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delete(x,T): Case 1

if T has no children

if x == T.item

return empty tree

else

NOT FOUND

e.g. Delete 4 in Figure 1.
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Figure 1.

This pseudo-code 

returns the new tree 

after item x is deleted 

from tree T. 
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delete(x,T): Case 2 (A)

if T has only 1 child (left)

if x == T.item

return T.left

else

T.left = delete(x,T.left)

return T

e.g. delete 7 in Figure 1.
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Figure 1.
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delete(x,T): Case 2 (B)

if T has only 1 child (right)

if x == T.item

return T.right

else

T.right = delete(x, T.right)

return T

e.g. delete 1 in Figure 1.
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delete(x,T): Case 3
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delete(x,T): Case 3

4

8

71

3

9

2 66

71

delete(x,T): Case 3
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After deleting 5 from 

the tree. 

The node containing 

6 is called the inorder 

successor of the node 

to be deleted. 

We can also replace 

the node to be deleted 

by its inorder 

predecessor. Node 

with 4 
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delete(x,T): Case 3
if T has two children

if x == T.item
T.item = findMin(T.right) // replace T.item by

// the min. item of the right subtree

T.right = delete(T.item, T.right) 
// delete x (i.e. T.item) from the right substree

else if x < T.item
T.left = delete(x, T.left)

else
T.right = delete(x, T.right)

return T
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Running Time of BST

 findMin O(h)  where h is the height of the BST

 search O(h)

 insert O(h)

 delete O(h)
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Running time of BST (cont.)

 But h is not always O(log2 N)!                                 
Where N is the total number of nodes in the BST.

Bad !
h = O(N)
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When you insert nodes in increasing or decreasing 
order, you get a skewed tree.  

Good !
h = O(log N)
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When you insert 

nodes in increasing 

order, you get a 

skewed tree.  

Therefore h is 

actually in O(N).


