invariant under the global U(1)-transformations
y'(z) = et*p(z), Pp'(x) = e *P(x), « = const.,

(12.12)
W,/o(x) = W, =)
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and with respect to the SU(2)-transformations (12.1), (12.4) with

3, gt
ox) = exp [22 Es"(x)]. (12.13)
a=1
The invariance of the theory under the transformations (12.12) results, as in electro-
dynamics, in a congerved current

Yi(x) = () y#p(). (12.14)

By the infinitesimal SU(2)-transformations we have

Wyo(x) = W o x) + W b(x)s%(x) — g7 0.5%(x),
(12.15)
@a(x) = Go(x) 4 &G () ().

Thus, by the global SU(2)-transformations when s%x) = const. the Yang-Mills field
W ,2(x) is transformed as an isotopic vector but by the local ones there appears an addi-
tional term —g~! 8,8%x). The tensor (%,(x) is transformed in both cases as an isotopic
vector.

I in Eq. (12.15) s%x) = const., then we have, according to the first Noether theorem, the
following conserved isotopic current

1,3(s) = g9() 7 9(2) + gete@l (a) Worn) (12.16)

or in the matrix notation

1) = L) 5 = ju(@) + gl W), G, (12.17)

where j,(x) is defined in Eq. (12.11).

The gauge field W () carries the isotopic charge and gives a contribution into the total
isotopic current (the second term in Eq. (12.16)). It should be noted that the quantity
ge™°GY, (x) We(x) and, as a consequence, the isotopic current density (12.16), are not
isotopic vectors under local SU(2)-transformations. The total isotopic spin of the system

1 = [ I%x) & (12.18)
Vs

is, however, the isotopic vector with respect to the local gauge transformations that at
the spatial infinity become constant independent on the coordinate transformations, i.e.
$%() g5 const. Indeed, using the equations of motion (12.9) and taking into ac-
count that G (x) = 0 we obtain}

. : 3, oG, |
Te = | If%x) dix = | Q%) dPx|= — | d% 3] 2. (12.19)
Vs

jfl joxd
Ivs ' Va

By Gauss’ theorem this integral can be reduced to the integral of G§(x) on the surface
containing the three-dimensional'space V3. If on this surface s%(x) == const., then T is
a vector with respect to the transformations (12.13).

The action with Lagrangian (12.8) is invariant under global U(1)-transformations (12.12)
and under global and local SU(2)-transformations. With respect to the local-transfor-
mations it is not invariant. Thus, according to the Noether classification the current
Y (%) in Eq. (12.13) is a proper current. Alternatively, the isotopic current I,%(z) (12.16)
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is un tmproper current. As a consequence the current I,%(x) is reduced, by virtue of the
equations of motion, to the divergence of the antisymmetric tensor G%(x). Indeed,
the first equation in (12.9) can be rewritten by making use of (12.16) as follows

o4 () = I,%(a). (12.20)

Both the currents Y#(x) (12.14) and [,%x) (12.16) are conserved separately, so their
linear combinations will be conserved also. In the Weinberg model [55], for example, as
the electric current one takes the sum

1
Ju@) = 5 Y(x) 4 1), (12.21)

We note here the common properties of the Yang-Mills model and the Einstein gravitat-

. tion theory (see sections 13, 14). The isotopic current density (12.16) consists of two
parts. The first term is caused by the ‘“‘matter’ fields (all the fields except the Yang-
Mills field W ,%(x)) and it is the isotopic vector. The second term as it was noted above,
describes the isotopic charge of the Yang-Mills field and it is not the isotopic vector.
The similar situation holds in the gravitation theory. The total energy- momentum den-
sity @,.(x) consists of two terms also

0, (x) = T™) + tu(x), (12.22)

where T3Y™(x) is the symmetric energy-momentum tensor of the “matter” fields (all
fields except the gravitation field), ¢,,(x) is the density of the energy-momentum of the
gravitation field, Under the general coordinate transformations (13.2) 7%5)™(x) is trans-
formed as a tensor, while #,,(z) is not a general covariant tensor. At the best ¢,(x) is
transformed as a tensor only under linear (affine) coordinate transformations, Therefore
it is called the pseudotensor or the complex of the energy-momentum of the gravitation
freld.

Now we shall go to the Noether identities in the Yang-Mills theory (12.8). Making use
of Egs. (3.10) we obtain three identities

’
(D L#ye + z‘iz’- (Lyo®y — 0°Ly) =0} (12.23)

where L#, Ly and L, are defined in Eqs. (12.9), (12.10). Here we have put as usual,
L, = L2 o%2.

B; virh’;e of the identities (12.23) the Euler equations (12.9) or (12.10) do not determine
completely the dynamical variables W, %(x) and y(x). Therefore these equations can be
supplemented by gauge conditions. For exdample, the Lorentz gauge can be imposed

W) =0, a=1,23, (12.24)

At the end of this section devoted to the Yang-Mills fields it should be noted that in
this theory besides the Noether concerved currents there are conserved quantities of
quite a different topological origin. It is the so called topological charge in the Euclidean
formulation of the Yang-Mills theory

2
(=50 [ asonm G,
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where G‘Zv(x) is a tensor dual to the G%,(x)

~ 1

@4 () = 5 Eurpo o ()

This property of the Yang-Mills fields was investigated intensively in the last years
{see, for example [55—58]).

13. The Gravitation Theory

The Einstein theory of gravitation, called the general theory of relativity, is a new
method of description of the interaction transmission. This method is very different
from the usual one. In the general theory of relativity it is postulated that the gravi-
tating masses alter the geometrical properties of the space-time. The space-time is now
not flat but it acquires a nonzero curvature. This curvature alters the flow of all the
physical processes, thereby the existence of gravitating sources displays at the physical
level.

In general theory of relativity the space-time is considered to be the four-dimensional
Riemannian manifold with the metric tensor g,.(x). The curvature of the space-time is
defined by the curvature tensor of the fourth rank R,,;,(2) (the Riemann-Christoffel
tensor). This tensor is constructed by differential geometry formulae from the metric
tensor g,,(z) and its first and second derivatives. The space-time isflat only in the case
when R,,;,(2) = 0. At first sight the curvature tensor R,.,(x) should be taken as a
dynamical variable in the gravitation theory. But in Einstein’s theory this role is played
by the metric tensor g,.(x) the form of which depends not only on the space-time cur-
vature but also on the choscn coordinate system. It is important that in general case
one cannot pick out the part of g,,(x) determined by space-time curvature and the part
caused by the coordinate system.

This situation is analogous in some sense to that in the theory of the electromagnetic
field. In this theory the quantities directly measured in experiment are the intensities of
electric and magnetic fields (the strength tensor F,,(x)). On the other hand the electro-
magnetic field theory is constructed by means of the electromagnetic potential A,(x),
F, =04 —0A4,

The action functional in Einstein’s theory is taken in the form

S=28, 48, 8,=—x[RY=gd=, S,=/[1L,V—gd%, (18.1)

where RE(x) is the scalar curvature: R = g~R,,, B,, = g*R,,,,, £, is the Lagrangian
density of all the fields but the gravitational field, » is the gravitational constant. The
function ¥, must be chosen so that the action functional S,,, and as a consequence S,
be invariant under the general coordinate transformations

= fux), p=01,23. (13.2)

The variation of the gravitational field g,,(z) gives the Einstein-Hilbert equations
1
R, — 5 gl = xT,,, (13.3)

where (1/2) ]/——_g T, = 68,/6g* is the energy-momentum tensor of all the fields except
for the gravitational field.

According to the second Noether theorem the invariance of the functional (13.1) under
the transformations (13.2) gives rise to four Bianchi identities (3.10) which must be
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satistied by the left-hand sides of Eqs. (13.3). It is interesting to obtain these identities
anew, instead of the substitution into (3.10) of concrete expressions for y,fand 3% w We
shall not specify the form of 8 but suppose for simplicity that only one vector field
W .(x) interacts with the gravitational field.

The Euler equations, obtained by the variation of g*"(x) and W#(x) in S, have the form

Emlx) =0, (13.4)
L, =0, (13.5)

where §,, us a symmetric tensor §,, = &,, and

guv = Gpv + Tyy; (136}
1 88, 1 . —, 88,
EVTQG;" =5 '2—1/*9 T = 3 (13.7)
For Einstein’s theory
‘ 1
G =~ (R = ). (13.8)

By the infinitesimal transformations
x'h = g - eH(x)
the form variations of We(z) and the metric tensor g#'(x) are given by
SWr(z) = —Whe'(z) + Wrek(z), (13.9)
Sgm(x) = Prer(x) + Veer(x), (13.10)

where V# denotes the covariant differentiation. The variation éS by virtue of (3.1) can
be written as

L e dJ»
68’:?] g‘{‘.ég#v ]/_g;d4x+fP”6W” ]/——g d4x——v/\@—d4x. (13.11}

We choose functions ¢*(x) so that they and their derivatives in divJ in Eq. (13.11)
vanish on the boundary of integration region. Substituting (13.9) and (13.10) into (13.11)
one gets

58 = 2 [ S,V e (@ Y—g d% + [ L Weniz) — Whe(x)) Y=g dia
= [1@S2 + LWy ei(@) + (28,7 T — LWE) eo(z)] Y —g e
= [ [—2V,5,; — &(LW") — L,W’,] et(x) Y —g d*z = 0. (13.12)

The functions ¢#(z) inside the integration region are arbitrary, from Eq. (13.12) four
identities follow
20,5, — 8, LW") + LW, =0, (13.13)

n=01,23.

These identities are the Bianchi identities (3.10) written now for the gravitational field.
As in electrodynamics one can obtain for the Euler equations in GTR a more general
class of identities corresponding to Egs. (3.12)—(3.14). We shall not consider them re-
ferring to KLEIN’s paper [].
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Thus, in general theory of relativity the equations of motion can be sypplemented at
least by 4 conditions. For example, one may choose such a coordinate system which
satisfies harmonic conditions [59]

o
oxt

(V=g 9 () = 0.

The reasoning that leads us to the identities (13.13) is applicable obviously to the gravi-
tational action S, separately. This functional depends on the metric tensor g,..(x) and its
derivatives but not on the ‘“‘matter” fields. As a result we obtain the following identities

7.Gs=0, n=0,123, (13.14)

where the tensor @, is given by (13.7). In Einstein’s theory G, has the form (13.8) and
the identities (13.14) in this case are consequences of the Bianchi identity for the Ri-
mann-Christoffel tensor B, 1,. In the literature there are considered other Lagrangian
densities for the gravitational field which are quadratic in the curvature tensor [60]

) = aR® + bR, R® + R, R, (13.15)

In this case Eqgs. (13.14) give rise to new identities.

We are going now to the consideration of the identities (13.13). Suppose that the equa-
tions of motion for the matter fields (13.5) are satisfied. Then by virtue of (13.6) and
{13.14) one obtains from (13.13)3)

Iy =0, u=0123. (13.16)

Thus, the covariant divergence of the energy-momentum tensor obtained by variation
of g in 8,, vanishes by virtue of the equations of motion of the ‘“matter’ fields only.
Using this fact Hilbert proposed [4] a method for obtaining the symmetric energy-
momentum tensor for field theories in a flat space-time. This problem will be considered
in the next section.

Now we examine in the framework of the gravitation theory the identities (3.14). As
it was noted, these formulae do not contain the Lagrangian expressions, i.e. they are
constraints on the Lagrangian density form. Let us assume that the Lagrangian density
Yw of the vector field W ,(x) interacting with the gravitational field has to be construc-
ted [I]. For simplicity we suppose that ¥ depends on W,(z), 0,W ,(z) and g,(z). By
the infinitesimal transformations (13.7) Eq. (3.8) for the vector field W ,(x) has the form

OW () = Wy 68 — WyeeB, A,B,i=0,1,2,3. (13.17)
Thus )
Vou = —0, Wi (13.18)

Substituting (13.17) into (3.14) we get
oty | aly
oW, T oW

¥,

I

0. (13.19)
This means that the derivatives of W, can occur in ¥y in the combination
W#-v - Wv,#

2) On the other hand this equality can be considered as a consequence of the equations of the
gravitational field (13.4) alone.
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only. It is a natural requirement if one takes into account that
W, —-W =V Ww,-V.W,.

Many applications of the second Noether theorem in Yang-Mills theory and in gravita-
tion theory can be found in papers [61, 62].

14. The Energy-Momentum Tensor

In Lorentz-invariant field theories there are used a few different energy-momentum
tensors: canonical, symmetric, and improved ones.

The canonical energy-momentum tensor 7%, is constructed according to the first
Noether theorem as a consequence of the invariance under space-time translations

¢ = r* + a*, a* = const. (14.1)
1f the field theory in Minkowski space-time is defined by the action functional
S = [L(uy, ou,) diz, (14.2)

where u4(z) is a set of field functions, then the canonical energy-momentum tensor has
the form

T;' =1 H"A 3,'”,‘4 — g‘“f’ 6“Tf" = O, (14.3)
ar
A — = di — _— —
IIA = T g, = diag (1, —1, —1, —1). (14.4)

The name of this tensor is due to its component 7%, is the Hamiltonian density 5, con-
structed according to the law

H = HOA aouA —f = TgO' (14.5)

In general T, is not symmetric, T¢, % 7%,, for example, in models with vector fields.
The method of obtaining the symmetric energy-momentum tensor was proposed by
Hilbert [4].

For this purpose we generalize the action functional § in Eq. (14.2) for a curved space-
time with metric tensor g,,(x). This is made by substituting the usual derivatives 9,
by the covariant ones V, and by introducing manifestly g#(x) into all the sums over
the Lorentz indices. As a result, we obtain the general invariant action

8 = [L(uy, V,q) V—g di=. (14.6)
The variation of g**(x) in S gives rise to the symmetric tensor
1 — o8
_é.y_g T, = 5 (14.7)
and the variations of u,(x) result in the equations of motion for the fields ()
- 88 '
L, = —=0. 14.8
=g (14.8)

The reasoning of the preceding section is applicable to the tensor T, also (see Egs.
(13.13) and (13.16)). Therefore when equations (14.8) hold, the covariant divergence

4 Foriachr. Phys., Bd. 31, Heft 10
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of T,, vanishes

P, (x) =0. (14.9)
Now we put in T,
Gu(@) = g, = diag (1, —1, —1, —1). (14.10)
This gives rise to the tensor _
T2 = T lguier=gyy> (14.11)

which is symmetric obviously and the usual divergence of which vanishes
(14.12)

if the equations of motion

L-%_1, —0 (14.13)

auA ”Mv(z)':‘ﬂy.v

hold. The manifest formulae which enable us to construct in this way the symmetric
energy-momentum tensor 1%, for a given Lagrangian density were written by RoSEN-
FELD [63] and BELINFANTE [64]

1 .
T = T+ 5 UTAE w0 — LA ). — HAE ] = Ty + &, (1414)

where Tf,,‘is given by (14.3) and

of
H,uA = on ) f}.yv = _‘f;llv'

A

The spin operator X, for the scalar, Dirac, and vector field respectively has the form

1
Euv = O, va = E" [y;u %],

(14.15)
(Zln)aﬁ = Gua¥vp — GvaJup- '

A simple method for derivation of the symmetric energy-momentum tensor (14.14)
without using the variation procedure was proposed in paper [65]. This method is
analogous to that used in the classical mechanics [66] for derivation of the energy and
momentum conservation laws without Noether’s theorem.

The tensors 7%, and 1%, differ by a divergence. As a consequence, the conserved inte-
gral quantmes correspondmg to them are identical obviously

P, = [ T, () d% = [ T}, (x) d*. (14.16)

By means of the symmetric energy-momentum tensor 7%, the angular momentum ten-
sor M,, is written in a compact form

M, = —[ (@18 — T3, d. (14.17)

The canomcal energy-momentum tensor T¢, used for this purpose leads to the more
comphcated formula

i

M, = —f [2,T§, + 2,15, + ITeA(Z,u) 4] d¥e. (14.18)
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The improved energy-momentum tensor @.7'° is introduced in quantum field theory
and is given by [67]

1
o — T, — E; (04 &, — Gur (1) ws¥(x), (14.19)

where the sum involves all the scalar fields u ().

At the end of this section we discuss shortly the problem of construction of the energy-
momentum tensor and the corresponding conservation laws in general theory of relati-
vity. If the equations of the gravitational field are obtained by variation of the action
§, invariant under general coordinate transformations (13.2), then this requires that
in the righthand sides of these equations the Hilbert symmetric energy-momentum ten-
sor 1%, of matter fields must be used. Therefore it is this tensor by means of which the
matter fields have to be introduced into the energy-momentum conservation law. As
it was shown in the preceding section, only the covariant divergence of this tensor in-
stead of the usual one vanishes by virtue of the equations of motion of the matter fields

puTs, = 0. (14.20)

Generally from this equation one cannot construct any conservation laws3).

In order to formulate the}energy-momentum conservation law in the gravitation theory
the energy-momentum density of the gravitational field has to be defined. There are
different definitions of this density [7, 70—76] but unfortunately each of them has
shortcomings.
3) There is a very special case when Egs. (14.20) give rise to integral conserved quantities. It is
the case when the spacetime manifold has some symmetry that leads to the existence of the Kil-

m .
ling vectors §,(x) [59]. These vectors are defined by the equation

() (n)
Ve + Vg, =0. (14.21)
The conserved quantities @, are constructed in the following way
(n)
Qn = ] &8, V=g &%, (14.22)

where the integration is spread out to the three-dimensional hypersurface o. Let us show that @,
does not depend on the choice of the hypersurface ¢. For this purpose we consider the integral

P () ()
- [ 2R e [ lE)
o Q2
(n) —_—{n) .
Q 2

The integration is spread out here to the four-dimensional “cylindrical’’ region £2, bounded by
two three-dimensional space-like hypersurface o, and o, (the “‘ends” of the cylinder) connected
by the side surface Z. As usual, we suppose that 7'%,|r = 0. Making use of Gauss’ theorem in
(14,23) and taking into account (14.20), (14.21), we find:

Qnl01) = @u(0r)-
As an example of the application of this method of constructing the conserved integral quantities

one may consider the field models in the de Sitter universe {24, 68, 69]. In this case the space-time
has a constant curvature and there are ten Killing vectors [24].

4% ’
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The Hilbert method can be spread out to the gravitational field also, i.e. one can put
[7,70-72]
2 63,

19, — —=—

V=7

n this case the total energy-momentum tensor of matter and gravitational fields

(14.24)

2 48
O = TN +T9, = ———.

V—g dgH

vanishes by virtue of the equations of motion of gravitational field (13.3) or (13.4). Ein-
stein’s criticism of this definition and objections to it can be found in [72].

For the gravitational field the canonical energy-momentum tensor may be constructed
also. Here there appear two possibilities. One may use the Lagrangian density
% = —g R containing the second derivatives of the metric tensor which leads to the
general invariant action functional S; = —x71 f R]/—g d*x or the noninvariant den-
sity without the second derivatives of g,,()

§=Y=gC=V—gg eI, — Ier:) =y—gR — o0~ (14.26)

(14.25)

where

! 2
= 0i(—g*- ¢)-
—yg

mt = — —

The difference of these two densities is the totaldivergence. Hence, they lead to the same
equations of motion (13.3) but the canonical energy-mometum tensors will be different.
The first case was considered by 1.ORENTZ [7], the second one by EINsTEIN {75]

oA 17 OR R
]/ 5 = —— (___)} o o Qiovs — O4R, 14.27
[agin n 0x° \ 23, uo T 3919-#0 Gie. ( )
V— g tfs =

The quantities ¢,%« and ¢,%«, introduced here, are not general covariant tensors obviously.
Therefore they are called pseudotensors or the complexes of energy-momentum density
of the gravitational field. There are other methods of definition of this dénsity [73, 74,
76].

It follows from the equations of motion (13.3) that

oG
ig,u

(/zm——ﬁ 6“4V —q - ( -glgv—é“G) (14.28)

0 — 0
g V0 (1 00 = Y=g (17 4 1%) = 0. (14.20)

Using Gausg’ theorem, one can construct straightforward the integral conserved quan-
tities.

The main shortcoming of Eq. (14.29) is that it is covariant under affine coordinate
transformations only. Obviously this contradicts the general covariance principle that
is the basis of Einstein’s theory.

Here there appear the following difficulties. In the first place the introduction of the
energy-momentum density of the gravitational field ¢’ is not unique. Second, due to
the nontensorial behaviour of #,* one can choose such a coordinate system that all
components of ¢, vanish in any given point of space [77, 78]. On the other hand, ina
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flat space-time without sources of the gravitational field one can obtain nonzero values
of ¢,” by an appropriate choice of the curvilinear coordinates {79, 80].

The definition of energy in Einstein’s theory of gravitation is discussed until now
[81, 821.

135. Relativistic String Model

The relativistic string is the one-dimensional object the action of which is proportional
to the area of the world sheet traced out by the string during its motion in Minkowski
space [83—85). If 2#(z, o) is the parametric representation of the string world surface,
then the action of the relativistic string is given by

8§ = —y f'drfda VGExE — @222 = —y [[ sV —9(®), (15.1)
1 91 0

where & = 0x/0t, % = 0x[do, T = &', o = £2, g = det |lgijll, ¢i; = (6x*/0FY) (Ox,/0&T),
i, j = 1, 2. The parameter o specifies points along the string, = plays the role of the evo-
lution parameter.
The relativistic string model can be considered as a system of four fields x#(&, £2),
w=0,1,2, 3 in the two-dimensional space {£1, £2}. The action (14.1) is invariant under
the reparametrization

B=f8), i=12. (15.2)

These transformations are defined by two arbitrary functions and as a consequence the
left hand sides of the Euler equations for the string must satisfy two identities. Functions:
x#(7, ¢) are scalars under the transformations (15.2)

EH(EL, B2) = am(&l, &),

So _ '

0z, (&) =0, oxu(é) = —a,,ie'(d),
where £4(£) are infinitesimal transformations of parameters &

B = & 4 64(0). (15.3)

The variation S, which is equal to zero, has the form

58 — [ d2&[6, 7 4 d( L&) = 0,
where 8,7 is a form variation of the Lagrangian density

(2 i

O0pf =

. 31'#'5.

Denoting the left hand sides of the Euler equations by £,
_of d [er
T ok dE \oak)’

we write Eq. (14.3) in the form

08 == f d {[(fé,-,» — a—i‘f; Bx,,,,-) 87] — Lﬂx,,,,—sf} =0. (15.4)
wi K]
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At first we choose the variations £/(£) of the independent variables & so that they vanish
on the boundary of the integration region. Then the expression in square brackets in
Eq. (15.4) gives no contribution to 48, and as a consequence, we find two identities

Lar=0, L =0. (15.5)

Actually, these equations are generalizations of the identities (9.3) which take place in
the relativistic mechanics of point particles.

Taking into account the identities (15.5) one can supplement the Euler equations in the
theory under consideration by two conditions on z,(z, ). Usually, the isometric coordi-
nate system on the world sheet of the string is chosen [86]. In this case we have

(4 22=0.
The equations of motion reduce now to the D’Alembert equation for x,(z, o)
&, —a, =0.

The expression in parentheses in Eq. (15.4) is the twodimensional energy-momentum
tensor corresponding to the invariance of the string theory under translations in space &*

ar -x“—&i,»f.

bis =
T oy T

We set now the functions (&) in Eq. (15.4) at first to constants and after that we sub-
stitute & by functions linear in &%, Taking into account identities (15.5) one obtains new
identities

ti=01j=12. (15.6)

These equations can be derived by equating to zero in Eq. (15.4) the coefficients of

£4(&) and its first derivatives (&)

of or .

Y ——,=0, f— —zx,=0,
ox, T ’ oz, e
ar . of
s 'x,u:O, 0 x,‘EO
Ciy ox,

The first identity means that the Hamiltonian constructed by the canonicallaw vanishes
here identically. The third identity is a constraint on the canonical variables 2, and
71, = —af/ex*. Tt can be written in the form z,7z# = 0. Thus, the Lagrangian density in
the theory of the relativistic string is singular.

The vanishing of the parametric energy-momentum tensor in the string theory does
not mean that there are no notions of the string energy and string momentum. As this
theory is invariant under inhomogeneous Lorentz transformations

Z, = A,2(r, a) + ay,

the usual energy-momentum tensor can be constructed in the same fashion as for the
point relativistic particle. And this tensor does not vanish identically.
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16. Conclusion

Application of Noether’s theorems requires to determine the symmetry of the problem
under consideration. To find the symmetry, i.e. the group of coordinate and function
transformations under which the action is invariant may be in some cases a more diffi-
cult task than the construction of the conserved currents. There are many examples of
that.

Long ago the additional integral has been known in the Kepler problem with the poten-
tial «fr. This is the Laplace-Runge-Lenz vector [§7 —89]

BR=[vXM]+ « '—; = const.

where M is the angular momentum. This integral is additional to the set of ten integrals
discussed in section 8. The connected with this integral SO(4) or SO(3, 1) symmetry of
the classical and quantum Kepler problem has been discovered only recently [90—92).

Another example here is the infinite series of conservation laws in nonlinear evolution
equations integrable by the inverse scattering method [93, 94] (the sine-Gordon equation,,
the nonlinear Schrédinger equation, the Korteweg-de Vries equation). The connection
of these conservation laws with the symmetries of the corresponding nonlinear equations
was shown only after the explicit derivation of the conserved currents. For example,
the infinite series of conservation laws for the sine-Grodon equation is the consequence
of its symmetry under the infinite series of one-parameter transformation groups [95].

These comments do not depreciate the role of Noether’s theorems in the field theory be-
cause the field models are constructed usually on the basis of some symmetries. In parti-
cular, the Weinberg-Salam model is based on the SU(2) X U(1) local symmetry [55].
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