
66

delete(x,T): Case 1

if T has no children

if x == T.item

return empty tree

else

NOT FOUND

e.g. Delete 4 in Figure 1.

x

5

4

8

71

3

9

2 6
Figure 1.

This pseudo-code

returns the new tree

after item x is deleted

from tree T.

67

delete(x,T): Case 2 (A)

if T has only 1 child (left)

if x == T.item

return T.left

else

T.left = delete(x,T.left)

return T

e.g. delete 7 in Figure 1.

x

5

4

8

71

3

9

2 6
Figure 1.

68

delete(x,T): Case 2 (B)

if T has only 1 child (right)

if x == T.item

return T.right

else

T.right = delete(x, T.right)

return T

e.g. delete 1 in Figure 1.

x

5

4

8

71

3

9

2 6
Figure 1.

69

delete(x,T): Case 3

5

4

8

71

3

9

2 6

70

delete(x,T): Case 3

4

8

71

3

9

2 66

71

delete(x,T): Case 3

6

4

8

71

3

9

2

After deleting 5 from

the tree.

The node containing

6 is called the inorder

successor of the node

to be deleted.

We can also replace

the node to be deleted

by its inorder

predecessor. Node

with 4

72

delete(x,T): Case 3
if T has two children

if x == T.item
T.item = findMin(T.right) // replace T.item by

// the min. item of the right subtree

T.right = delete(T.item, T.right)
// delete x (i.e. T.item) from the right substree

else if x < T.item
T.left = delete(x, T.left)

else
T.right = delete(x, T.right)

return T

73

Running Time of BST

 findMin O(h) where h is the height of the BST

 search O(h)

 insert O(h)

 delete O(h)

74

Running time of BST (cont.)

 But h is not always O(log2 N)!
Where N is the total number of nodes in the BST.

Bad !
h = O(N)

5

3

4

2

When you insert nodes in increasing or decreasing
order, you get a skewed tree.

Good !
h = O(log N)

6

3 5

4

7 9

8

2

When you insert

nodes in increasing

order, you get a

skewed tree.

Therefore h is

actually in O(N).

