
Solving when f = 1 (or earlier notation φ = 1)
1- Using integration by parts
(see http://www.people.virginia.edu/˜bk5w/home files/trouble.pdf)
I had:
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when φ = 1⇒it becomes:
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note that the second part of the above equation (equation (2)) can be written
as (using integration by parts):

bZ
0

udv = u ∗ v|b0 −
bZ
0

vdu

Here u =

bZ
0

³
[γ(eb)]2 ∗eb´ deb and v = F (b)

bZ
0

⎧⎨⎩
bZ
0

³
[γ(eb)]2 ∗eb´ deb

⎫⎬⎭ dF (b) = F (b)

bZ
0

³
[γ(eb)]2 ∗eb´ deb

¯̄̄̄
¯̄
b

0

−
bZ
0

F (b)d

⎧⎨⎩
bZ
0

³
[γ(eb)]2 ∗eb´ deb

⎫⎬⎭
=

bZ
0

³
[γ(eb)]2 ∗eb´ deb− bZ

0

F (b)
³
[γ(eb)]2 ∗eb´ deb

=

bZ
0

¡
[1− F (b)] ∗ [γ(b)]2 ∗ b

¢
db (3)

1



Hence equation (2) becomes:
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I will assume that b is distributed uniform on [0, 1], so f(b) = 1 and F (b) = b.
Hence, in order to find optimal γ(b), we can do pointwise maximization with

respect to γ(b).
We get:
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2- Using exact differential equations:
(see http://www.people.virginia.edu/˜bk5w/home files/trouble.pdf)
Once we use calculus of varitions, we have:
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when φ = 1, it becomes:
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You can check that the above equation is exact. Hence:

F (z0(b), b) =

Z
Mdz0(b) + ψ(b)

F (z0(b), b) = −1
4

Z µ
b

z0(b)

¶3/2
dz0(b) + ψ(b)

F (z0(b), b) =
b3/2

2
p
z0(b)

+ ψ(b)

∂F

∂b
= N (exact differential stuff)

⇒ 3

4

√
bp
z0(b)

+ ψ0(b) =
1

2
+
3

4

√
bp
z0(b)

⇒ ψ0(b) =
1

2
⇒ ψ(b) =

1

2
∗ b+ constant

F (z0(b), b) =
b3/2

2
p
z0(b)

+
1

2
∗ b+ constant

F (z0(b), b) = constant (since it is exact differential equation)

⇒ b3/2

2
p
z0(b)

+
1

2
∗ b = k where k is a constant

z0(b) =
b3

(2 ∗ k − b)2

since z0(b) = [γ(b)]2 ∗ b
(see http : //www.people.virginia.edu/˜bk5w/home files/trouble.pdf)(6)

γ(b) =
b

2 ∗ k − b for b 6= 0 (7)

One thing in this solution is there is still the unknown parameter k in there.
I know form the integration by parts solution that k = 1 and my hunch is that
I think I can obtain that if I can plug in γ(b) = b

2∗k−b into equation (1) and
numerically find the optimal value of k, which has to be 1 for φ = 1.

3- Another solution:
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I have in hand:
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Note that the variable p(b) is actually equal to γ(b) (Since z0(b) = u(b) and
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Again I need to find the constant (which is k). Since I know it has to be
γ(b) = b

2−b , the constant k = − ln 2. Again my hunch is that I can plug in
γ(b) = b∗exp(k)

1−b∗exp(k) in equation (1) and find the optimal cosntant k numerically

(which in this case has to be − ln 2).

Answer to edit-1: I agree that the equation can have (I think it has)
multiple solutions when b = 0.

Answer to edit-2: It is good news since I need γ(b) nondecreasing in b. But
do you know a formal proof for that.

Thanks for your interest and time you spend on this problem.
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