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Paideia Real Numbers, Continued: 
 
Real numbers that are not algebraic are called "transcendental".  We have just proved (in part 
1) that transcendental numbers must exist (since algebraic real numbers are countable but all 
real numbers are uncountable), indeed an uncountable infinity of them, but we have not 
produced a single one.  Spivak gives a nice proof in his calculus book that the famous number 
"e", the base of the natural logarithms, is transcendental.  It turns out also that π, the 
circumference of a circle of radius 1/2, is transcendental.  So these are very exotic numbers.  
21/2 is an unusual number but if you square it you get an integer so it really isn't too strange.  
But no matter how large a power of π you take you never get an integer.  Also if you add up a 
whole lot of different powers of π you still don't get an integer.  (Why not?)  Since 
transcendental numbers are so different from the more familiar numbers it is hard to study 
them, hard to think of examples or how to name them, and hard to recognize whether a given 
number is one of them.  Which means basically that I don't happen to know anything about 
them, so I'm telling you that they are hard to understand.  How would I know?  I never tried.  
So ignore what I said. 
     Yes, there really is a square root of 2  
Now that we have proven that there is no rational number whose square is 2, and have 
introduced the much larger class of numbers represented by all infinite decimals, we should 
justify our construction by proving that there does exist an infinite decimal whose square is 2.  
Recall we don't even know yet how to add and multiply infinite decimals.  So this will take us 
a little while.  We will eventually follow the same approach you already are familiar with 
which lies behind our use of 1.414 to approximate the square root of two.  That is, (1.414)2 < 2 
< (1.415)2.  So we use as an approximation to the square root of 2, to the nearest nth decimal 
place, the largest such number whose square is less than 2.  So we must begin by discussing the 
notion of "order" on the real line, which merely means determining when one number is larger 
than another.  
 
 Discussions of how large, or equivalently how small, a number is have great importance for 
us, since a real number (an infinite decimal) is essentially just something that can be 
approximated by certain rational numbers (i.e. by the associated sequence of finite decimals).  
Thus it is interesting to know how close a given rational number is to the real number it is 
supposed to approximate, or equivalently, how small is their difference.   
 
[From now on, virtually everything in analysis, every problem solved throughout calculus and 
beyond,(as opposed to those solved by finite algebra), will always proceed to specify the 
solution to a  particular problem simply by giving an infinite sequence of approximate 
solutions to the problem, and showing that the actual solution is the unique number, or object, 
which is being approximated by that sequence.  For example, to prove that there is a real 
number whose square is equal to 2, we produce an infinite sequence of rational numbers whose 
squares are none of them equal to 2, but whose squares  get closer and closer to 2, and we say 
the real square root of 2 is the real number determined by our sequence of rationals.  Of course 
we have to do that somewhat carefully.  And before we can even begin to attempt this we have 
to know how to square a real number.]   
1) Remark:  Before we start trying to define addition and multiplication for infinite decimals 
let's assume that we know how to do these things for finite decimals, since in fact all of us do 
know this.  Let us assume also that all the familiar properties are known to hold for these 
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operations, which means the properties Spivak calls P1 - P12, in chapter 1 of his book.  In 
particular we know what it means for one finite decimal to be greater than another and we 
know therefore what it means to be positive (i.e. greater than 0).  We will write "a > b" for "a is 
greater than b" and "a < b" for "a is less than b".  Then we also assume, for finite decimals, that 
if a < b and c > 0, then ac < bc.  Also if a < b and c is any number then a+c < b+c.  We know 
also that .000000....1, with a 1 in the nth place, is equal to 1 divided by 10n.  Now we try to 
extend these properties, so that they make sense, and are still true, for the case of infinite 
decimals. 
 
Ordering, upper bounds, and least upper bounds 
 
2).Remark: Because I wished to motivate the concept of a real number by evoking its 
historical origin as a tool for measuring, i.e. comparing, lengths we began from the notion of 
points on the line, for which we had to invoke certain axioms, the Archimedean and 
completeness axioms.   Now that our intuitive motivation is over you may forget all of it if you 
wish and just start from scratch now, considering that a real number is an infinite decimal, but 
remembering that those represented by finite decimals, and only those, have two decimal 
representations, the second one ending in all nines. 
 
3). Definition of  "greater than": 
Given two (positive) infinite decimals how do you tell which one is bigger?  First make sure 
you don't have one that ends in all nines; [if you do, change it for the other one, the finite 
version that ends in all 0's.] Okay, then the one with the bigger integer part, if there is one,  is 
the bigger number.  Or, if they both have the same integer part, then the one with the bigger 
tenths digit is the bigger.  If they have the same tenths digit, then the one with the bigger 
hundredths digit is the bigger. And so on.  I.e. unless the two numbers are the same, then 
eventually one of them has to have a bigger digit, and as soon as one does, then that one is the 
bigger number regardless of what the rest of the digits are. 
 
4). Exercise: Define how to tell which of two infinite decimals is bigger, when one or both of 
them may be negative.  Check that when applied to finite decimals our definition of "greater 
than" has the right meaning. 
5). Exercise: Prove that if x and y are any two real numbers, that precisely one, and not more, 
of these statements is true:  x equals y, or x is less than y, or x is greater than y . 
 
Now we can prove the Archimedean properties: 
 
6). Theorem:(Arch I):  If x is any real number then there is an integer n which is bigger than 
x. 
Proof:  Just take n to be one more than the integer part of x. 
 
7). Theorem:(Arch.II):  If x is any real number bigger than zero, there is an integer n so that 
1/n is smaller than x. 
Proof:  If the integer part of x is bigger than zero,  then .1=1/10 is smaller than x. That takes 
care of that case.  If the integer part of x is zero, just go out until you find a non-zero digit in 
the expansion of x.  Then the number which has all zeros one place farther out than x does, but 
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then has a 1, and all zeros after that, is smaller than x and has the form 1/(10)k = 1/n, where 
n=(10)k. 
 
We get a very important corollary from this seemingly simple property: 
 
8). Corollary:  If x is a non-negative number which is smaller than 1/n, for every n, then x is 
zero. 
Proof:  This is a rephrasing of the previous theorem, which says if it were not zero then some 
number of form 1/n would be smaller than it.  QED. 
 
Actually since I've been so picky about our not knowing how to subtract or add yet, we need 
the  slightly stronger version of Archimedes' axiom: 
 
9).Lemma (Arch.3):  If x and y are positive real numbers and x<y, then there is a finite 
decimal a that lies between them in the sense that it is greater than x and less than y. i.e. such 
that  
x < a < y. 
Proof:  First make sure neither  x nor y ends in all 9's.  Then, suppose x and y agree out 
through the nth decimal place but y is larger in the (n+1)st place.  Since we may assume x does 
not end in all 9's, it is possible to go out further than the n+1st place and find an entry in x 
which is less than a 9.  Let a be the finite decimal obtained by letting a agree with x out to that 
digit but then replace that digit by the next larger digit. Then complete a by putting all zeros 
after that. Then a is greater than x but less than y.  QED. 
 
The class gave a beautiful solution of the problem of how to define the square of two positive 
real numbers, as reported on by Nicos, in Athens on Friday.  From now on, this is an attempt to 
write up your solution, and to include the refinements that we began on Friday, i.e. the 
definition of  "approaching zero", and the proof that, as you well understood, this is indeed the 
necessary extra ingredient to insure that a nested sequence of  intervals will have only one 
common point. 
 
Definition:  A sequence {rn}n≥1, of real numbers is said to approach zero, as n approaches 
infinity, if and only if, for any given positive real number ∂ there exists a corresponding 
positive integer N, such that for every m≥N, we have |rm|≤ ∂.   In shorthand, we write rn-->0, 
as n-->infinity.  
[That is, if you tell me how small you require the numbers to be, say less than some positive 
number e, then it must be true that if you go out far enough in the sequence,  for example 
farther than the Nth entry, then all the numbers which are that far or farther out, are guaranteed 
to be smaller, in absolute value, than your ∂.  This says that although I do not claim that the 
numbers ever get to be equal to zero, they do eventually get as close to zero as you want.  The 
question of finding a limit is not one of determining what number is actually reached, but of 
determining what number is being approximated.]   
 
Here now is the basic uniqueness result: 
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10) Corollary: If  x and y are any two real numbers, and if a0, a1, a2, ...., and b0, b1, b2, ......, 
are two infinite sequences of finite decimals such that  we have  an≤x≤y≤bn ,for all n , and 
such that  (bn-an) approaches zero, as n approaches infinity, then x=y. 
Proof:  If not, so that in fact x < y, then the previous corollary would give us a finite decimal d 
such that x < d < y .  Applying the corollary again gives us another finite decimal e such that   
d < e < y.  Then we would have an < d < e< bn for all n, where now all these numbers are finite 
decimals.  Subtracting d from the last three of them now gives 0 < e-d < bn-d.  On the other 
hand subtracting an from the first two of them gives 0 < d-an, and adding bn-d to this gives  
bn-d < bn-d+(d-an) = bn-an.  Putting these all together gives 0 < e-d < bn-d < bn-an, for all n. 
This, however gives a contradiction, since then ∂ =(e-d) would be a positive number that (bn-
an) always stays greater than, in contradiction to the assumption that (bn-an) "approaches 
(arbitrarily near to) zero".  QED.  
 
11): Corollary:  If [a1,b1], [a2,b2],... is an infinite sequence of closed bounded nested 
intervals, whose end points are finite decimals, and whose lengths, (bn-an), approach zero, then 
there is at most one real number which is in all of the intervals. 
Proof: This is essentially what was proven. 
 
Now we will begin the proof of the existence of at least one such point, i.e. of the completeness 
property. 
 
12). Upper bounds:  Let S be a set of real numbers, and call b an upper bound for S if b is a 
real number and if b is at least as big as every number belonging to S. (Note that if S is the 
empty set then every number is an upper bound for S.) 
 
13). Least upper bounds:  If S is a set of real numbers, a least upper bound for S is a number 
L such that L is an upper bound for S, and no number smaller than L is an upper bound.  [Note 
that it is not required that the least upper bound should itself belong to the set S, but only that it 
shall be a real number.] 
Advice:  Memorize those important definitions exactly as they are given. 
 
14). Problem: Prove that the empty set has no least upper bound, and that any set has at most 
one least upper bound. 
 
The following theorem expresses the most absolutely fundamental  property of the real 
numbers which distinguishes them from the rationals: 
 
15). Theorem:  Every non empty set S of real numbers which has an upper bound, has a 
least upper bound. 
Proof:  Again assume our numbers are all positive (to make them easier for me to think about).  
We think of the reals as given by infinite decimals, as usual.  Note first that since our set S is 
bounded above, some integer is an upper bound, by Arch. 1.  Moreover since the set is non-
empty, some integer fails to be an upper bound.   Thus there is a smallest integer which is an 
upper bound.  This is not of course necessarily the (real) least upper bound we are looking for , 
since it may not be the least real number which is an upper bound, it is merely the least integer 



5 

 
 
 

which is one.  Now we define the least (real) upper bound x of the set S one digit at a time.  To 
define the integer part, take the largest integer that is not an upper bound for S, i.e. one less 
than the smallest integer upper bound.  Now among the numbers { n.0, n.1, n.2, n.3, n.4, ....., 
n.9},  there is exactly one such that it is itself not an upper bound for S, but such that you get 
an upper bound  by adding  .1 to it.  Let a1 be the digit between 0 and 9 in which this number 
ends.  Then we state that our number x starts out  n.a1.  Now among the numbers {n.a10, 
n.a11, n.a22, ..., n.a19} there is again exactly one such that, it is not itself an upper bound for 
S, but such that you get an upper bound by adding .01 to it.  Let a2 be the appropriate digit, and 
then our number x starts out  as n.a1a2.  Continuing in this way we get at least a prescription 
for constructing an infinite decimal x=n.a1a2a3........., and one which I claim is the least (real) 
upper bound of S. 
We must check two things: 
1) x is an upper bound for S 
2) No number smaller than x is an upper bound for S.   
Let's try 2) first.  Now our construction may yield for x a decimal that ends in all 9's, (apply it 
for instance to the set S={.9, .99, .999, ....}), but even if it does, any number smaller than x will 
be given by a decimal which equals x up to some point and then has a digit which is smaller 
than the corresponding digit of x.  So if y is a smaller number than x, then look at the first digit  
y has which is smaller than the corresponding digit of x.  By construction of x, the decimal 
which agrees with x out to, and including, this digit is not an upper bound for S.  Moreover it is 
at least as large as y, so that y too is not an upper bound. QED for 2). 
Now we try 1).  If x were not an upper bound for S, then there would exist a number z in S 
which is larger than x, i.e. x<z and z´S.  Now if x=a0.a1a2..., then write xn=a0a1a2...an, for the 
finite decimal that agrees with x out through the nth decimal place and then has all zeros.  
Also, define yn=xn+(10)-n, so that (by construction of x), for all n, xn is not an upper bound of 
S but yn is an upper bound.  Since zŸS then z≤yn for all n.  Thus we have  
xn ≤ x < z ≤ yn, for all n.  Since however yn-xn = (10)-n ¨ 0, this contradicts Theorem 10, 
which says that then x = z.  QED.  
 
Now we can prove the completeness property for infinite decimals which, for points on the 
line, we earlier took as an axiom. 
 
16). Theorem:  (Completeness of the real numbers):  If [a1,b1], [a2,b2],.....is any infinite 
sequence of closed, bounded, nested intervals, whose endpoints are finite decimals, and such 
that the sequence of their lengths, (bn-an), approaches zero, then there is exactly one real 
number which lies in all the intervals. 
Proof:  Corollary 11 shows there is at most one such point so we have to prove there is at least 
one.  Let S be the set of all left end points of the intervals, i.e. S={an}.  Then b1 is an upper 
bound for S and a1 is in S so S is not empty and is bounded above, and thus has a least upper 
bound, which we call x.  Then we claim that x lies in all the intervals.  Since x is an upper 
bound for the a's, we have an≤x, for all n.  Moreover, since every bm is an upper bound for the 
set of a's, and x is the least upper bound no b can be less than x.  I.e. x≤bn for all n.  Thus for 
all n, an≤x≤bn, i.e. x is in all the intervals.QED. 
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17). Lemma:  If c is any finite decimal, then the sequence {c/(10)m} approaches zero as m 
approaches infinity.  
Proof:    Let ∂>0 be any given positive number.  Then by Theorem 7 we can find an n such that 
(1/n)<∂  Now by Theorem 6 choose an integer k so large that k>c.  Then since (10)k > k > c, 
we have (c/(10)k) < 1.  Moreover, (10)n > n, so that 1/(10)n < 1/n.  Thus (c/(10)k+n) < 1/n, 
too.  Do you see why?  Thus for N=n+k, we have (c/(10)m) < ∂, whenever m ≥ N.  
Consequently, the lemma is proved. 
 
 
How to add two positive real numbers: 
18). Definition/Theorem: 
Let a=a0.a1a2a3a4...., and b=b0.b1b2b3b4......., be the two reals. To add them, Steve's idea was 
to go back to the sequence of intervals with end points given by finite decimals, add the 
endpoints, and get a new sequence of intervals and then try to show this new sequence of 
intervals contained a unique point. That point of course should be a+b.  So recall the 
appropriate sequences of intervals:  from the decimal for  a, we have  { [a0,a0+1], 
[a0.a1,a0.a1+.1], [a0.a1a2,a0.a1a2+.01],..........., and then from b, we get the same sort of 
sequence only with b's instead of a's.  Okay, now Steve's construction tells us to add the left 
endpoints of the a-intervals to the left endpoints of the b-intervals in order to get the left 
endpoints of a new set of intervals, then do the same with the right endpoints.  So we have 
these intervals: [a0+b0,a0+b0+2], [a0.a1+b0.b1,a0.a1+b0.b1+.2], 
[a0.a1a2+b0.b1b2,a0.a1a2+b0.b1b2+.02],........  Now we must check that these intervals do 
indeed have exactly one common point. Since all the intervals are closed and bounded by 
definition, we must check that they are nested.  Looking at the sequence of left endpoints, we 
see that they are getting larger, or at least not getting smaller, and if you look hard at the 
sequence of right endpoints you will see that they too are either getting smaller or at least not 
getting larger.  To say it another way, the intervals are nested. Now another look at these 
intervals shows that, for the nth interval, the right endpoint minus the left endpoint is equal to 
2/(10)n.  Consequently, (bn-an) ¨0, so that, by thm. 16, indeed the intervals contain exactly one 
common point. QED. 
 
Definition: The unique point common to all the intervals in definition 11 is defined to be the 
sum, a+b, of the real numbers a and b. 
 
Remark:  After Steve's insight has shown us the way to define this, we can look back with 
hindsight and observe that certainly this was the right way to do things.  Why? Well we wanted 
to define addition so that the same properties continued to hold which held for adding rational 
numbers.  That means that if a≤x≤b, and c≤y≤d, then we would want to have a+b≤x+y≤c+d.  
Steve's definition is precisely the one which is forced on us if we want this property to continue 
to hold.  I.e. it is the only possible definition which has a chance of making this property 
continue to be true for all reals. That is , either this is the good definition, or else there is no 
good definition.  To check that it really is the good definition, we would have to prove that all 
the usual properties do hold for this definition, i.e. Spivak's properties P1-P12.  
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19). Problem:  Note that we have been assuming our numbers were positive.  How do you 
define addition of a positive and a negative number?  I.e. how do you define subtraction? 
20). Exercise:  Use this definition to check directly that a+b=b+a, for any two real numbers. 
21). Exercise:  Think about, and write down, what would be the first few steps of checking  
associativity. 
 
Now we recap Nicos's explanation of how to define the square of two real numbers. 
 
How to define squaring, as solved by the class 
Let x=a0.a1a2... be any real number, and define for each n, xn=a0.a1a2..an, and 
yn=a0.a1a2...an+(10)-n.  Then xn≤x≤yn, for all n.  We consider the intervals [(x1)2,(y1)2], 
[(x2)2,(y2)2], ..., and the claim is that they contain a unique point which we will then define as 
x2.  Since we are assuming the familiar properties of squaring for the finite decimals, it follows 
that this is a nested sequence of bounded closed intervals, so one must only check that their 
lengths approach zero.  We need a definition and a lemma: 
 
Definition: A sequence {rn} is called bounded if there is some real number B such that |rn|≤B, 
for all n.  I.e. there is some one number which is at least as big as the absolute value of 
everything in the sequence.  
 
22). Lemma:  If {rn} is a sequence of finite decimals which approaches zero, and if {sn} is a 
bounded sequence of finite decimals , then the sequence of products {rnsn} also approaches 
zero. 
Proof:  Let ∂>0 be any given positive number.  We must show it is possible to pick an integer 
N so that if m≥N, then |rmsm|<∂.  Pick an integer k so that (1/k)<∂  Then consider ∂1= 1/(kB), 
where B is an integer and a bound for {sn}.  Since {rn}-->0, there is an integer N such that for 
m≥N, we have |rm|<∂1=1/(kB).  Then B|rm|<1/k.  Moreover, since B is at least as big as every 
|sn|,  m≥N also implies that |rmsm| ≤ B|rm| < (1/k )< ∂. QED. 
 
Corollary:  The lengths of the intervals [(xn)2,(yn)2] considered above, do indeed approach 
zero. 
Proof: The lengths are equal to (yn)2-(xn)2 = (yn- xn)(yn + xn).  Since (yn-xn) = (10)-n, the 
sequence of first factors approaches zero.  Since 2x1 ≤ yn+xn ≤ 2y1, for all n, (why?), the 
sequence of second factors is bounded.  Consequently the product, i.e., the sequence of lengths, 
goes to zero as claimed.  QED. 
 
Corollary: If x is any real number and if xn and yn  are defined as above then there is a unique 
real number which we will call x2, such that for all n, we have (xn)2 ≤ x2 ≤ (yn)2. 
Remark:  From the proof of the completeness property it follows that we could have 
equivalently defined x2 as the least upper bound of the sequence {(xn)2}. 
Exercise:  If x and y are two positive reals such that x < y, then x2 < y2. 
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At last we can prove there is a square root of two. 
Theorem:  There does exist a real number x such that x2=2. 
Proof:  We define x one digit at a time.  Let a0 be the largest integer whose square is not 
greater than 2, i.e. a0=1.  Then let a1 be the largest digit from 0 through 9 such that a0.a1 has 
square less than 2, i.e. a1=4.  Continuing in this way define x=a0.a1a2....... so that for each n, 
xn=a0.a1a2...an is the largest finite decimal which has all zeros after the nth decimal place, and 
whose square is less than 2.  Then if yn=xn+(10)-n, we have for all n, (xn)2<2<(yn)2.  But then 
the real number 2 satisfies the property that defined the number x2, according to our 
definition~  That is, it lies in all the intervals defining x2, and since no other number does, we 
must have x2 = 2.   
#22). Problem:  Use Steve's method to define the product of two positive real numbers. 
#23). Problem:  Prove that a positive real number has a multiplicative inverse. (Given a real 
number x >0, tell how to define a certain suitable real number y, and then prove that xy=1). 
 
Remark:  Without going through all the details, I propose now to take for granted that our new 
definitions for adding and subtracting and multiplying and dividing real numbers can be made 
also for negative reals and have all the properties P1-P13, (P13 is in chapter 8 of Spivak). [As 
usual, we define division as multiplication by the inverse.]  Those are all the properties needed 
to completely describe the real numbers and to distinguish them from all other sets of numbers.  
The proof that any set of numbers that also has these properties must be exactly like (i.e. 
"isomorphic to") the real numbers is given in chapter 28 of Spivak. You may find it interesting.  
It is not as tedious as the actual construction of the real numbers, of which we have done only a 
portion. 
 
Factoring integers into primes 
Now let's pause and do some arithmetic properties of the integers. 
A fundamental property of the positive integers, which is a powerful tool for proving things 
about them is the following "well-ordering" property: 
 
Axiom:  Every non-empty subset S of the positive integers contains a smallest element.   
[Remark:  Since this element is required to actually be in the set S, this is different from the 
least upper bound property.  This new property is false for the positive reals.  For instance the 
infinite set of reals of form 1/2, 1/3, 1/4, 1/5, ...., contains no least element.  Its greatest lower 
bound is zero, but that is not in the set.] 
 
Theorem:  Every positive integer greater than one can be factored into positive prime factors 
in exactly one way. 
Proof: The existence is the easy part.  If there is an integer x>1 that does not factor into 
primes, then by the well-ordering axiom, there is a smallest such positive integer.  I.e. there is 
an x>1 that does not itself factor, but such that every smaller integer greater than one does 
factor.  But this is impossible, for our number x cannot itself be prime, or else it would already 
be factored into primes, with just one factor!  Therefore it can be factored into two factors both 
of which are smaller than x and greater than 1.  But then both of the factors, being smaller than 
x, will have prime factorizations, and then by putting the two factorizations together, we would 



9 

 
 
 

get a factorization of x.  This contradiction shows that no such smallest nonfactorable number 
x can exist, and hence indeed no non-factorable numbers exist at all. 
Uniqueness is harder, and may have been proved first by Gauss.  The key lemma usually used 
nowadays, is to show: if a prime integer p divides a product of positive integers ab, then p 
divides either a or b.  A nice way to do this follows from a classic fact about “greatest common 
divisors” proved in Euclid.  It can be stated as a fact about measuring lengths using two 
different rulers, which are commensurable, i.e. whose ratio of lengths is a rational number.  
The basic result is that the shortest length one can measure by using both rulers, equals the 
longest length that can itself be used to measure both rulers.  I.e. given two integers a,b, the 
smallest positive integer that can be written in the form an+bm where n,m are any integers, 
either positive or negative, equals the largest integer d such that d divides both a and b evenly. 
Assuming this, if p is prime and divides ab but does not divide a, then the largest integer that 
divides both p and a is 1, hence 1 can be written in the form 1 = an+pm for some integers n,m.  
Then multiplying by b gives us b = abn + bpm.  Now assuming p divides the product ab, it 
follows that p divides both terms on the right side of the equation, hence divides also the left 
side.  Thus we have shown that if p divides ab but does not divide a, then p divides b. 
 
Now assume we have factores some number n into primes in two ways n = p1p2---pr = 
q1q2....qs.  Since p1 is prime and divides the left side it also divides the right, hence p1 divides 
some q, which we may renumber as q1.  But q1 is prime so if p1 divides it, since p1 ≠ 1, it 
must be that p1=q1.  Then we can cancel p1 and q1 on both sides and have a new equation 
p2p3...pr = q2q3...qs.  We now apply th same argument to the prime p2, eventually canceling it 
with some prime q we may renumber as q2.  Eventually we have canceled all primes on both 
sides, in particular, each prime pj was equal to some prime qk, and the factorization was 
unique. Q.E.D. 
 
We can prove now that the real number whose square is two is not rational.  I.e. if n/m is a 
rational number whose square is 2, then n^2/m^2 = 2, so n^2 = 2m^2. But in the prime 
factorization of n^2 there are twice as many 2’s as in the factorization of n, hence an even 
number, and the same holds for m^2.  But that means in the oprime factorization of n^2 there 
occur an even number of factors of 2, while in the factorization of 2m^2 there occur an odd 
number (the even number of factors of 2 in m^2, plus the extra “2” in front of 2m^2).  Since an 
integer has only one prime factorization, it cannot be true that n^2 = 2m^2, so 2 ≠ n^2/m^2. 


