
On partitioning an even number into a pair of (relative) primes 
 
Let's look at  this  with the help of an example: 
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  ( 0 3i  , 0 5k  , 0 7l  ) 

  
yields a structure which consists of r    (3 2)*(5 2)*(7 2) 15     components forming   

the eight different  partitions  (seven asymmetric  plus  one symmetric) as follows: 
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To each component, a unique number  (which may be called a relative prime) 

 

 v (0 2 3 5 7)v     ,              (2) 

 
can be assigned,   juxtaposing  to (1) the isomorphic structure: 

 
 

1 67 127 151 169 109

121 157 37 31 79 199 68(mod(2 3 5 7))
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all numbers shown in the bracket on the left containing none of the divisors 3,5,7 . For 

68m  2 2(7 68 11 )  , it includes all the partitions into prime numbers (including 68 1 67 

and excluding 68 7 61  ,  for evident reasons). 
 
The structure (1) can be extended by including one higher prime number after another. 
 

Thus, for 122m   ( 2 211 122 13  ) one finds r  (3 2) (5 2) (7 2) (11 2) 135        relative 

primes v  (0 2*3*5*7*11)v  , forming 68 pairs (67 asymmetric and one symmetric), among 

them the four partitions into prime numbers: 13+109, 19+103, 43+79, 61+61. 
 

And, for 176m  2 2(13 176 17 )  , one finds 

r  (3 2) (5 2) (7 2) (11 1) (13 2) 1650          relative primes: v  

(0 2 3 5 7 11 13)v       , 

 forming 825 asymmetric pairs, among them four partitions into prime numbers: 19+157, 37+139, 
67+109, 73+103, 79+97.  
 
 
Conclusion 
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and will admit 
 

  
1

( )
2

nr m  asymmetric partitions ( ( )nr m being an even number) 

 
1

( ( ) 1)
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nr m   asymmetric partitions, plus one symmetric (if ( )nr m is an odd number) 

. 

With the exception of partitions which contain one of the prime numbers ip  1( 3 )i np p p   ,  

all partitions of m into prime numbers will be found among these partitions (one at least). 
 


