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3 THE ABSTRACT INDEX NOTATION

When performing calculations in general relativity it is frequently
necessary to operate with tensors of quite high valence.!® Even such a basic
<juantity as the curvature tensor has valence four, and it possesses the familiar
somewhat complicated symmetries. This makes it practically imperative
that an index notation be employed for many calculations, so that the
«hfferent connections between the quantities involved may be easily kept
track of. It seems that there is a common feeling among mathematicians
that such notations are to be avoided, presumably because of the connotation
that their use entails explicit reference to a particular basis frame. However,
when a physicist refers to “g,,"" or “R%.,” I do not think that he usually
meians to be referring to a set of frame-dependent components but rather to a
physical, frame-independent object which these components represent. But,
the index notation allows a very convenient set of algebraic operations to be

' The term “valence™ is.used here in preference 1o “rank ™ because it is more

Jdesarprive and because the word “rank ™" has other connotations in the case of matrices.
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applied to such objects, which produce new objects—these operations being
actually completely frame-independent. The algebraic operations are, in
essence, extremely simple, but they also allow great flexibility in the building
up of more complicated operations out of simple ones. It would seem a
great pity to forbid oneself the use of such a powerful and flexible notation
merely because of some uneasy feelings about summation conventions and
dependence on special basis frames. What I shall present here is an entirely
frame-independent algebra which allows one to calculate with indexed
quantities exactly as before (but now with a clear conscience!) and which,
by use of a notational device, even permits a greater freedom than before,
when it comes to introducing coordinate systems and basis frames (compare
Schouten [96a]). The advantages will be particularly apparent when we
come to consider spinors in the next section.

Let us not be completely formal, so we may be able to save some time
and complication. I hope the essential ideas will be clear. Consider a
vector space V* over a field F—or, more generally, we allow V* to be a
module,'! where F is a ring of suitable type (for example, the elements of V*
could be vector fields'? and those of F, C* functions, on a manifold). The
idea will be to construct what is essentially the usual tensor product of V*
a number of times with its dual’® V, a number of times, but where, by use of
indices, we can Keep track of the effect of symmetries and contractions easily.
This is done by simply mirroring the usual index notation (with summation
conventions, etc.) but where now the indices a, b, ¢, . .. are not to be thought
of merely as generic symbols standing, say, for 0, 1, 2, ..., N, but as abstract
labels. We shall require an infinite supply

a,b,e,...,a9,b,...,a,by, .. 0,5, 3.1

of abstract labels, so that expressions of arbitrary length can be built up. Let
L denote the set of labels (3.1). For any element § of V* and any label
x € L, we shall allow ourselves to write a symbol £*.  As § ranges over the
elements of V*, the associated object £* ranges over a corresponding set V*,
It should be emphasized here that £ is an entity in its own right and not the
set of components of § in some frame. Now, since we wish to mirror the
usual tensor rules for indexed quantities, we are not permitted to write
& 4 b, but £+ and &° + p® will be both allowable. (We must think of
& and & as different objects.) For any 1 e F, we shall also be permitted to
write &%  Thus, each of V4, V%, ..., V%, .. is a vector space or module
canonically isomorphic with V*.

'* A module differs from a vector space in that the scalars form a ring with identity
rather than a field. A ring differs from a field in that division by nonzero elements is not
always possible.

12 Here a “field'” means a cross-section of the appropriate vector bundle over .#.

13 The space of all linear mappings of the module V* into the ring F.
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It may be felt that it is unnatural to introduce an infinite number of
isomorphic spaces, when actually we only have one space. But we may view
the situation in a slightly different way. FEach element of L is really just a
kind of organizational marker which keeps a tag on a particular vector
(etc) irrespective of where it may occur in an expression. Thus, £ is just a
pair, consisting of § together with the marker x. That is to say, it is an
element of V* x L. We then have V'=V"* x (), V' =V" x (), elc.
The vector space or module axioms will, of course, apply to each V*:

@+ )= )+ LT
AL+ ") = A" + Ay
(A4 p)e~ = AL* + p&*

(3.2)
AUET) = (Ap)E™
185 = &F
04" = 0n*

Here 4, g, 1,0 € F with 1 and 0 being the multiplicative and additive identities,
respectively. We also have &%+ »* = y* + &* (expanding (1 + 1} + %)
and & + (—£&7) = 0 (writing — £* for (— 1)&F and 0 for 0y%),

The dual space V, will also have an infinite number of canonically
isomorphic copies: V,, V,, ..., V. ,.... We may think of V_ as being the
dual space of V* for each x € L. The elements of V_ are linear mappings of
V*into F. Thus, for 8, € V, we have

B8 + 0y = 68" + B.” (33)
6487y = A0, &) (3.4

where the effect of the mapping 6, on &~ is written simply 0,&*. We shall
also allow this to be written in the reverse order: 6, &% = £%0,. We require

B =08 = =0, 33)

Now each of V,, V,, ... will be vector space or module where 18, and
0, + ¢, are defined by

(2087 = 10,8y (O + $ )" =0,8" + ¢, & (3.6)

The idea will be to use the elements of F, V4, ¥V®, ..., V,, V,, ... to
generate our algebra.  To see what the rules of this algebra should be, we
must recall what the rules are for the ordinary tensor index notation. We
nole, for instance, that products such as &% will be permitted, whereas
<y will not.  Furthermore, the allowable products must be commutative:

&t = et (3.7)
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but in general &P # y°E®. The requirement (3.7) shows us that while in
essence " is just the tensor product of elements £ ® #°, we cannot simply
identify & with ¢°®yP. For tensor products, according to the strict
technical definition, are not commutative, Here we are allowed to define a
commutative version of a tensor product, essentially for the reason that
&y is not defined.  Ina product £%p, it is the labels a and b that tell us which
factor is which, not the ordering of the factors. One method (suggested to
me by . Mac Lane) of precisely defining the type of product used here is to
take the symnierric algebra [54a] on the direct sum V'@V, ® Vev,®...
and then, for each pair of disjoint (finite) sets of elements of L, saya, p, r and b,
m, we se[ect the corresponding subspace VZ# spanned by the elements of
the form

&G, (3.8)

The general element of Vi will be a linear combination of expressions like
(3.8). The construction so made, ensures that each product (3.8) is fully
commutative and also that the various distributive laws hold (for example,
WGy + 1) = WG, + Yy, with " e Vi), There is no significance in
the ordering of a, p, r in Vi or of b, m. Thus Vilr = ViT = VIIF, etc.
However, the ordering of the indices for an element ppfl is significant.
Every element pif e Vi is a linear combination of commutative
products of the type (3.8):
M@0 0 ln @ (i

ponw = Zl 70 (3.9

but there will be many ways of expressing pgh as such. A convenient
criterion for the equality of two expressions (3.9) for the modules that we are
interested in is that for every choice a,€V,, B,eV,, y.€V,, a® eV’
™ & V", the scalar

M@

itrta By v, 0"t = Z A (5 )" ﬁ,,)(C’}',)(Bb 0")(¢m "} (3.10)

should be the same for both expressions. From this all the algebraic proper-
ties will follow. (Note, that in general pii? # plar # pih', etc.)

The entire tensor system {V} consists of all of the V%, including
V=F:

V1= (V, VoV V.V, Vo L VIE, )

W

There are four basic operations on {V}, namely

ADDITION : Vi x ViohioaVi-l (3.11)
MULTIPLICATION: V;::;,’f X Vij::f‘,ﬁv‘,’,j:jfﬁ‘j;fv (3.12)
INDEX SUBSTITUTION: V5% 5Vt (3.13)
(a, b-CONTRACTION: Vil = Vi (3.14)
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In (3.11), (3.12), and (3.14), the differently denoted index letters appearing
are all assumed to be different elements of L. In (3.13), the elements x, ...,
z,u,..., wof L are all distinctand so aref, ..., ik, ..., m. Otherwise they
are unrestricted except that x, ..., zand f, ..., h are equal in number and that
u, ..., wand k, ..., m are equal in number. Addition and multiplication
are defined the obvious way. Index substitution is induced simply by a
permutation applied to L. (The validity of any equation is unaffected by a
permutation of the elements of L.} To define contraction, we consider, for
example, the (p, b)-contraction: V[, — Vi as applied to the element pjh e VI
given by (3.9). The result is

M (i) () (D (B () (D

Pom = az‘. AT 08T ¢ (3-15)

We have pi € Vi, so the x labels are “dummies™ which do not contribute
to the total valence type.

It may be verified algebraically that all the usual tensor rules'* follow
from the above constructions. Thus, addition gives an Abelian group
structure to each V- 5. Multiplication is commutative and distributive
over addition. Contraction appropriately commutes with addition, with
multiplication, and with other contractions. The contraction of a zero
clement is again a zero element. (If we use equality between the scalars
(3.10) as the definition of equality between formal expressions (3.9), then this
last property follows from the property that any matrix over F whose square
vanishes also has vanishing trace. This property holds in the cases which
interest us here, but would not be true for certain rings of finite characteristic.)

So far, the question of a basis frame for V* has not even arisen.
Fowever, it is often convenient to work with basis frames and we shall need
2 notation to be able to distinguish basis indices from the abstract labels.
I shall adopt the convention that German indices a, b, ..., a,, ... will denote
the numbering of basis elements in the standard way, that is, each of a, b, ...
tenotes one of the integers 0, 1, ..., N [for an (N + 1)-dimensional space].
I'he use of German indices will be to remind us of two things; first that a
choice of a (possibly arbitrary) basis frame is involved in any expression
containing such indices, with a consequent loss of covariance; and secondly
that the Einstein summation convention is being used whenever repeated
indices occur in a term in an expression. Now,let8,,8,,...,8yeV* bea
hasis for ¥* (assuming finite-dimensionality) and let 4%, ', ..., 8V eV, be
the corresponding dual basis. For x € L we have canonical images in V*
a Vo

35...,05ev, 8. aVevV, (3.16)

** See any standard work on classical tensor calculus, for example, [100].
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We may use the generic symbols 6 € V¥, 85 € V,, so the basis orthogonality
relation takes the form
5r8L =68 (3.17)

where & is the ordinary Kronecker delta symbol.  (No relation between x
and x is to be implied by the notation.) We can also define an element
&5 of V3 by

6307 =0y (3.18)
The quantity &7 satisfies the usual properties
SrtmEy =Lt NIy = (3.19)

and is clearly actually independent of the choice of basis, by virtue of this.
The components, with respect to the basis, of any element {7 e V5% are
given by

Grb=Gadl.. 656,... 8% (3.20)

Conversely, to express {57 in terms of its components, we simply write

Guh=Grdel.. 650 .6 @21
One aspect of this notation which is an advantage in certain contexts is that

we may convert some indices into component form and leave others as
abstract labels:

o = PSS e Vi (3-22)

Generally, all algebraic relations will be unaffected by whether or not an
index is in German type. But when we consider covariant derivatives in the
next section, we shall see that an important formal difference arises between
the ways the two types of index are treated—in addition to the present
merely conceptual difference,

An elementary, but important, property of the type of algebraic
structure that we have built up here, is that we can sometimes embed one
such structure in another by the device of grouping regether indices. Thus,
we may consider a new labeling set [, say, whose elements are (disjoint)
subsets of elements of L. For example, we could put « = abc, f = def,
y =ghi, etc., where L is divided exhaustively into disjoint triplets, these
triplets being the elements of L.. It is clear that, in this case, the sets V* =
Vo, V= VOV, =V, o, VEE = VIS will satisfly just the
same rules as before. More complicated groupings are also possible.

We may also consider systems where the labeling set contains elements
of different *“types.” The only modifications of our scheme would then
come in index substitution (where only labels of the same type may be
substituted for one another) and in contraction, where only an upper and
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lower indices of the same type may be contracted together. When we
consider spinors in the next section we shall see an example of this kind of
system. We shall have labels of two different types (related to each other
via an operation of complex conjugation).



