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1. Introduction 

The symmetries in quantum field theory can be classified both as discrete and continuous 
syminetries. The well known example of discrete symmetries in the elementary particle 
theory is the invariance under the CPT transformations. 
Continuous symmetries are of two kinds : the symmetry under continuous coordinate- 
independent transjorwmtions of field functions and coordinates and the symmetry under 
coordinate-dependent transformations. 
Transformations of the first type are specified by a finite set of numerical parameters. 
The invariance of the field theory under these transformations leads to the conservation 
laws the number of which is equal to the number of transformation parameters. 
The parameters of the second kind transformations are junctions of coordinates. The well 
known examples of these transformations are the local gauge transformations in electro- 
dynamics, and the general coordinate transformations in the gravitation theory. The 
invariance of the field theory with respect to these transformations gives rise, in addition 
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to the conservation laws, to certain conditions on the Lagrangian density. Therefore 
the symmetries of this kind are called sometimes dynamical symmetries. 
Tt is convenient to formulate and explore the symmetry properties of the field iiiodels 
in the framework of the Lagrangian method when the dynamical system is specified by 
its Lagrangian function. The symmetry in the theory is introduced by the requirement 
that the action integral of the system should be invariant under the corresponding 
group transformations. Consequences of the action functional invariance with respect to 
the continuous transformations were studied on the basis of variational methods by 
D. HILBERT [I-31, F. KLEM [4 -6 ] ,  H. A. LORENTZ [ 7 ] ,  H. WEIL [8, 91 in the first 
quarter of this century. The results in this field were formulated more precisely by 
E. Noether in the form of two theorems [ lo ,  111. These inevstigations were stimulated to 
a considerable extent by the general theory of relativity worked out a t  that time by 
Einstein, Hilbert, Lorentz, Weil and others. 
Atteiiipts to  construct the quantum theory of gravitation and investigations of nonabe- 
lian gauge fields evoked in the fifties the interest in the study of conseqiiences of the 
invariance of field theories again. 
The invariance of the theory under coordinate-dependent transformations gives rise 
to sirbgular Lagrangian densities in the corresponding action functional (BERGMANK 
[12-I81, GOLDBERG [19]). The generalized Harniltonian treatment of these systems 
and their quantization were developed by DIRAC [ZO, 211. 
On the other hand, the requirement of this invariance leads, as it was mentioned 
above, to constraints on the Lagrangian-density dependence on field functions. Actually 
these constraints are the Noether identities which follow from the second Noether theo- 
rem. In the case of the local nonabelian gauge invariance these problems were considered 
by UTIYAMA [22] ,  KIBBLE [23], KONOPLEVA [24]  and others. 
In  the last time attempts were taken to enlarge the scope of the Noether theorenis to a 
more general class of transformations in order to obtain more reach sets of conservation 
laws [25-421. 
The survey is dealing with the consequences of the fieldtheories symmetry with respect 
to the continuous coordinates and fields transformations. The transformations of both 
kinds, coordinate-dependent and coordinate-independent ones, are treated. The first 
seven sections of the survey are devoted to the general consideration of this problem 
without specifying the form of the functional. In  the remaining sections some applica- 
tions of the general approach are given. 
In  section 2 the variational formalism for transformations acting on functions and inde- 
pendent variables (coordinates) is represented. The proof of both the Noether theorems 
is given in section 3. Some attempts to generalize the theorems are discussed in section 4. 
Section 5 is dealing with the Noether classification of conservation laws (proper and im- 
proper laws). Strong and weak conservation laws are considered in section 6. ,The rela- 
tionship between the action invariance under coordinate-dependent transformations and 
the singular Lagrangian densities is shown in section 7. 
Sections 8-15 are devoted to examples of applications of both the Noether theorems. 
We consider here an N-body system with central forces in classical mechanics, relati- 
vistic particles interacting with electromagnetic field, conservation laws and theNoether 
identities in electrodynamics, Yang-Mills field theory, gravitation theory, and in rela- 
tivistic string model. In section 14 we discuss the Wilbert procedure of obtaining the 
symmetric energy-moment uni tensor in Minkowski space-time. Some concluding remarks 
are given in section 16. 
Tt should be noted that in literature there are many review articles dealing with the 
conservation laws and the first Noether theorem [43-47]. Therefore we tried to pay 
more attention to the second Noether theorem and to its applications in field theory 
models. 
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2. Variation of a Functional under Simultaneous Transformations of Functions and 
Independent Variables 

We shall consider functionals of the form [48] 

I [ ~ ( ~ ) ]  = J ~ Z Y ( X ,  U ,  a ~ ,  a%), (2.1) 
n 

where u(x) is a set of N functions uA(z), A = 1, . . ., N depending on n variables x = (xl, 
x2, , . ., x,,). Symbols au and a2u denote any partial derivative 8uA/ax,, = uA,,, or a2uA/ax,,8x, 
= u~,,,~, respectively, p, Y, e, ... = 1,2, ..., n.  
The functions uA(x) and independent variable x will be subjected to the following trans- 
formations depending on r parameters E ~ ,  c2, . . ., E ,  

- 

y,, = @JX, U ,  au, a2u, ...; E )  = x,, + dx,, p = 1, ..., n, 
ZI&) = !PA(%, u, au, 3224, ... ) E )  = UA(X) + dUA, A = 1, . .., N .  

As usual, we suppose that the identical transformations correspond to zero values of 
the parameters ei, i = 1, . . ., r.  
The transformations (2.2) may be of two kinds : coordimte-independent and coordinate- 
dependent ones. In the first case parameters E~ are numbers but in the second case they 
are arbitrary coordinate functions cj(x). The groups of coordinate-independent trans- 
formations will be denoted by G, and the group of coordinate-dependent transformations 
by Gm,. 
The variations ax,, and 6uA in Eq. (2.2) in the first order with respect to E ,  are given by 

(2.3) 

The repeated indices denote the summation in the corresponding range. Zn addition to 
the total variations of functions 

du-4(x) = z c A ( Y )  - uA(x) 

we shall use the forin variations of functions 
- 
6UA(.) = UA(x) - uA(x)* 

Prom this definition - it follows that the operation 8 commutes with the differentiuticm 
8uA,,(x) = apduA(z). Between these variations there is the following connection 

du.4(.) = VA(Y) - U A k )  = VA(Y) - UA(Y) + UA(Y) - U A ( 4  (2.4) - - - duA(y) + uA.pdxp - dUA(.) + U A , p d x p -  

The sign - means the equality up to the first-order terms with respect to E, .  Recall 
that in deriving the equation of motion from the least action principle one uses the form 
variations of the field functions, the independent variables being unchanped. 
The first term in Eq. (2.4) is the variation of ~ ~ ( 2 )  due to the variation of the functional 
dependence but the second term gives the variation of u~(x) due to  the variation of 
the argument x. This rule is valid for the total variations of the partial derivatives of 
the functions also. In order to prove this we obtain a t  first some auxiliary formulae. 
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According to  (2.2) the derivative ay,/ax, can be represented as follows 

Further we have 
a a ay, a asx, a -=-.-=- +-.- ax, a ~ ,  ax, a ~ .  a ~ ,  ay - '  

a a asx, a 
ax" a ~ ,  ax, a ~ , "  

therefore 

---=-- 

AAnalogously for the second derivatives one obtains 

( 2 . 5 )  

In the last three terms the derivatives with respect to x can be replaced according to 
(2.5) by the derivatives with respect t o  y. As a result, we get 

Let us consider now the total variation of the first derivative of u ~ ( x )  

Up to the first-order terms in e this expression can he rewritten as follows 

In  the same way using Eq. (2.6) one gets for the second derivatives of U A ( Z )  
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Substituting a/ay by a/ax we obtain up to the first order terms in E 

duA,pv(X) = GuA,pv + uA,pvaaxa (2.8) 

Analogously the total variation of the partial derivative of any order 
represented as a sum of two terms 

can be 

- 
(2.9) - 

duA,pve,..  - sUA,pe  ... + UA,pve...asxa* 

Here the first term is the form variation of u~,,,.~..., the second one is the variation of 
u~.,,,~~..., due to the variation of the argument x. 
In  what follows we shall use often the total derivatives with respect toxF These derivatives 
take into consideration the explicit and implicit dependence on x and they will be denoted 

We suppose that under transformation (2.2) the integrand in (2.1) transforms as fol- 
lows [I13 

where C, is linear in parameters ci, i = 1, . . ., r and 1 contains c2 and higher terms. This 
means that I is forminvariant up to divergence. In  the field theory Eq. (2.1) gives the 
action functional the integrand of which I is the Lagrangian density. It is the transfor- 
mation (2.10) that will lead to  covariant equations of motion for the field functions 

The total variation of 2’ by,the transformations (2.2) can be written in the form 
7LA (4. 

(2.11) 

where duY is the variation 0f.Y due to the variation of the functional arguments u, au, 
a2,u 

(2.12) 

The formula (2.11) can be easily proved 

Making use of Eqs. (2.4), (2.7), (2.8) one obtains immediately Eq. (2.11). 
Now we return to the functional (2.1). Using the transformations (2.2) we correlate to  
it a new functional 

I C V ( Y ) l  = dYY’(Y, 4 Y ) l  av(Y), aav(Y)), (2.14) 
R+AR 
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where Sz + -If2 is a region in the coordinate space into which Q transfornis by the trans- 
forniations (2.2). To prove the Noether theorem, we shall calculate the difference 
Z[w(y)] - I[u(s)]. It can be shown that the difference in the first order with respect to  
E ~ ,  i.e. the variation of the functional I[u(z)] ,  is given by 

d 
6 1  = ax 6,Y + - (Ydx, + CJ], 

R s c d X P  
(2.15) 

where 6,Y is defined by Eq. (2.12). The second teriii of the integrancl in Eq. (2.15) has 
the following full form 

Let us prove Eq. (2.15) 

67 = I[V(Y)I - I[U(X)I = j d ~ - y - ” ( ~ ,  ~ ( y ) ,  WY), a 2 w )  - j ~ Y ( x ,  ~(x), au(x ) ,azw) .  
R + A R  R 

(2.16) 

The integration over y in the first term can be replaced by the intkgration over x. The 
Jacobian of this change of variables according to  (2.2) is 

Equation (2.16) takes now the form 

+ Y(x, U ( X ) ,  au(x), a2u(z)) 

R (2.17) 

Substituting in Eq. (2.17) the total variation 62’ by &Y according to (2.11) we get 
(2.15). 
In  Eq. (2.15) there appear only the forni variations of the functions uA(x) and their 
partial derivatives. It is this equation that must be used for obtaining the relation of 
the total varjation 6 1  with the variation of I in the least action principle. 
If the independent variables xp are not transfornied, then the second term in Eq. (2.15) 
vanishes and we get the usual expression for the functional variation by changing 
only the form of the functions u~(x). Supposing that ZU~(X) vanishes on the boundary 
of the integration region R and integrating by parts one obtains 

where L A  are the Lagrangian expressions 

(2.18) 

(2.19) 
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According to the least action principle 61 = 0 and Eq. (2.18) gives the equation of mo- 
tion (or the Euler equations) for the field functions u ~ ( x )  

LA(x, U ,  au, ...) = 0 ,  A = 1’2, ..., N .  (2.20) 

In what, follows we shall use the new quantity F,(x, u, au, ...) which we introduce in 
the following way 

(2.21) 

For the functionals under consideration F ,  is given by 

(2.22) 

Substituting (2.22) and (2.19) into (2.21) one easily verifies that these formulae give the 
right expression (2.12) for d,Y. Thus the variation of the functional (2.15) can he repre- 
sented in the form 

1 d 
LA8~-: -  - ( F ,  - Ydx, - C,) . 

ax, n 
(2.23) 

It is this equation that will be used for proving Noether’s theorems. 
Equation (2.23) can be generalized to the Lagrange.functionY depending on the deriva- 
tives of the U,’S up to an n-th order. In  this case 61 is given by (2.23), but LA and F ,  
should he modified in the following way [27, 321 

(2.24). 

3. The Noether Theorems 

We say that the functional I [u(x) ]  is invariant1) under the transformations (2 .2)  if 61 = 0 
for an argitrary integration region Q. Such transformations will be called the symmetry 
transformations for the functional (2.1). Thus for these transformations we have from 
Eq. (2.231 

(3.1). 

where J,, = F, - C, -Ydx,. As the integration region D is arbitrary, we obtain here 
the basic identity 

(3.2). 

We shall prove here only t,he direct statements of the Noether theorems referring to the 
original Noether paper [ l o ,  I I ]  and to more recent papers [24-421 where the proof of 
the converse theorems can be found. 

l) If C, in Eq. (2.10) does not vanish identically then one says sometimes that the functional 
I [u(z)] is invariant up to the divergence under the transformations (2.2). 
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The first Noether theorem. If the functional I [u (x ) ]  is invariant under r-parameter group 
G, of continnous transformations of coordinates and field functions, then r linear inde- 
pendent combinations of the Lagrangian expressions turn into the divergences. And con- 
versely, from the last condition the invariance of under some transformations group G, 
follows. 
The total variations 8uA, 8uq,,, ax,, as it was supposed above, are linear in the group 
parameters ei. Therefore by virtue of Eqs. (2.4) and (2.7) the form variations 8ud, 6uA,, 
.are linear in e i  also 

In  a similar fashion the vector F ,  in Eq. (2.22) and C, in (2.10) can be represented by 
expansions 

F ,  = EiF;, c, = EiC,i. (3.4) 

Substituting (3.3) and (3.4) into (3.2) and equating to zero the coefficients of E ,  one oh- 
tains r divergence relations 

where 

(3.5) 

(3.6) 

It should be noted here that we have used the fact that in the first Noether theorem the 
coordinate-independent transformations are considered. In this case the parameters ~i 
are numbers which can be removed from under the divergence symbol in Eq. (3.2). 
In  divergence relations (3.5) the functions uA(x) are not supposed to obey the equations 
s f  motion (2.20). If these equations are satisfied, then the left-hand sides in (3.5) vanish 
and we get r conservation laws 

(3.7) 

Let us go to the coordinate-dependent transformations forming the general infinite 
parametric group G-,. These transformations are defined by r arbitrary functions E ~ ( x ) ,  
i = 1, ..., r.  In this case there takes place the second Noether theorem. If the integral 
J [ u ( x ) ]  is invariant under the general group G,,, that is to say, under transformations 
of coordinates and field functions which depend on r arbitrary functions e i ( x ) ,  i = 1,2, 
. .., r ,  and their derivatives up to a k-th order, then there are r identities containing the 
Lagrangian expressions and their derivatives up to the k-th order. The inversion of this 
$heorem is possible also. 
For simplicity we consider the case when k = 1. The form vaxiation of functions is 
given now by - 

d U A ( 4  = YA"Ei(") + Y i r " , , ( 4  9 (3.8) 
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where the coefficients yAi and y i p  are functions of u ,  au, a2u, ... A similar formula 
is valid for Gx$but in what follows we shall not use themanifest forrnof these variations. 
Substituting (3.8) into (3.1) and using the equality 

we ohtsin 

Now we take such functions E ~ ( x ) ,  i = 1, ..., r that, they themselves and their deri- 
vatives entering into .F,, - C,, - LAY$,,E~ vanish on the boundary of the integration 
region Q, for example, E { ( Z )  - W ( x  - zi), z E Q. As a result, one gets 

whence r identities follow 
. d  
- - (LA?$,,) = 0 ,  i = 1, ..., r .  

dXP 
(3.10) 

These equalities are usually referred to as the Bianchi identities [39, 401. 
The Bianchi identities (3.10) do not exhaust all the consequences of the invariance of 
the functional (2.1) under the coordinate-dependent transformations G,, [S, 491. New 
identities will appear if in the integrand in Eq. (3.9) or (3.1) the coefficients of functions 
z i ( x )  and of each their derivatives E , , , , ~ . , . ~ ( X )  will be equated to zero separately. This 
procedure corresponds obviously to the following choice of the functions ei(x) : 

E i ( X )  N xrxv . . . x,x,, 
Let ua obtain these identities for the transformations (3.8) that do not affect the coor- 
dinates. For simplicity we suppose that I' depends OR x,  u ~ ( x ) ,  a u A ( Z )  and it does not 
depend on the second derivatives of the field functions u ~ ( x )  and put C,, in (2.10) zero. 
Tn this case by virtue of (3.6) and (3.8) formula (3.1) takes the form 

In the integrand the coefficients of E , ( x )  and of its first and second derivatives must 
vanish separately. This gives new identities 

(3.12) 

LAY$, + - ! ! - ( K y > , )  + - ar yAi 3 0 ,  i = I ,  ..., r ,  v, ,u = 1, 2, ..., n ;  (3.13) 
dxp au.4.p a u A , "  

(3.14) a2 . 
y(Av=0 ,  

a f  . - ?(A,, + - 
a u ,  " &A,,, 

i = l ,  ..., r , v , p = 1 , 2  ,..., n. 

In the last identities (3.14) ithere appear; two terms jbecause E~.,," is symmetric with 
respect to p, v. 

3 Fortschr. Phys., Bd. 31, Heft 10 
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The Bianchi identities (3.10) follow from (3.12)-(3.14). Indeed, acting on (3.13) by 
dldx, and taking into account that quantities (U/8uA,,,) y\, are skew symmetric with 

Substitution of this expression into (3.12) gives (3.10). 
The identities (3.14) do not contain the Lagrangian expresions but they impose con- 
straints on the dependence of the Lagrangian density on its arguments (see section 13). 
It appears practically that the most important identities are the Bianchi identities 
(3.10) which are homogeneous and linear in LA. 
The identities (3.10), (3.12), (3.13) establish the dependence of the left-hand sides L, 
of the Euler equations (2.20). This means that some of these equations are consequences 
of the other ones. Therefore the number od independent Euler equations is less than the 
number of unknown functions uA(x). Thus, in order t o  obtain uA(x), one has to supple- 
ment the equations of motion (2.20) by some conditions. In  the physical literature these 
conditions are called usually the gauge fixing conditions. 
In  what  follow^ we write the Noether identities for some field models. 

4. Generalization of the First Noether Theorem 

This theorem can be generalized in the following way [25]. 
If the r-parameter group of the coordinates and functions transformations (2.2) changes 
any solution of the Euler equations (2.20) (any extremal) into another solution of these 
equations again, the functional I [u (x ) }  considered on the extremals only being invariant 
under these transformations, then there are r conservation laws (3.7). 
In  contrast to the Noether formulation of the first theorem the conservation laws ob- 
tained here should not be independent because the limited set of functions (only the 
extremals) on which the functional I[u(2)3 is invariant is considered. 
This group of transformations of extremals leaving the functional I [ u ( x ) ]  invariant 
may be more general than the group in the Noether formulation of the first theorem. 
And as a consequence, we may obtain here more conservation laws compared to the 
Noether case. 
The proof of this generalized theorem and the corresponding examples of new conser- 
ved currents can be found in papers [25--421. 

5. Proper and Improper Conservation Laws 

Let us consider a special case when the r-parameter (Lie) group G, is obtained from the 
general group of transformations G,, if we suppose that the functions E ~ ( x )  in G,, are 
constants. We assume that the funct,ional (2.1) is invariant under coordinate-dependent 
transformations from Gmr. As a consequence, it will be invariant under G, group also. 
In this case both the Noether theorems are valid and there are the divergence relations 
(3.5) and the Noether indetifies (3.10), (3.12)-(3.14), the divergence relations being 
consequences of the Noether identities. The conserved currents J>(x), corresponding 
to symmetry under G, group have now a remarkable property: they are linear combi- 
nations of the Lagrange expressions plus the divergence of an antisymmetric tensor. 
Such conservation laws E. Noether [ l o ]  called improper ones in contrast to other proper 
conservation laws. 
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Consider iinproper conservation laws for the Lagrangian density 2’ = Y(x, u, au) the 
action functional for which is invariant under transformatisns (3.8). For simplicity we 
assume that Sx, = 0 and C, = 0. By Virtue of Eqs. (2.22) and (3.8) P, can be written 
in the form 

where we have introduced by Eq. (3.6) the conserved currents 

corresponding to  the invariance of I[u(x)]  under G, group. Substituting (5.1) and (5.2) 
into (3.9) and equating to zero the coefficients of E ~ ( z ) ,  E ~ J x )  and E ~ , , ~ ( X )  one obtains the 
identities 

(5.3) 

and identities (3.14) according to which the quantity (af/ihA,v) y i p  is antisymmetric in 
indices p and v. 
The identities (5.3) are the divergence relations (3.5) with BuAi = yAi corresponding to 
t,he invariance under transformation group G,. From Eq. (5.4) it follows that J;(x) is 
a linear combination of the Lagrangian expressions LA plus the divergence of the skew- 
symmetric quantity (a2’/auA,,) y i p .  
When the equations of motion (2.20) are satisfied, then Eq. (5.4) becomes 

(5.5) 

where UiY are the superpotentials [18, 19, 501 

r .  [(5.6) 

It should be noted that the superpotentials permit us to  write the integral conserved 
quantities &‘ corresponding to iniproper conservation laws in Minkowski space-time 
as a surface two-dimensional integral 

where ?ha, LY = 1,2,  3 is a unit normal to the surface a which encloses the three-dimen- 
sional volume V,. As it will be shown further this possibility corresponds to  the Gauss 
law in electromagnetic theory (see Section 10). 
Equation (5.7) enables us to avoid difficulties connect,ed with the field singularities due 
to the pointlike sources of the fields in Vs. 
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6. Weak and Strong Conservation Laws 

Weak conservation laws are the usual conservation laws (3.7) that take place when the 
equations of motion (2.20) are satisfied. Strong conservation laws are laws which are 
valid whether the field equations are satisfied or not. These laws are combinations of 
the Noether identities (3.10), (3.12)-(3.14) which have the form of a divergence. From 
the Bianchi identities (3.10) and (3.12) we obtain i- strong conservationlaws [19,39,40] 

What is more, we can construct the strong conservation laws containing arbitrary 
functions E , ( z ) ,  i = 1, 2, . . ., r [40]. Multiplying the Bianchi identities by e i ( z )  and sub- 
stituting them into (3.9) one obtains 

- 
where F,  by virtue of (2.22) and (3.8) is 

7. Singular Lagrangian Densities 

The Lagrangian densityY(u, au) is called singular if 

where 

(6.3) 

The invariance of the action functional under infinite group G,, of coordinate-depen- 
dent transformations indicates that the corresponding Lagrangian density is singular 

. [12]. We show this for the transformations (3.8) with coefficients yip depending on u 
and au. Making use of (7.2) one can decompose LA so as to exhibit thus 

L A  = -A.4t11LB,00 + LA = 0 ,  (7.3) 

where does not involve uA,o0. We assume here that the rank of the matrix i lAB is 
not equal to zero, as in this case Eqs. (7.3) will be the first order with respect to the time 
derivatives. OR substituting (7.3) into the Bianchi identities (3.10) the terms containing 
second time derivative will lead to terms containing third time derivative coefficients 
of which must vanish 

N 

B=1 
C A A B y B , , = O ,  i = l , 2  ,..., I ’ .  (7.4) 
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Thus, there are r different sets of N quantities y h ,  i = 1, . .., r ;  B = 1 ,  .. ., N ,  yhich 
are zero eigenvectors of the matrix AAB. As a consequence, we get (7.1) and the Lagran- 
gian density Y(u,  au) is singular. 
The Euler equations (7.3) for singular Lagrangian densities cannot be solved with respect 
to the second time derivatives of the field functions uA,,,,. Therefore the usual Cauchy 
problem for these equations cannot be solved uniquely. ‘Indeed for given Cauchy data 
a t  the initial moment t = to 

(7.5) 

it is impossible to calculate all the derivatives of the function uA(x) a t  thismoment. 
More precisely, we do not obtain a t  t = to the values of the derivatives containing two 
and more differentiations with respect to time t.  As a result, the field functions UA( t ,  x) 
cannot be obtained a t  the moment t by summing the Taylor series. Hence the hyper- 
surface t = to appears to be characteristic for the system (7.3). 
It should be noted here that for the singular Lagrangian densities the Cauchy data 
(7.5) cannot be taken arbitrary because there are r linear combinations of the Euler 
equations which do not involve the second time derivatives. Multiplying (7.3) by yfo  
and summing over A one gets 

- 
LAyfo = LAyfo = 0. I (7.6) 

The initial data (7.5) must obey these conditions. 
For the singular Lagrangian densities there appear the following difficulties in the 
transition to  the Hamiltonian formalism. As is customary, the derivatives of Y with 
respect to u ~ , ~  are designated as the canonical momenta 

Tn view of (7.1) Eqs. (7.7) cannot be solved wit,h respect to the “velocities” uA,,(x) and 
t,he momenta ~ ~ ( 2 )  and “coordinates” u A ( x )  obey r relationships. To obtain these 
constraints on z A ( x )  and u ~ ( x ) ,  we consider the identities (7.4) substituting into them 
the definitions (7.2) and (7.7) 

(7.8) 

I f  the y$o)s do not depend on the “velocities” uA,o then the straightforward integration 
of these relationships gives r contraints 

where the Ki’a are functions introduced by the integration, but actually determined in 
any theory. 
The Haniiltonian treatment of such systems was considered by DIRAC [20], BERGMANN 
[12-181 and in papers [21, 51, 521. 
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8. The Classical System of N Massive Points 

If the particles are interacting by central pair forces, then t,he Lagrangian of this 
system can be taken in the form 

The action 
11 

s[ri(t)] = J d t L ( t )  (8.2) 
11 

is invariant with respect to  the 10-parameter group of the coordinate r i  and time t 
transformations (the Newton-Galilei group). The infinitesimal transforinations are given 

t‘ = t + dt,  (8.3) 
bY 

Under the proper Galilei transformations (8.6) the Lagrangian (8.1) is invariant up to  
the total divergence only [ll].,The consequence of this symmetry is the well known 10 
integrals of motion in an N point system. The invariance under time translation (8.3) 
gives rise to the conserved total energy 

The invariance with respect to the coordinate translations (8.4) results in the conserved 
total momentum 

P == 2 m $ , ( t ) .  
N 

i= l  

The conservation of the total angular momentuni of this system 

N 

j=1 
M = mjp, x +?] 

is the consequence of the invariance under rotations (8.5). 
The proper Galilei transformations (8.6) lead to the following alteration of the Lagran- 
gian function 

In this case the quantity C in Eq. (2.13) is given hy 
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Making use of Eqs. (3.6), (3.7) and (8.7) we find 

This formula can be rewritten in the form 

N > 
where AV = C mi is the total system mass. Thus the invariance under proper Galilei 

transformations results in the law of the uniform and rectilinear motion of the system 
1-1 

centre of mass R(th 

9. The Charged Particles Interacting with Electromagnetic Field 

The artion in this case is given by 

where z , P ( t i )  are parametric representations of the particle trajectories. This action is 
invariant under the ten-parameter Poincare group of the coordinate transformations, 
under t,he local gauge transformations of the electromagnetic potentials A ,  and with 
respect to reparametrizations 

ti' = fi(t,), j = 1, 2, ..., N,  (9.2) 

where f ,  are arbitrary functions. Let us dwell on the consequences of the invariance of 
this theory under the reparametrizationsI(9.2). According to the second Noether theorem 
the equations of particle motion 

d i p i ( t i )  

dti  0 L,i = mi - - - eF,,(zi) i j v ( r i )  = 0, i = 1, ..., N 

have to satisfy N identities. Taking into account that, B z j P ( t i )  = --if(tj) c i ( t i )  we obtain 
from (3.10) 

3 

p = O  
c L , j i i p  = 0, j = 1, 2, . . ., N .  (9.3) 

Here t,here is no summation over j .  These identities can be easily proved because P,, is 
a skewsymmetric tensor and the derivative of the unit Lorentz vector if/F. z .  IS ortho- 
gonal to it. 
By virtue of the identities (9.3) we can impose on the dynamical variables z i p ( t , )  N con- 
ditions, for exaniple i,2 = 1, i = 1, 2, . . ., N .  In this case the parameter t i  is the proper- 
time of an i-th particle. 
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In addition to the identities (9.3) in the theory under consideration there are the follo- 
wing identities, whicH are consequences of the invariance of (9.1) under the transfor- 
mations (9.2) 

(9.4) 

where Yj is the Lagrangian function of the j-th particle 

ui(zi) = -m - eA,(zi) i j p .  

If we distract ourselves from the specific form of the Lagrangian function in Eq. (9.1) 
and demand the invariance of the action S under the transforniations (9.2) only, then 
we obtain a constraint on- the form of the admissible Lagrangian Yi.  Indeed, according 
to Eqs. (9.4) the Lagrangian Yi must he a homogeneous function of the first degree of the 
particle velocity i : ( t i ) .  ’ 

The particle canonical momenta are defined by 

We obtain immediately the following const’raints for pip 

[ p p ( t ; )  - e A p ( z i ) ] 2  = mi2, i = 1, 2, ..!., N .  

Thus, the Lagrangian (9.1) is singular. 

10. Electrodynamics 

The Maxwell-Dirac Lagrangian density is 

i 1 
2 4 

af=- [qy(a, - ieA,) p - (a, + ieA,) q y q ~ ]  - n q p  - - F,,Fpv, :(lo. I )  

where FPv = a,A, - &A,. It gives rise to the following equations of motion 

L, = (-ii3, + eA,) ~y - mij = 0 ,  

L, = ( .  z y  a,, + eA,yP - m) y = 0, 

L = a2AP - a, aVAv + eqypp = 0 .  
* P  

(10.2) 

The action with Lagrangian (10.1) is invariant under the gauge transformations of the 
second kind 

p’(z) = ,in@) y(z), ~ ’ ( x )  = e++)- w(x) 3 

(10.3) 
1 
e 

Ap’(2) = A,(%) - -q&(Z). 

In this case the form variations of the field functions are defined by 
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The coefficients y;ai and y f ,  in Eq. (3.8) are 

According to (3.10) we obtain the following Noether identity 

(10.4') 

It means that at  least one equation in the system (10.2) is a consequence of others. 
Therefore Eqe. (10.2) do not determine T(z), y(z),  A&) completely and thesefunctionsr 
can be subjected to one condition, for example, the Lorentz condition 

a , A p ( ~ )  = 0. (10.5) 

However, the identity (10.4) does not exhaust all the consequences of the electrodyna- 
mics invariance under gauge transformations (10.3). Equations (3.12) -(3.14) give rise 
to the more general class of identities 

(10.6 j 

(10.71 

(10.8) 

The last identity (10.8) is trivial as it means that Fpy = -Fvp. Differentiating with re- 
spect to xv Eq. (10.7) and making use of (10.6) and (10.8) one obtains easily the identity 
(10.4). Therefore we have here only one new identity. Consequently in the system (10.2) 
actually two equations are consequences of othere. And in addition to Eq. (10.5) one 
may impose one more condition, for example, we can take the Coulomb gauge 

A,($) = 0. (10.9) 

Only in this case the equation of motion (10.2) together with the conditions (10.5) and 
(10.9) will define the functions q(z), pu(z), and A,(z) to be found. 
The invariance of (10.1) under the global gauge transformations with a(x) = const, 
results in the conserved current 

jp(.z)  = -ev(z) ypy(x),  8 p j p ( z )  = 0. 

<4ccording to the Noether classification it is improper current, i.e. it can be expressed in 
terms of the left-hand sides of the Euler equations and the divergence of a skewsym- 
metric tensor. It follows directly from (10.2) 

j"(.) = --L + P A ,  - a, a,A' = -LAP - a,Fpv. 

The role of superpotential (5.6) is played here by the tensor of electromagnetic 
field Fpv. The total electric charge is given by the two-dimensional surface integral 
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(Gauss’ law) 
3 

Q = d3xjo(x) = -I d3x 2 PE,. = 

where E, = F,,, 01 = 1, 2, 3 is electric field and n is unit normal to  cr. 
Making use of (6.1) we find here the strong conserzxztion luw 

d3x div E = I d20 En, 
V I  Y. a==1 YO rn 

a,(a”A” - a, &AV) = a, a y w  3 0.  

11. The Vector Neutral Massive Field Interacting with the Dirac Field 

This system is described by the Lagrangian 

??12 i 1 
2 2 2 

A,,,Af‘*L + - A,2 + - [Wy+(a, - igA,)  y - (a, + igA,) wp’y)] - Mlyy .  y = -- 
(11.1) 

The action functional in this model is invariant up to divergence under gauge transfor- 
mations (10.3) with the function satisfying the equation [53] 

?,(a2 + m 2 )  a(.) = 0 .  

Y ->Y + q-ia,(A,(~) a, a .&(~) ) .  

(11.2) 

In  this case the Lagrangian (11.1) transforms in the following waj 

The divergence relation (3.5) by virtue of the equation of motion has the form 

d - (j&) - <A,(%) a, a‘a(z)) = 0, 
dx, 

where j,(x) = -gqyry. If a(.) = const,., then this equation is reduced to the usual con- 
servation law for current jJx) 

a,j’(z) = 0 .  

The Noether identities (3.10) and (3.12)-(3.14) cannot be obtained in this model, as 
a(x) is not an arbit,rary function but it obeys Eq. (112). The equations of motion obtai- 
ned by variation of (12.1) determine the fields A,(z) and y(z) completely. The subsidiary 
condition a,Ap(x) = 0 is imposed in this theory only for physical reasons. Tt is used for 
the elimination of the 0-spin particles from the model. 

12. Nonabelian Gauge Fields 

For the invariance of the theory of the multicomponent field y(x )  under the local trans- 
formations 

?pyx) = o ( x ) y ( z )  (12.1) 

with the matrices ~ ( x )  from the compact semisimple group G,  the interaction of y(x) 
with the gauge vector field W,(z) taking valnes in the Lie algabra of G should be intro- 
duced [.54-57]. In  the Lagrangian this interaction is introduced by the following sub- 
stitution of the derivatives a, acting on field y(.c) 

a, 3 P, = a, + igW,(x). (12.2) 
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The covariant derivative V ,  will be transfornied by the siinple rule 

V'y' (x)  = w(n)  Py(x) (12.3) 

if the transforniation of the gauge field W,(x) is defined by 

W,' = o)W,W-~  + ig-'(a,o) 0j-l. 

Thus, the field W p ( z )  is transformed inhomogeneously. Alternatively the strength ten- 
sor of the field w, 

,Gpv(n) = a,wv - a,w, + @[W,, W,] 

(1 2.4) 

(12.5) 

is transformed homogeneously 
Gi,(z) = m(z) G,,u-l(z). (12.6) 

Further we shall consider the Yang-Mills fields with gauge group SU(2). In this case 

1 1 
W ,  = - aoWpo, 

2 

Gf. = a,WVa - a,W,' - @'bcWpbW,C, 

G,, = - 2 @ q p 9  

(12.7) 
(c, b, c = 1, 2, 3, 

where 00 are the Pauli matrices. If y(z) is the Dirac field describing the SU(2) doublet, 
then the total Lagrangian invariant under transformations (12.1), (12.4) is 

(12.8) 
1 i 
2 2 

- - -- Tr G,,Gp* + - (vp'Vpy - ( V , v )  ypy} - m y y .  

It leads to the following equations of motion 

(12.9) 
6 

iyp 2, - g 2  Wv0y9 - m 

l n  the matrix notsation these equations can be rewritten in the form 
\ 

DPG,, = i y ,  

( i y ,  17, - na) y = 0, 
(12.10) 

where Dp = a, + ig[ W,, . . .] is the covariant derivative for the fields with values in Lie 
algebra of the group a and 

Ua 6 
ji Y -  - jy" . - , iyo = gvy. Y .  (12.11) 

The action with the Lagrangian (12.8) is invariant under the global U(1)-transforinations 

y,'(z) = eiuy(z),  ~ ' ( z )  = e-"v(z), a = const., 
(12.12) 

rn,"(z) = W,"(z) 
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and with respect to the SU(2)-transformations (12.1), (12.4) with 

(1 2.13) 

The invariance of the theory under the transformations (12.12) results, as in electro- 
dynamics, in a conserved current 

Y ” ( 4  = 1(4 Y’d”). (12.14) 

By the infinitesimal SU(2)-transformations we have 

W@’@(X) = w’yx) + @CW’b(Z) S C ( X )  - g-1 a p s y x ) ,  
(12.15) 

G$(x)  = G:,(z) + eabcG:,(~) sC(z). 

Thus, by the global SU(2)-transformations when sa(x) = const. the Yang-Mills field 
Wpa(x) is transformed as an isotopic vector but by the local ones there appears an addi- 
tional term -q-l a,S(s). The tensor GE,(s) is transformed in both cases as an isotopic 
vector. 
If in Eq. (12.15) 9(x) = const., then we have, according to  the firstNoethertheorem, the 
following conserved isotopic current 

(12.16) 
UP 

Ip0(4 = g f W  Y p  p YJ(4 + g&’bcG;”(4 WC*i4  

or in the matrix notation 

where j J x )  is defined in Eq. (12.11). 
The gauge field WPa(x) carries the isotopic charge and gives a contribution into the total 
isotopic current (the second term in Eq. (12.16)). It should be noted that the quantity 
geobCG~y(x) Wcv(x) and, as a consequence, the isotopic current density (12.16), are not 
isotopic vectors under local SU(2)-transforniations. The total isotopic spin of the system 

TO = J ~ ~ “ ( x )  d3x (12.18) 

is, however, the isotopic vector with respect to the local gauge transformations that a t  
the spatial infinity become constant independent on the coordinate transformations, i.e. 
a’(’) \t\+m ’ const. Indeed, using the equations of motion (12.9) and t’aking into ac- 
count that #&(x) = O we obtain! 

Va 

By Gauss’ theorem this integral can be reduced to the integral of G!o(x) on the surface 
containing the three-dimensional‘space V3. If on this surface sa(x) = const., then Ta is 
a vector with respect to the transformations (12.13). 
The action with Lagrangian (12.8) is invariant under global U (  1)-transformations (12.12) 
and under global and local SU( 2)-tranaformations. With respect t o  the local-transfor- 
inations it is not invariant. Thus, according to the Noether classification the current 
YJx) in Eq. (12.13) is a proper current. Alternatively, the isotopic current I p o ( x )  (12.16) 
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is U ~ L  improper current. As a consequence the current IPa(x) is reduced, by virtue of the 
equations of motion, to the divergence of the antisymmetric tensor GE,(x). Indeed, 
the first equation in (12.9) can be rewritten by making use of (12.16) as follows 

Both the currents Y”(x)  (12.14) and I,“(x) (12.16) are conserved separately, so their 
linear combinations will be conserved also. In the Weinberg model [5-5], for example, as 
the electric current one takes the sum 

1 
2 J,em(x) = - Yp(n) + 1,3(x) .  (12.21) 

We note here the common properties of the Yang-Mills model and the Einsteingravitat- 
I tion theory (see sections 13, 14). The isotopic current density (12.16) congists of two 
parts. The first term is caused by the “matter” fields (all the fields excepttheyang- 
Mills field WPa(x))  andit is the isotopic vector. The second term as it was noted above, 
describes the isotopic charge of the Yang-Mills field and it is not the isotopic vector. 
The similar situation holds in the gravitation theory. The total energy-momentum den- 
sity O,,(x) consists of two terms also 

where TFm(x) is the symmetric energy-momentum tensor of the “matter” fields (all 
fields except the gravitation field), t J x )  is the density of the energy-momentum of the 
gravitation field. Under the general coordinate transformations (13.2) T z m ( x )  is trans- 
formed as a tensor, while tPY(x)  is not a general covariant tensor. A t  the best t,(x) is 
transformed as a tensor only under linear (affine) coordinate transformations. Therefore 
it is called the pseudotensor or the complex of the energy-momentum of the gravitation 
field. 
Now we shall go to the Noether identities in the Yang-Mills theory (12.8). Making use 
of Eqs. (3.10) we obtain three identities 

(12.23) (DPLP)c + i -  ‘s (L,acy - ipaCLp) 3 O,! 
2 

where L p ,  L? and L, are defined in Eqs. (12.9), (12.10). Here we have put as usual, 
Lp = Lea aa/2. 
By virtue of the identities (12.23) the Euler equations (12.9) or (12.10) do not determine 
completely the dynamical variables W;”(x) and y (x ) .  Therefore these equations can be 
supplemented by gauge conditions. For example, the Lorentz gauge can be imposed 

a.WpO(x) = 0 ,  a = 1, 2, 3. (12.24) 

A t  the end of this section devoted to the Yang-Mills fields it should be noted that in 
this theory besides the Noether concerved currents there are conserved quantities of 
quite a different tqologicaZ orisin. It is the so called topological charge in the Euclidean 
formulation of the Yang-Mills theory 
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where @,(z) is a tensor dual to the G;,(x) 

This property of the Yang-Mills fields was investigated intensively in the last years 
(see,for example [55--681). 

13. The Gravitation Theory 

The Einstein theory of gravitation, called the general theory of relativity, is a new 
method of description of the interaction transmission. This method is very different 
from the usual one. In the general theory of relativity it is postulated that the gravi- 
tating masses alter the geometrical properties of the space-time. The space-time is now 
not flat but it acquires a nonzero curvature. This curvature alters the flow of all the 
physical processes, thereby the existence of gravitating sources displays a t  the physical 
level. 
In general theory of relativity the space-time is considered to be the four-dimensional 
Riemannian manifold with the metric tensor gpY(x). The curvature of the space-time is 
defined by the curvature tensor of the fourth rank RpszQ(x) (the Riemann-Christoffel 
tensor). This tensor is constructed by differential geometry formulae from the metric 
tensor g,,(z) and its first and second derivatives. The space-time is flat only in the case 
when RPUA9(x) = 0. A t  first sight the curvature tensor R , ” A ~ ( X )  should be taken as a 
dynaniical variable in the gravitation theory. But in Einstein’s theory this role is played 
by the metric tensor g J x )  the form of which depends not only on the space-time cur- 
vature but also on the chostn coordinate system. It is important that in general case 
one cannot pick out the part of q J x )  determined by space-time curvature and the part 
caused by the coordinate system. 
This situation is analogous in some sense to  that in the theory of the electromagnetic 
field. In  this theory the quantities directly measured in experinlent are the intensities of 
electric and magnetic fields (the strength tensor FJz)). On the other hand the electro- 
magnetic field theory is constructed by means of the electromagnetic potential A,(x), 

The action functional in Einstein’s theory is taken in the form 
F,, == a,A, - a,A,. 

where R(x) is the scalar curvature: R = gpYRpv, R,, = g@‘RepoV, Y,n is the Lagrangian 
density of all the fields but the gravitational field, x is the gravitational constant. The 
function P, must be chosen so that the action functional S,, and as a consequence S,  
be invariant under the general coordinate transformations 

X ’ P  = f ” ( x ) ,  p = 0, 1 , 2 , 3 .  (13.2) 

The variation of the gravitational field gpy(z) gives the Einstein-Hilbert equations 

1 
2 - - gpyR = xT,,, (13.3) 

where (1/2) 6 T,, = SS,jSgPv is the energy-momentum tensor of all the fields except 
for the gravitational field. 
According to the second Noether theorem the invariance of the functional (13.1) under 
the transformations (13.2) gives rise to four Bianchi identitie8 (3.10) which niust be 
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satisfied by the left-hand sides of Eqs. (13.3). It is interesting to obtain these identities 
anew, instead of the substitution into (3.10) of concrete expressions for yAi and y i p .  We 
shall not specify the form of S but suppose for simplicity that only one vector field 
W,(z) interacts with the gravitational field. 
The Euler equations, obtained by the variation of gr”(x) and Wp(x) in S, have the form 

3,”(4 = 0, (13.4) 

L, = 0, (13.5) 

where b,, us a symmetric tensor S,, = b,, and 

Spy = G,, + Tpv,  (13.6) 

(13.7) 

For Einstein’s theory 
1 

G,, = - - (13.8) 

By the infinitesinial transformations 

x ’ p  = z/” + &”(X) 

the.foriu variations of Wp(z) and the metric tensor gp’(z) are given by 

8Wqz) = - W $ E ” ( Z )  + W’&$(2), 

6gyx) = P’Eq2) + P,&”(X),  
- 

(13.9) 

(13.10) 

where V p  denotes the covariant differentiation. The variation 6s by virtue of (3.1) can 
he written as 

6 8  = L / S p , 8 g ”  m,d42 + L,$Wp f - 9 d 4 2  - JT -d4x, (13.11) 

We choose functions ~” (z )  so that they and their derivatives in div J in Eq. (13.11) 
vanish on the boundary of integrationregion. Substituting (13.9) and (13.10) into (13.11) 
one gets 

2 S 

6s = 2 j SpVVv&‘(z)~ 6 d 4 x  + L,( WE$(%) - W:E’(Z)) 1/--gd4x 

= j [(25,1 + L,W) &:(z) + (28,’ rz - L,W%) &U(Z)I G d 4 2  

= J [-2V,5,’ - 2”(LPwI) - LOW$] E P ( z )  I/--gd4x = 0. (13.12) 

The functions E P ( z )  inside the integration region are arbitrary, froin Eq. (13.12) four 
identities follow 

2v,;P,* - a,(L,w) + LJP,  E 0, 
p = 0, 1,2,  3 .  

( 13.13)l 

These identities are the Bianchi identities (3.10) written now for the gravitational field. 
A s  in electrodynamics one can obtain for the Euler equations in GTR a more general 
class of identities corresponding to Eqs. (3.12) -(3,14). We shall not consider them re- 
ferring to KLEIN’S paper [5]. 
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Thus, in general theory of relativity the equations of motion can be supplemented a t  
least by 4 conditions. For example, one may choose such a coordinate system which 
satisfies harmonic conditions [59] 

a -  - ( i - g  qqs))  = 0. 
ax, 

The reasoning that leads us to the identities (13.13) is applicable obviously to the gravi- 
tational action S, separately. This functional depends on the metric tensor gPy(x)  and its 
derivatives but nbt on the “matter” fields. As a result we obtain the following identities 

VvG,’ = 0 ,  p = 0 , 1 , 2 ,  3, (13.14) 

where the tensor G,, is given by (13.7). In  Einstein’s theory G,, has the form (13.8) and 
the identities (13.14) in this case are consequences of the Bianchi identity for the Ri- 
uiann-Christoffel tensor Rpvla. In the literature there are considered other Lagrangian 
densities for the gravitational field which are quadratic in the curvature tensor [60] 

Y, = aRa + bR,,RpV + c R ~ ~ ~ ~ R , ~ ~ ~ .  (13.15) 

In  this case Eqs. (13.14) give rise to new identities. 
We are going now to the consideration of the identities (13.13). Suppose that the equa- 
tions of motion for th’e matter fields (13.5) are satisfied. Then by virtue of (13.6) and 
(13.14) one obtains from (13.13)2) 

FVT,* = 0, ,u = 0, 1, 2, 3.  (13.16) 

Thus, the covariant divergence of the energy-momentum tensor obtained by variation 
of 9“’ in S ,  vanishes by virtue of the equations of motion of the ‘‘matter” fields only. 
Using this fact Hilbert proposed [a] a method for obtaining the symmetric energy- 
monientum tensor for field theories in a flat space-time. This problem will be considered 
in the next section. 
Now we examine in the framework of the gravitation theory the identities (3.14). As 
it was noted, these formulae do not contain the Lagrangian expressions, i.e. they are 
constraints on the Lagrangian density form. Let us assume that the Lagrangian density 
Yw of the vector field W,(x) interacting with the gravitational field has to be construc- 
ted [I]. For simplicity we suppose that Yw depends on W,(z), a,W,(z) and gpY(x). By 
the infinitesimal transformations (13.7) Eq. (3.8) for the vector field W J r )  has the form 

(13.17) 

y i p  = -a.,p ”i. (13.18) 

~W,(.E) = WA,$ - WBF,~, A ,  I?, i = 0, 1, 2, 3.  
Thus 

Substituting (13.17) into (3.14) we get 

This means that the derivatives of W ,  can occur in YW in the combination 

’( 13.19) 

2, On the other hand this equality can be considered as a consequence of the equations of the 
gravitational field (13.4) alone. 
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only. It is a natural requirement if one takes into account that 

wp,v - wv,p = V”W, - v p w , .  

Many applications of the second Noether theorem in Yang-Mills theory and in gravita- 
tion theory can be found in papers [61 ,62] .  

14. The Energy-Momentum Tensor 

In Lorente-invariant field theories there are used a few different energy-momentum 
tensors : canonical, symmetric, and improved ones. 
The canonical energy-momentum tensor TZ, is constructed according to the first 
Noether theorem as a consequence of the invariance under space-time translations 

x‘1* = x p  + a”,  a p  = const. (14.1) 

Tf the field theory in Minkowski space-time is defined by the action functional 

8 = [Y(uA, h A )  d42 ,  (14.2) 

where ua(x) is a set of field functions, then the canmica1 energy-monzenturr~ tensor has 
the form 

(14.3) TC,, = npA a v u A  - QpY, a”Ti, = O 9 

Qpv = diag (1, -1, -1, -1) (14.4) 

The name of this tensor is due to its component T&, is the Hamiltonian density Z, con- 
sbrucbed according to the law 

&‘ = noA aouA - Y  = T&. (14.5) 

In general TZ, is not symmetric, Tiy + T:w, for example, in models with vector fields. 
The method of obtaining the symmetric energy-momentum tensor was proposed by 
Hilbert [4]. 
For this purpose we generalize the action functional 8 in Eq. (14.2) for a curved space- 
time with metric tensor qPl(x) .  This is made by substituting the usual derivatives a, 
by the covariant ones V p  and by introducing manifestly q,’(x) into all the sums over 
the h r e n t z  indices. As a result, we obtain the general invariant action 

B = JY(uA, V p U A )  i 7 d 4 x .  (14.6) 

The variation of gP’(x) in S gives rise to the symmetric tensor 

1 -- as- 
2 agp” 
- I/-s T,. = - 

and the variations of u d ( x )  result in the equations of motion for the fields u ~ ( x )  

- 8s’ L A = - = O .  
&A 

(14.7) 

(14.8) 

The reasoning of the preceding section is applicable to the tensor Fp* also (see Eqs. 
(13.13) and (13.16)). Therefore when equations (14.8) hold, the covariant divergence 

4 Fortwhr. Phyrs., B&. 31, Heft 10 
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of 4,” vanishes 

KOW we put in 4,, 
l77T,,(u) = 0. (14.9) 

(14.10) gpy( .x)  = 9,. = diag (1, -1, -1, -1). 

This gives rise to  the tensor - 
T8,” = T , ” l g r ” ( x ) = ; ~ ,  9 

which is symmetric obviously and the usual divergence of which vanishes 

(14.11) 

( 14.12) 

if the equations of motion 

hold. The manifest formulae which enable ‘us to construct in this way the symmetvic 
energy-momentum tensor T8,” for a given Lagrangian density were written by ROSEN- 
FELD [63] and BELINFANTE [64] 

The spin operator Z,,, for the scalar, Dirac, and vector field respectively has the form 

(14.15) 

A simple method for derivation of the symmetric energy-momentum tensor (14.14) 
without using the variation procedure was proposed in paper [65].  This method is 
analogous to that used in the classical mechanics [66] for derivation of the energy and 
momentum conservation laws without Noether’s theorem. 
The tensors T$ and Ti,  differ by a divergence. As a consequence, the conserved inte- 
gral quantities corresponding to them are identical obviously 

P ,  = $ TQx) d3x = J T&(x) d3x. (14.16) 

By means of the symmetric energy-niomentuni tensor TZv the angular momentum ten- 
sor MPy is written in a compact fortn 

MPv = -$ (x,,T& - x,T&) d3x. (14.17) 

The canonical energy-momentum tensor TC,, used for this purpose leads to the more 
complicated formula I 

M,” = -J [ xpT& + ~ ~ ~ ’ 6 ,  + ~ o A ( Z p ~ ~ , 4 1  d3x-  (14.18) 
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The improved energy-momentum tensor 
and is given by [67] 

is introduced in quantum field theory 

where the sum involves all the scalar fields uA(z). 
At  the end of this section we discuss shortly the problem of construction of the energy- 
momentum tensor and the corresponding conservation laws in general theory of relati- 
vity. If the equations of the gravitational field are obtained by variation of the action 
S, invariant under general coordinate transformations (13.2), then this requires that 
in the righthaad sides of these equations the Hilbert symmetric energy-momentum ten- 
sor T:” of matter fields must be used. Therefore it is this tensor by means of which the 
matter fields have to be introduced into the energy-momentum conservation law. As 
it was shown in the preceding section, only the covariant divergence of this tensor in- 
stead of the usual one vanishes by virtue of the equations of motion of the matter fields 

VWT;, = 0. (14.20) 

Generally from this equation one cannot construct any conservation laws3). 
In order to formulate the! energy-momentum conservation law in the gravitation theory 
the energy-momentum density of the gravitational field has to be defined. There are 
different definitions of this density [7, 70-761 but unfortunately each of them has 
shortcomings. 

3) There is a very special case when Eqs. (14.20) give rise to integral conserved quantities. It is 
the case when the spacetime manifold has some symmetry that leads to the existence of the Kil- 
7iag vectors EJx) [59]. These vectors are defined by the equation 

, 

(n) 

The conserved quantities Q, are constructed in the following way 

(14.21) 

(14.22) 

where the integration is spread out to the three-dimensional hypersurface Q. Let us show that Q, 
does not depend on the choice of the hypersurface a. For this purpose we consider the integral I 

(14.23) 

The integration is spread out here to the four-dimensional “cylindrical” region l2, bounded by 
t w o  three-dimensional space-like hypersurface u1 and o2 (the “ends” of the cylinder) connected 
by the side surface Z. As usual, we suppose that T;”Iz - 0. Making use of Gauss’ theorem in 
(14.23) and taking into account (14.20), (14.21), we find: 

Qn(Q1) = &n(az)- 

As an emmple of the application of this method of constructing the conserved integral quantities 
one may consider the field models in the de Sitter universe [24,68,69]. In  this case the space-time 
has it constant curvature and there are ten Killing vectors [24]. 

4* 
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The Hilbert method can be spread out to the gravitational field also, i.e. one can put 
[7 ,  70-721 

(14.24) 

n this case the total energy-niomentuiii tensor of matter and gravitational fields 

(14.25) 

vanishes by virtue of the equations of motion of gravitational field (13.3) or (13.4). Ein- 
stein's criticism of this definition and objections to it can be found in [72]. 
For the gravitational field the canonical energy-momentum tensor may be constructed 
also. Here there appear two possibilities. One inay use the Lagrangian density 
9 = I / T R  containing the second derivatives of the metric tensor which leads to the 
general invariant action functional S, = - x - l  I R f T d 4 2  or the noninvariant den- 
sity without the second derivatives of qPP(x) 

_. - 
Y = f - g  G = Ggyr;,,r:p - r;yr;o) = J - - g ~  - (1 4.26) 

where 
1 

,,It' = - - - a,( -g+ * 9 ) .  
li ---!I 

The difference of these two densities is the totaldivergence. Hcnce, they lead to the same 
equations of motion (13.3) but the canonical energy-monietuni tensors will be different. 
The first case was considered by LoRENTz [ 7 ] ,  the second one by EINSTEIN [75] 

The quantities tVLr and tVEv,  introduced here, are not general covariant tensors obviously. 
Therefore they are called pseiidotensors or the complexes of energy-nionientuii~ density 
of the gravitational field. There are other methods of definition of this density [73, 74,  
761. 
Tt follows from the equations of motion (13.3) that 

(14.29) 

Using Gauss' theorem, one can construct straightforward the integral conserved quan- 
tities. 
The main shortcoming of Eq. (14.29) is that it is covariant under affine coordinate 
transformations only. Obviously this contradicts the general covariance principle that 
is the basis of Einstein's theory. 
Here there appear the following difficulties. In the first place the introduction of the 
energy-momentum density of the gravitational field tpv is not unique. Second, due to 
the nontensorial behaviour of tpv one can choose such a coordinate system that all 
coniponents of f,' vanish in any given point of space [77, 781. On thc other hand, ina 
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flat space-time without sources of the gravitational field one can obtain nonzero values 
of t,’ by an appropriate choice of the curvilinear coordinates [7‘9, 801. 
The definition of energy in Einstein’s theory of gravitation is discussed until now 
[81, 821. 

15. Relativistic String Model 

The relativistic string is the one-dimensional object the action of which is proportional 
to the area of the world sheet traced out by the string during its motion in Minkowski 
space [83-851. If xP(t, a) is the parametric representation of the string world surface, 
then the action of the relat,ivistic string is given by 

(15.1) 

where j :  = axlat, 2 = axjaa, t = tt, G = t2, g = det llgiJ, y,, = ( c ^ x u / i a E i )  (az,/aEi), 
i, j = 1,2. The parameter a specifies points along the string, z plays the role of the evo- 
lution parameter. 
The relativistic string model can be considered as a system of four fields x”(P, t2), 
,LL = 0, 1, 2, 3 in the two-dimensional space { [ I ,  6 2 ) .  The action (14.1) is invariant tinder 
the reparanietrization 

5% = fi(t1, p), i = 1, 2. (15.2) 

These transformations are defined by two arbitrary functions and as a consequence the 
left hand sides of the Euler equations for the string must satisfy two identities. Functions 
x g ( t ,  a )  are scalars under the transformations (15.2) 

so 

where ei(() are infinitesimal transformations of parameters ti 
== ti + E ‘ ( 6 ) .  

The variation SS, which is equal to zero, has the form 

6s = d Z f [ d z Y  + d i ( f E i ) ]  = 0, 

where &Y is a form variation of the Lagrangian density 

Denoting the left hand sides of the Euler equations by Y, 

we write Eq. (14.3) in the form 

(15.3) 

(15.4) 
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A t  first we choose the variations d(E) of the independent variables t i s o  that they vanish 
on the boundary of the integration region. Then the expression in square brackets in 
Eq. (15.4) gives no contribution to 6S, and as a consequence, we find two identities 

L,Xi.’ = 0, L P 5 P  3 0. (15.5), 

Actually, these equations are generalizations of the identities (9.3) which take place in 
the relativistic mechanics of point particles. 
Taking into account the identities (15.5) one can supplement the Euler equations in the 
theory under consideration by two conditions on x J t ,  a). Usually, the isometric coordi- 
nate system on the world sheet of the string is chosen [86]. In this case we have 

(k f i ) 2  = 0. 

2, - d‘ = 0. 

The equations of motion reduce now to the D’Alembert equation for xP(s, a) 

P 

The expression in parentheses in Eq. (15.4) is the twodimensional energy-momentum 
tensor corresponding to the invariance of the string theory under translations in space P 

We set now the functions d ( E )  in Eq. (15.4) a t  first to constants and after that we sub- 
stitute ci by functions linear in ti. Taking into account identities (15.5) one obtains new 
identities 

t i ,  = 0, i, j = 1, 2 .  (15.6) 

These equations can be derived by equating to zero in Eq. (15.4) the coefficients of 
2(l) and its first derivatives E : ~ ( E )  

The first identity means that the Hainiltonian constructed by the canonicallaw vanishes 
here identically. The third identity is a constraint on the canonical variables xp and 
zP = -aY’/ak”. It can be written in the form kPzP = 0. Thus, the Lagrangian density in 
the theory of the relativistic string is singular. 
The vanishing of the parametric energy-momentum tensor in the string theory does 
not mean that there are no notions of the string energy and string momentum. As this 
theory is invariant under inhomogeneous Lorentz transforinat ions 

ZP = ‘ Ipv2”(T, a) + U P ,  

the usual energy-momentum tensor can be constructed in the same fashion as for the 
point relativistic particle. And this tensor does not vanish identically. 
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16. Conclusion 

Application of Noether’s theorems requires to determine the symmetry of the problem 
under consideration. To find the symmetry, i.e, the group of coordinate and function 
transformations under which the action is invariant may be in some cases a more diffi- 
cult task than the construction of the conserved currents. There are many examples of 
that. 
Long ago the additional integral has been known in the Kepler problem with the poten- 
tial a/r. This is the Laplace-Runge-Lenz vector [87-89] 

r R =I [vxM] + OT - = const. 
r 

where I ) f  is the angular momentum. This integral is additional to the set of ten integrals 
discussed in section 8. The connected with this integral SO(4) or SO(3, 1) symmetry of 
the classical and quantum Kepler problem has been discovered only recently [90-921. 
Another example here is the infinite series of conservation laws in nonlinear evolution 
equations integrable by t he inverse scattering method [93,94] (the sine-Gordon equation, 
the nonlinear Schrodinger equation, the Korteweg-de Vries equation). The connection 
of these conservation laws with the symmetries of the corresponding nonlinear equations 
was shown only after the explicit derivation of the conserved currents. For example, 
the infinite series of conservation laws for the sine-Grodon equation is the consequence 
of its symmetry under the infinite series of one-parameter transformation groups [95]. 
These comments do not depreciate the role of Noether’s theorems in the field theory he- 
cause the field models are constructed usually on the basis of some symmetries. In  parti- 
cular, the Weinherg-Salam model is based on the SU(2)  x U(1) local symmetry [55]. 
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