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Orthogonal Functions||

Orthogonal functions — Fourier-Bessel series

Remember the Jy Bessel function appeared as the radial part of the solution of the wave
equation with cylindrical symmetry. The Jo Bessel function looks like this.
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The Jo(r) Bessel function

Unlike the sin and cos functions, the zeros of the Bessel functions are not equally spaced.
So if we are trying to satisfy the boundary condition of f(R) = O then only certain values
of the arguments of the J, function are allowed since there must be a zero at the
boundary. We are concerned with theinterval O<r < R.

We denote the m™ zero of Jo by am. Thatis,
Jo(a,,)=0.
Then
Jo(ﬁr):o when r =R.
R
So if we have the boundary condition
f(R)=0
then

f(r)= Zam\]o(a—r\;“rj

will satisfy the boundary condition. This seriesis called the Fourier-Bessel series.

Assuming we can write f(r) as a Fourier-Bessel series, the question is how to determine
the coefficients an. Thiswill be helped significantly if the Jo(ar,r / R) are an orthogonal
set of functions, for positive integer m. We shall see that they are.

—_ R am an
I —_[0 r JO(Fr)JO(ErJdr'

The orthogonality integral is
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Observe the factor r in theintegral. Thisiscalled aweight function, and it is part of the
definition of the appropriate inner product for these basis functions. Mathematica can
perform the integral for us, giving (at this stage am, and a,, are just variables):

R2
I = az _az {am‘JO(an)‘]l(a m) -a n‘]O(a m)‘]ltY n)} .
Here we see the J; Bessel function has appeared. Since we know that J,(a,,) and
Jo(a,) are zero, we can be sure that | will vanish, except possibly in the casewhenm =

n. Since then both the numerator and the denominator vanish, we must look alittle more
closely. The best thing to do is to evaluate the integral directly for m = n. Mathematica
gives the following result; here again the J; Bessel function appears. The normalisation
factor is

R 2[00y _ R* .,
JO r Jo(ﬁr)dr —7J1 (a,)-
This enables us to write the orthogonality relation for the Jo Bessel functions as

R a., a, R?
JO r Jo(ﬁr)‘]o(?r)dr :7Jf(am)5mn.

Deter mining the Bessel coefficients
The coefficients of the Fourier-Bessal series

- a
f(r)= Jo| ==r
1)=5 2. o]
may be determined from the orthogonality properties of the Jp Bessel functions. To find
the a,, we use the basic rule:

RULE Take the inner product of the function f(r) and one of the basis functions. In other
words, multiply f(r) by r and by one of the basis functions, say J,(a,r / R) and integrate
over theinterval O<r < R.

We thus have

R an —_ - R am an
_[O r f(r)Jo(Erjdr —”;amj.o r JO(FrJJO(Erjdr :

On the right hand side we recognize the orthogonality relation for the basis functions.
Thisgives

0

R a R?
_[O r f(r)JO(E“rjdr :”;am? I )0

R2
= a‘n 7 ‘]lz(an)
since the Kroneker delta has the effect of picking out just the n term of the sum.

Finally, this gives the expression for the Bessel coefficients as
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_ 2 R a,
a, —W(an)‘[o r f(r)JO(Erjdr .

Thisisthe analogue of the Euler formula, for the Bessal coefficients.

Example 1 Cos segment
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Quarter of acosine cycle

The function isdefined ontheinterval 0<r < R. It isspecified by

f(r):cos(z—lrj.

We want to find the Fourier-Bessal series

2 a
f(r)= Jo| —2r
n=3a, =
for thisfunction. Thiswill be done with the formula we have obtained for the Bessal
coefficients

2 R a,
a, :W(an)]o r f(r)JO(Erjdr :

In this case the integral for the coefficientsis

_ 2 R m a,
a, _—RZJf(an)-[O rcos(ﬁrj\lo(ﬁrjdr .

Theintegral is best simplified through the substitution p=r /R, giving

2 1
=———| pcogmp/ 2)J,( a, p)dp.
a'n le(an)_'-op i p ) 0( np) p
Mathematica can do these integrations numerically, for different n. The first few
coefficients are

a; = 1.04952

a = -0.0627929

az = 0.0188382

a, = -0.00848181
as = 0.00465136
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We can represent the coefficientsin a bar chart:
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Bessal coefficients of cosine quarter cycle

Convergence of the Fourier-Bessal series
Using just the first term of the series gives the “fundamental” component
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First term of the Fourier-Bessdl series

This respects the boundary condition at r/R = 1. Adding the next term gives adlight
improvement
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First two terms of the Fourier-Bessd series

We can see how the terms gradually build up by looking at the first few partial sums
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Sums of one, two, three and four terms of the Fourier-Bessel series

Finally it isinstructive to examine the error resulting after using just four terms of the
series. The graph below shows the difference between this approximation and the
original function
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Example2 Parabola
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Parabola segment

The function is specified by
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£(r) :1—(LRJ2 0<r<R

so the expression for the Bessel coefficientsis

_ 2 R ry a,
a, —W(an)jo r(l_ﬁ) JO( R r)dr .

Theintegral is best ssimplified through the substitution p=r /R, giving

3, = ﬁﬂp(l— p)" Jo(a,p)dp.

Mathematica can do these integrations numerically, for different n. Thefirst few
coefficients are

a; = 1.10802226121862812

a = -0.139777505298383196
az = 0.0454764707273626722
as = -0.0209909018240905798
as = 0.0116362429798040678

We can represent the coefficientsin abar chart
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Bessdl coefficients of a parabolic segment

Convergence of the Fourier-Bessel series
Using just the first term of the series gives the “fundamental” component
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First term of the Fourier-Bessdl series
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Asin the cosine casg, thisis afairly good approximation already. The boundary
condition at r/R = 1lisobeyed (asit must be). Adding the next term gives aslight
improvement

O.‘2 0.‘4 O.‘ 6 0.‘ 8 1
First two terms of the Fourier-Bessd series

We can see how the terms gradually build up by looking at the first few partial sums

0.2 0.4 0.6 0.8 1
Sums of one, two, three and four terms of the Fourier-Bessel series
Finally it isinstructive to examine the error resulting after using just four terms of the

series. The graph below shows the difference between this approximation and the
original function
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Error in the Fourier-Bessd series
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Example 3 Box function
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Box function

Thisfunction is defined by
f(r)=1 0<r<R/2
=0 R/2<r<R’
In this case the integral for the Bessel coefficientsis

2 R/2 a
=————| rJ | —==r |dr.
= R b (RJ
Theintegral is best simplified through the substitution p=r /R, giving

2 12
= Jo(a.p)dp.
an le(an)J.o p O( np) p
Mathematica can do these integrations numerically, for different n. Thefirst few
coefficients are

a; = 0.679913,
a, = 0.630669,
az = -0.162771,
as = -0.377686,
as = 0.124119,
as = 0.297036,
a; = -0.105339,
ag = -0.253308,
ay = 0.0933174,

a0 = 0.224716
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We can represent the coefficientsin a bar chart

Bessal coefficients of box function

Conver gence of the Fourier-Bessel series
Using just the first term of the series gives the “fundamental” component
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First term of the Fourier-Bessdl series

Thisreally does not look anything like the box function. Adding the second term makes
avery dight improvement:
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First two terms of the Fourier-Bessd series

We see that adding the second term has caused the curve to go below zero, which helps
with sharpening up the discontinuity at r/R = %. If weliik at thefirst few partial sums
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together then we can see how the various terms contribute to making an approximation to
the box function
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Sums of one, two, three and four terms of the Fourier-Bessel series

It isclear that we need quite afew terms to make arealistic approximation to the box
function. That iswhy we evaluated so many coefficients originally. This should also be
apparent from the bar graph of coefficients; they do not fall off terribly fast, as the cos
and parabola ones did.

The sum of ten termslooks likeit is going in the right direction:
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Ten term Fourier-Bessal series for box function

The“wiggles’ here are the Gibbs phenomenon, because of the discontinuity in the
function.
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Example4 Triangle function
1
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Triangle function

Thisfunction is defined by
f(r)=1-r/R 0O<r<R.
In this case the integral for the Bessel coefficientsis

_ 2 R r a,
a, _W(an)-[o r(l_E)Jo(Er)dr .
Theintegral is best ssimplified through the substitution p=r /R, giving
2 1
= 1-p)J,(a.p)dp.
= 32 [ p(1-p)3(a,p)dp

Mathematica can do these integrations numerically, for different n. The first few
coefficients are

a; = 0.784519
a; = 0.0686889
az = 0.0531141
as = 0.0173627
as = 0.0169808
as = 0.00781659
a; = 0.00818725
ag = 0.00444123
a = 0.00478526
ayo = 0.00292601.

PH2130 Mathematical Methods 11



Royal Holloway University of London Department of Physics

We can represent the coefficientsin a bar chart
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Bessel coefficients of triangle function

Conver gence of the Fourier-Bessel series

Using just the first term of the series gives the “fundamenta” component
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First term of the Fourier-Bessdl series

The latter part of this curve looks reasonably straight but the beginning is all wrong.
Adding the second term makes a slight improvement:

0.2 0.4 0.6 0.8 1
First two terms of the Fourier-Bessd series
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We can see that adding more terms to the series improves the short —r behaviour. Itis
obvious that there will always be aproblemat r = 0 since the Bessel functions are flat
there, while we want a non-vanishing first derivative for the triangle.
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Sum of one, two, three and four terms of the Fourier-Bessd series

With ten terms to the series things are looking pretty good
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Ten term Fourier-Bessel series for the triangle function

Finally we show the error resulting after using ten terms of the series. The graph below
shows the difference between this approximation and the original function.
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PH2130 Mathematical Methods 13



Royal Holloway University of London Department of Physics

Example5 Full cycleof asinecurve
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Full cycle of asinecurve

The figure shows afull cycle of asine curve, shifted so that the boundary condition
f(R) = Oissatisfied. The function is defined by

f(r)=1-cof2m /R) 0O<r<R.
In this case the integral for the Bessel coefficientsis

a, = #(an)_[:r (1—005(%1))\]0(%0& .

Theintegral is best ssimplified through the substitution p=r /R, giving

2 1
= 1-coq2mp))J,( a, pdp.
an Jf(an)J.op( i p)) 0( np) p
Mathematica can do these integrations numerically, for different n. The first few
coefficients are

ap = 212341

a, = -1.33636
az = -0.989625
as = 0.292942
as = -0.140432
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We can represent the coefficients as a bar chart
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Fourier-Bessel coefficients of afull sine cycle

Convergence of the Fourier-Bessdl series
Using just the first term of the series gives the “fundamenta” component
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First term of the Fourier-Bessdl series

Thislooks nothing like acycle of asine curve. Adding the next term shows that things
are moving in the right direction:
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First two terms of the Fourier-Bessd series

The left hand side is coming down substantially, but there is along way to go. If we add

afew more terms then thingsimprove. The next figure shows the behaviour for one, two,
three and four terms. It is quite clear how the terms are contributing to obtaining the
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required function. Although the original function does not go negative, nevertheless we
can see that some of the approximations do.
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Sum of one, two, three and four terms of the Fourier-Bessd series

The fifth approximation is even better, although it till does not look quite right.
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Fiveterm Fourier-Bessel seriesfor asine wave cycle

Finally we show the error resulting after using five terms of the series. The graph below
shows the difference between this approximation and the original function.
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Error in the Fourier-Bessal series
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The important concepts of this section are:

» The shape of the Jp Bessel function

» Orthogonality of this function with different arguments

* Waeight function in the orthogonality integral

o Zeros of the Jyo Bessel function

» Fourier-Bessel series: defined oninterval 0<r < R, with boundary condition
f(R)=0.

» Formulafor the Bessel coefficients

*  Small number of terms needed when the coefficients decrease rapidly
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