
Effect of Varying Surface Areas of Cardboard Cutout Circles on Damping Coefficient of a
Pendulum

Introduction

A pendulum is a universally understood and utilized instrument in the present day with
applications that range from comprehending fundamental concepts such as simple harmonic
motion, gravity, and energy conservation to timekeeping as a device within mechanical clocks.
However, what interested me in particular was the fact that upon learning about the fundamental
behaviors of pendulums within concepts such as simple harmonic motion, was that despite their
theoretical background, pendulums as they are applied in real-world scenarios including the
back-and-forth movement of a swing do not go on forever. Swings are classic real-world
examples of a pendulum and it is a known fact that swings require constant force being applied
in order to continue oscillating. As a result, I came across the phenomenon of damping and
realized that there was little-to-no information or data on the relationship between surface area
and the measure of damping (damping coefficient). Although this investigation is primarily
focused on understanding the physical principles of damping and its relationship to surface area,
it has various real-world applications. Most notably is that there exists a connection between
energy efficiency and its impact on global energy consumption; if we are able to minimize the
energy losses due to friction and air resistance, it can contribute to optimizing energy-efficient
designs in various industries, and thereby encourage greater sustainable energy usage. Thus, I
aim to explore this concept as an individual experiment of my choice through a method that I
came about on my own.

Research Question: To what extent does the surface area ( attached to a pendulum bob𝑐𝑚2)
have an affect on the damping coefficient?

Background:

Simple Pendulum Model

Pendulums are defined as objects that swing back and forth about a fixed point as a result of
gravity. A simple pendulum is a theoretical model which consists of a point mass that is
suspended from a string of negligible mass with length, which is further assumed to be rigid𝑙,
and inelastic. Once the point mass is displaced from its equilibrium position (displacement,

as shown in Figure 11, the pendulum begins to oscillate back and forth with a 𝑠 = 0)
measurable and specific natural frequency, which is a frequency that a pendulum tends to𝑓,
oscillate in when driving forces are negligible. Simple pendulums are common representations of
simple harmonic motion (SHM). Simple harmonic motion states that a restoring force has a
magnitude proportional to the displacement and where the acceleration is also proportional to the
displacement. The time period of oscillation of a simple pendulum is given by the following
formula:
𝑇 = 2π (𝑙/𝑔)
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where T is the time period, is the length of the string of the pendulum, and is the acceleration𝑙 𝑔
due to gravity.

Figure 1. Labeled diagram of a simple harmonic pendulum system.

Damping

Within the confines of simple harmonic motion where the restoring force is proportional to the
displacement of the mass from equilibrium and always acts in the opposite direction to the
displacement, the damping forces are assumed to be non-existent as there is no dissipation of
energy and the amplitude does not decrease over time. However, in real-world pendulum
systems, there are almost always dissipative forces present such as friction and/or air resistance,
which can lead to the damping of the system, and thus, the gradual decrease in the amplitude of
the oscillations (LumenLearning). In these cases, the motion is no longer following the
theoretical simple harmonic model, and the damping coefficient must be accounted for to
understand and analyze the various behaviors of the system. In terms of the background of this
experiment, there is a direct correlation between attached surface area and damping since there is
a proportional relationship between surface area and the extent to which damping affects a
system. The reason for this is because as a pendulum oscillates, it displaces air molecules it
encounters in its trajectory due to its motion. As a result, a region of higher pressure may be
observed in front of the pendulum bob and a region of lower pressure can be observed behind the
pendulum bob (WondriumDaily). Due to this difference in pressure, the air molecules in the
higher-pressure region flow towards the lower-pressure region, thereby generating a drag force
on the pendulum's motion (WondriumDaily). This is due to the fact that when an object moves
through a medium it experiences a resistive force, known as fluid friction. In order to measure
the damping effect on the pendulum, it is pivotal to consider the effects of friction and other
dissipative forces that act on the pendulum as it oscillates. In order to quantify and be able to
analyze the effect that these dissipative forces have on a pendulum’s system, the damping
coefficient of the system can be calculated and observed under different circumstances. The
damping coefficient, is a measure of the rate at which the amplitude decreases due to damping,𝑏,
and can be further explained to be the ratio between the damping force and velocity of the
oscillating object (Alonso and Finn). Generally, the damping force is proportional to the velocity
of the object and acts in the opposite direction to the motion; therefore, as the object oscillates,
its amplitude steadily decreases. This can be denoted with the following equation:

,𝐹 =− 𝑏 𝑑𝑥
𝑑𝑡

where b is the damping coefficient, x is the displacement of the mass from its equilibrium



position, and refers to the change in displacement with respect to time where t can also be𝑑𝑥
𝑑𝑡

referred to as instantaneous velocity (Alonso and Finn).

Figure 2. Graphical representation of the light damping that occurs in simple harmonic systems.

Logarithmic Decrement Equation

The logarithmic decrement equation is an important and widely used method to determine the
damping coefficient in mechanical systems. It assumes that the amplitude of an oscillating
system steadily decreases with time. The equation measures the damping coefficient of a simple
pendulum by measuring the time periods of the pendulum for two consecutive oscillations and
the number of oscillations between them. In order to derive the equation, we must consider the
motion of the pendulum as a damped harmonic oscillator; hence, the differential equation of
motion for a damped harmonic oscillator is utilized (Alonso and Finn):
𝑑2𝑥

𝑑𝑡2 + 2ζω𝑛 𝑑𝑥
𝑑𝑦( ) + ω𝑛2𝑥 = 0,

where x is the displacement of the mass from equilibrium, t is time, is the natural frequencyω𝑛
of the oscillator, and is the damping ratio. However, since the solution to this differentialζ
equation is outside the scope of the Physics HL course, I will omit the working out and include
the conclusion that M. Alonso and E. J. Finn reached in “Chapter 11: Damping Oscillations,” in
Physics, Addison-Wesley Publishing Company, 1992, pp. 401-407:

,𝑏 =
𝑙𝑛 𝐴

𝑛+𝑚
/𝐴

𝑛( )
𝑚𝑇

where b is the damping coefficient, is the amplitude after a fixed number of oscillations “n”,𝐴
𝑛

is the second amplitude after a fixed number of oscillations “m”, m is the number of𝐴
𝑛+𝑚

complete cycles between the two successive amplitudes and , and T is the time taken for𝐴
𝑛

𝐴
𝑛+𝑚

m cycles to occur between the two amplitudes and .𝐴
𝑛
 𝐴

𝑛+𝑚



Hypothesis:

Based on the background research I have conducted, I hypothesize that as the surface area
increases, there will be a greater damping force experienced by the pendulum. Therefore, the
magnitude of the damping coefficient, which is a measure of the amount of damping in a system,
will increase. This is due to the fact that a larger surface area creates more contact with its
surrounding air, leading to increased air resistance and thus higher damping since the energy of
the pendulum’s swing is dissipated in the air (Dahmen).

Experiment

Methodology

Variables Measurement of Variables Range of Measurements

Independent:

Surface area attached
to pendulum bob ( )𝑐𝑚2

The surface area of the
cardboard attached to
the pendulum bob will
be varied to

The surface area will be
measured precisely through
the use of a laser cutter that
ensures that correct radii have
been cut, and thus, the
accuracy and precision in the
variation of the surface areas
may be maximized. .

There will be a total of seven
varying surface areas cut using the
laser cutter with diameter
measurements of 0.0252 m, 0.0302
m, 0.0352 m, 0.0402 m, 0.0452 m,
0.0502 m, and 0.0552 m and
corresponding measurements of
4.988 , 7.163 , 9.731 ,𝑐𝑚2 𝑐𝑚2 𝑐𝑚2

12.692 , 14.200 , 19.792𝑐𝑚2 𝑐𝑚2

, and 23.931 , respectively.𝑐𝑚2 𝑐𝑚2

The large data range that can be
collected for the experiment will
ensure that clear trends may be
identified on the effect of surface
area on the damping coefficient.

Dependent:

1. Damping
coefficient (b)

2. Amplitudes (m)
after nth and
nth + mth
oscillation
(where n=8 and
m = 3)

3. Time (s)
between nth and
mth oscillations

1. The damping
coefficient, measured
as a dimensionless
quantity in the context
of the logarithmic
decrement equation,
will be calculated
using the
aforementioned
equation once
necessary values are
obtained for the nth
and mth amplitudes, as

1. The range of the damping
coefficient’s values will be
based on the varying surface
areas attached to the
pendulum; therefore, there
will be seven separate and
distinct values for the
damping coefficient.

2. Similarly for the amplitudes
and time between the nth
and mth oscillations, there
will also be seven separate
and distinct values



(where n=8 and
m = 3)

well as the time
between the
oscillations.

2. As a result of the
varying surface areas,
the amplitudes of the
nth and mth
oscillations will differ
due to varying degrees
of air resistance.

3. As an added effect, the
time between the nth
and mth oscillation
will also differ due to
its similar interaction
with the varying
degrees of air
resistance between
each attached surface
area on the pendulum
bob.

corresponding to each
aspect of the logarithmic
decrement equation.

Control Variables Method for Control Justification for Control

1. Length of
string

2. Mass of
pendulum bob

3. Initial
amplitude of
displacement

4. Pressure and
temperature of
surroundings

1. The same string will be
used throughout the
entirety of the
experiment of a known
length of 0.3336 ±
0.002 m.

2. The same pendulum
bob will be used
throughout the entirety
of the experiment of a
known mass of 71
grams.

3. The initial amplitude of
displacement has been
measured to be 0.007 ±
0.001 m from its
equilibrium position
and will be kept
constant throughout
different trials of the
experiment.

1. There are various reasons
for why the length of the
string must be held constant.
Namely, the time period of
the pendulum is directly
affected by the length of the
string. Thus, in order to
maintain consistency
between the experiments
and trials, the length of the
string must be kept constant
or there will be incoherent
results as it would not be
known whether or not the
damping effect on the
system is increasing or
decreasing due to the length
of the string.

2. The mass of the pendulum
bob must be kept constant in
order to ensure that



4. The experiment will be
conducted in the same
area in order to
approximate that the
pressure and
temperature will be the
same throughout
different trials of the
experiment.

experimental conditions are
consistent and the variables
being measured are being
affected only by the
independent variable.

3. The initial amplitude is
arguably the most important
variable to be kept constant
as it affects the amplitude
reached by a pendulum.
Therefore, experimental
conditions associated with it
must be held constant in
order to avoid discrepancies
in the data found between
measured values for
different surface areas
attached to the pendulum
bob.

4. The pressure and
temperature of the
surroundings affect the
frequency of collisions that
the attached cardboard
cutout of a circle on the
pendulum bob has with its
surrounding air molecules.
As a result, the experimental
conditions will not be
consistent and will be
reflected in the results of the
value of the varying
damping coefficients.

Materials

● Retort stand (1)
● Pendulum bob (constant with mass of 71 grams) with a hook
● G-clamp (1)
● Retort clamp (1)
● Cross clamp (1)
● Thin thread (constant with length of 0.3336 0.002 m (1)±
● 0.3 meter ruler (1)
● 6 cardboard cutouts of circles of varying surface areas (6)



● Laser cutter (1)
● Super glue (1)
● Micrometer screw gauge (1)

Evolution of plan

A preliminary experiment had been conducted in order to identify the most appropriate and
consistent method to measure the maximum amplitude of a pendulum. Initially a motion sensor
was utilized; however, it was sensitive to motion and at times produced nonsensical results. Next,
a photogate was used to measure the varying maximum amplitudes; however, it once again
provided nonsensical results that could not be translated to values for the amplitude. A mobile
phone’s slow-motion tool was attempted for use and it worked surprisingly well as the
pendulum’s motion was not too fast for the camera to capture accurately and precisely. This
method proved to be an effective method to measure the varying maximum amplitudes based on
the surface area of the circular cardboard cutout attached to the pendulum bob.

Procedure

1. Set up the retort stand by attaching the G-clamp securely to a stable surface, such as a
table or benchtop.

2. Attach the retort clamp to the retort stand arm, ensuring it is at a height suitable for the
pendulum bob to swing freely.

3. Use the cross clamp to attach the thin thread to the hook of the pendulum bob.
4. Measure and record the length of the thin thread (0.3336 0.002 m).±
5. Prepare the 6 cardboard cutouts of circles with varying surface areas using a laser cutter.

Make sure the dimensions and surface areas are accurately known and recorded.
6. Apply a small amount of super glue to the back of each cardboard cutout and carefully

attach them to the pendulum bob, ensuring they are centered and securely glued.
7. Displace the pendulum bob by a known initial amplitude of 0.007 0.001 meters from±

the equilibrium position and release it to allow it to oscillate freely.
8. Use the slow-motion tool on a phone to record the motion of the pendulum bob.
9. Analyze the recorded video to determine the maximum amplitude of the pendulum bob at

the 8th oscillation. Record this value for each surface area.
10. Repeat the analysis for the 11th oscillation and record the corresponding maximum

amplitude.
11. Measure and record the time duration between the 8th and 11th oscillation for each

surface area.
12. Repeat the entire experiment for the remaining 5 cardboard cutouts with different surface

areas.
13. Compile the recorded data, including the surface areas, maximum amplitudes at the 8th

and 11th oscillation, and time duration between the 8th and 11th oscillation for each
surface area.



Photographs taken by candidate

Environmental, ethical, and safety considerations

In order to maximize environmental sustainability, recycled cardboard was used for the circular
cutouts of varying surface areas and the remaining cardboard that was not used was returned to
be used in other applications. In terms of ethical considerations, the experiment was conducted
after obtaining necessary permissions. Furthermore, there are various safety considerations to
take note of upon conducting the experiment; firstly, it must be ensured that proper safety
protocols are followed when operating the laser cutter to avoid injury or strain and when utilizing
the super glue in the experimental procedure. In order to avoid the obstruction of property and
harm of individuals nearby, pay careful attention to the trajectory of a pendulum when measuring
the maximum amplitude.

Data Collection

Preliminary Processed Data Table



Table 1: Measurements for diameter of circular cardboard cutouts and their corresponding
surface areas using accurate and precise laser cutting technology (note: first diameter recorded is
of the initial pendulum bob using a micrometer screw gauge while the others were adapted from
this value proportionally and inputted into the laser cutter with no uncertainty).

Diameter of circular cardboard cutout (m) Surface Area of circular cardboard cutout
)(𝑐𝑚2

0.0252 0.00000005± 4.988

0.0302 7.163

0.0352 9.731

0.0402 12.692

0.0452 14.200

0.0502 19.792

0.0552 23.931

Sample calculation for uncertainty in micrometer screw gauge reading although it is practically
negligible:

MSR (Main Scale Reading) + CSR (Circular Scale Reading) ± 𝐿𝐶
2

= 2.50 + 0.02 cm = 0.252 0.00000005 m (converted to meters as it is the familiar SI± 0.01
2 ±

unit)

Raw Data Tables

Table 2: Relationship between the surface area ( ) of a circular cardboard cut out attached to𝑐𝑚2

a pendulum and the maximum amplitude reached after 8 oscillations and 11 oscillations, as well
as the time between the 8th and 11th oscillations.

Surface area
( )𝑚2

Trial number (amplitude for𝐴
𝑛

nth cycle 0.001±
m) (m) where
n = 8

(amplitude𝐴
𝑛+𝑚

for nth + mth cycle
0.001 m) (m)±

where m = 3

Time elapsed
between and𝐴

𝑛
0.01 s (s)𝐴

𝑛+𝑚
±

4.988 1 0.096 0.085 3.98

2 0.095 0.084 4.01

3 0.095 0.084 4.00



7.163 1 0.083 0.075 3.02

2 0.082 0.073 3.05

3 0.082 0.074 3.09

9.731 1 0.088 0.071 3.58

2 0.082 0.072 3.28

3 0.086 0.071 3.34

12.692 1 0.076 0.067 3.47

2 0.074 0.065 3.21

3 0.077 0.064 3.33

14.200 1 0.066 0.059 3.22

2 0.071 0.060 3.03

3 0.067 0.060 3.11

19.792 1 0.065 0.058 3.11

2 0.068 0.057 3.23

3 0.067 0.057 3.12

23.931 1 0.059 0.052 3.03

2 0.063 0.050 3.14

3 0.059 0.051 3.17

The maximum amplitude reached at the 8th and 11th oscillations have been converted from
centimeters (cm) which was measured to two significant figures to meters (m), which was
measured to significant figures as well in order to conserve the precision of the original values.
This conversion was done as meters are a more familiar unit to work with being an SI unit and
can be integrated into the logarithmic decrement equation more easily as it functions with SI
units only. Since the amplitudes were measured using a ruler, their uncertainty is equal to the
smallest increment on the ruler (0.001 m) divided by two and multiplied by the points at which
approximations were made (two). Therefore, Furthermore, the0.001 

2 × 2 =  ± 0. 001 𝑚.
uncertainty in the time measured is to two decimal places based on the precision of the mobile
phone timer.



Table 3: Qualitative observations of the relationship between the surface area ( ) of a circular𝑐𝑚2

cardboard cut out attached to a pendulum and the maximum amplitude reached after 8
oscillations and 11 oscillations, as well as the time between the 8th and 11th oscillations.

1 As greater surface areas were attached to the pendulum bob, the increased air resistance
lead to more of an angular trajectory, and thus, the data points had to be repeated several
times in order to obtain the most linear path trajectory

2 At times, the pendulum would be set off at varying velocities due to the friction between
the hand displacing the pendulum bob and the bob itself; however, that was kept to a
minimum by replicating the method of setting the pendulum bob off as much as possible
throughout the trials.

3 As greater surface areas were attached to the pendulum bob, it was more difficult to
record the amplitude as the cardboard cut out would cover the ruler used for reference;
however, this was not much of an issue as it only required a change of angle of the
mobile phone videoing the oscillations in order to extract a precise value through
frame-by-frame analysis of the pendulum’s trajectory.

Processed Data Tables

Table 4: Processed table showing the effect of varying surface areas ( ) of a circular cardboard𝑚2

cut out attached to a pendulum and the averaged maximum amplitude values reached after 8
oscillations and 11 oscillations, as well as the averaged time values between the 8th and 11th
oscillations on the damping coefficient.

Surface area
( )𝑚2

Average 𝐴
𝑛

(amplitude for
nth cycle ±
0.003 m) (m)

where
n = 8

Average 𝐴
𝑛+𝑚

(amplitude for
nth + mth cycle
0.003 m) (m)±
where m = 3

Average time
elapsed

between and𝐴
𝑛
0.03 s𝐴

𝑛+𝑚
±
(s)

Coefficient of
damping (b)

4.998 0.095 0.084 3.99 -0.01028

7.163 0.082 0.074 3.05 -0.01121

9.731 0.085 0.071 3.40 -0.01304

12.692 0.075 0.065 3.34 -0.01428



14.200 0.068 0.059 3.12 -0.01516

19.792 0.067 0.057 3.19 -0.0168

23.931 0.061 0.051 3.11 -0.01919

Sample calculation for average (amplitude𝐴
𝑛

for nth cycle 0.001 m) value for±
when n = 8 and repeated with similar
methods for average :

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑠𝑢𝑚 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠 𝑣𝑎𝑙𝑢𝑒𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠 

=
𝑇

1
+𝑇

2
+𝑇

3

3 = 0.096+0.095+0.095
3 = 0. 095 𝑚 

(to two significant figures and three decimal
places)

Sample calculation for coefficient of damping
force (b) using averaged values for , ,𝐴

𝑛
𝐴

𝑛+𝑚
and time elapsed between and :𝐴

𝑛
𝐴

𝑛+𝑚

𝑏 =
𝑙𝑛 𝐴

𝑛+𝑚
/𝐴

𝑛( )
𝑚𝑇

𝑏 =
𝑙𝑛( 0.084

0.095 )

3×3.99 =− (0. 01028)
(to four significant figures and five decimal
places)

Table 5 (Part 1): Uncertainties of the processed data table showing the effect of varying surface
areas ( ) of a circular cardboard cut out attached to a pendulum and the averaged𝑐𝑚2

maximum amplitude values reached after 8 oscillations and 11 oscillations, as well as the
averaged time values between the 8th and 11th oscillations on the damping coefficient.

Surfac-
e Area
(𝑚2)

Trial
𝐴

𝑛
(m)

𝐴
𝑛+𝑚

(m)
Tim
e (s)

Absolut
-e
Uncerta
-inty 𝐴

𝑛
(m)

Fraction-
al
Uncertai-
nty 𝐴

𝑛
(m)

Absolute
Uncertai-
nty 𝐴

𝑛+𝑚
(m)

Fraction
–al
Uncertai-
ty 𝐴

𝑛+𝑚
(m)

Absolute
Uncertai
-nty
Time (s)

Fractional
Uncertaint
-y Time

4.988 1 0.096 0.085 3.98 0.005 0.052 0.005 0.059 0.01 0.003

2 0.095 0.084 4.01 0.005 0.053 0.005 0.059 0.01 0.002

3 0.095 0.084 4.00 0.005 0.053 0.005 0.059 0.01 0.003



7.163 1 0.083 0.075 3.02 0.006 0.072 0.006 0.080 0.04 0.013

2 0.082 0.073 3.05 0.006 0.073 0.006 0.083 0.04 0.013

3 0.082 0.074 3.09 0.006 0.073 0.006 0.083 0.04 0.013

9.731 1 0.088 0.071 3.58 0.008 0.089 0.008 0.112 0.20 0.006

2 0.082 0.072 3.28 0.008 0.098 0.008 0.111 0.20 0.006

3 0.086 0.071 3.34 0.008 0.094 0.008 0.112 0.20 0.006

12.692 1 0.076 0.067 3.47 0.009 0.119 0.009 0.134 0.01 0.003

2 0.074 0.065 3.21 0.009 0.122 0.009 0.138 0.01 0.003

3 0.077 0.064 3.33 0.009 0.117 0.009 0.141 0.01 0.003

14.200 1 0.066 0.059 3.22 0.004 0.061 0.004 0.068 0.01 0.003

2 0.071 0.060 3.03 0.004 0.056 0.004 0.066 0.01 0.003

3 0.067 0.060 3.11 0.004 0.060 0.004 0.066 0.01 0.003

19.792 1 0.065 0.058 3.11 0.003 0.046 0.003 0.051 0.1 0.030

2 0.068 0.057 3.23 0.003 0.044 0.003 0.047 0.1 0.030

3 0.067 0.057 3.12 0.003 0.045 0.003 0.048 0.1 0.030

23.931 1 0.059 0.052 3.03 0.003 0.051 0.003 0.058 0.01 0.003

2 0.063 0.050 3.14 0.003 0.048 0.003 0.060 0.01 0.003



3 0.059 0.051 3.17 0.003 0.051 0.003 0.058 0.01 0.003

Sample calculations for the absolute
uncertainties in the table above:

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =  𝑚𝑎𝑥−𝑚𝑖𝑛
2  

=  4.01−3.98
2 = 0. 01 𝑚

to one significant figure and two decimal
places

Sample calculations for the fractional
uncertainties in the table above:

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦

=  0.005
0.096 = 0. 052 𝑚 

to two significant figures and three decimal
places

Table 5 (Part 2):

Uncertainties of the processed data table for the damping coefficient through the use of the
averaged (m), , and time (s) data and their corresponding fractional uncertainty𝐴

𝑛
𝐴

𝑛+𝑚
 (𝑚)

data.

Surface
area (𝑐𝑚2

)

Absolute
uncertaint

-y in
average 𝐴

𝑛
(amplitude
for nth
cycle ±
0.003 m)
(m) where

n = 8

Absolute
uncertaint
--y in
average

𝐴
𝑛+𝑚

(amplitude
for nth +
mth cycle
0.003 m)±

(m) where
m = 3

Absolute
uncertaint

y in
average
time

elapsed
between

and𝐴
𝑛

𝐴
𝑛+𝑚

±
0.03 s (s)

Coefficient
of

damping
force (b)

Absolute
uncertain
-ty in
coefficient
of
damping
force (b)

Fractional
uncertaint
-y in
coefficient
of
damping
force (b)

4.998 0.003 0.003 0.03 -0.01028 0.036 35.02

7.163 0.003 0.003 0.03 -0.01121 0.036 32.11

9.731 0.003 0.003 0.03 -0.01304 0.036 27.61

12.692 0.003 0.003 0.03 -0.01428 0.036 2.52

14.200 0.003 0.003 0.03 -0.01516 0.036 2.37

19.792 0.003 0.003 0.03 -0.01680 0.036 2.14



23.931 0.003 0.003 0.03 -0.01919 0.036 1.88

Sample calculation for absolute uncertainty in
the coefficient of damping force (b):

+𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =  △𝐴
𝑛

+ △𝐴
𝑛+𝑚

△ 𝑡𝑖𝑚𝑒 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴
𝑛
 𝑎𝑛𝑑 𝐴

𝑛+𝑚
 

= 0. 003 + 0. 003 + 0. 3 = 0. 036 

Sample calculation for finding fractional
uncertainty in the coefficient of damping force
(b):
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦
△𝑏
𝑏 = 0.036

0.01028 = 32. 02

Processed data in graphical form

Graph 1: Relationship between surface area of a circular cardboard cut out attached to a
pendulum bob and average amplitude after eight oscillations or after it reaches (blue) and𝐴

𝑛
after three more oscillations or after it reaches .𝐴

𝑛+𝑚
(𝑟𝑒𝑑)

Graph 2: Relationship between surface area of a circular cardboard cut out attached to a
pendulum bob and the natural log of the average amplitude after eight oscillations or after it
reaches (blue) and after three more oscillations or after it reaches𝐴

𝑛
𝐴

𝑛+𝑚
(𝑟𝑒𝑑)



Graph 3: Relationship between surface area of a circular cardboard cut out attached to a
pendulum bob and value for damping coefficient.



Conclusion

The purpose of this investigation was to address the research question: To what extent does the
surface area attached to a pendulum bob have an affect on the damping coefficient?

To preface, the max-min lines were left out from graph 2 and graph 3 for different
reasons. In graph 2, the max-min slope lines are left out as they do not contribute to the overall
analysis of the relationship. The reason for this is that the uncertainty is extremely small (0.003)
compared to the scale of the graph and thus the uncertainty works out to be similarly negligible.
In regards to graph 3, the max-min slope lines would not maintain the scientific validity of the
report if they were to be included as the uncertainty suggests that the damping coefficient may
have a positive value which cannot be as that would imply that the amplitudes could increase as
the surface area is increased which is undoubtedly untrue; therefore, they were omitted for this
reason.

The experimental results indicate that there exists a negative natural logarithmic
relationship between surface area ( ) and the respective amplitudes and as the𝑐𝑚2 𝐴

𝑛
𝐴

𝑛+𝑚
relationship was first attempted to be modeled in a linear fashion; however, its correlation
coefficient, r, was not maximized with the linear trend line. This is evident in graph 1 where it is
clear to see that the line of best fit passes through few of the given data points. Therefore,
through a combination of trial and error and rational thinking, it was decided upon to model this
relationship between the surface area ( ) and the natural logarithm of the respective𝑐𝑚2

amplitudes and in an attempt to linearize the relationship. This proved to be fruitful as a𝐴
𝑛

𝐴
𝑛+𝑚

close to proportional relationship was thus uncovered between these two variables with
negligible uncertainties as discussed before. It should be noted that that although graph 1 did not
have a perfect line of best fit, it’s overall negative correlation aligns with the theoretical
background discussed that as a result of increasing the surface area attached to the pendulum
bob, the system would experience greater damping forces, thereby decreasing the maximum
amplitude that a simple pendulum setup could reach compared to an ideally undamped simple
pendulum model. Graph 2 is similarly effective theoretically as it includes a strong negative
correlation between surface area ( ) and the natural logarithm of the amplitudes and𝑐𝑚2 𝐴

𝑛
𝐴

𝑛+𝑚
reached at the 8th and the 11th oscillation respectively.

Both strong negative correlations explored in graph 1 and graph 2 are further supported
and explored in greater detail upon considering graph 3. Graph 3 illustrates the relationship
between surface area ( ) and the damping coefficient (b); the main exploration of this𝑐𝑚2

investigation. Similarly to the hypothesis made about their relationship, the graph demonstrates
that an increase in surface area leads to a more negative value for the damping coefficient. This
translates to an increased presence of damping forces in the pendulum system as a result of the
increased frequency of collision of air molecules, hence resulting in greater air resistance as
hypothesized. Therefore, in that sense, the initial hypothesis has been proven and the relationship
between each factor introduced in the logarithmic decrement equation has been explored.

Evaluation



There were several procedural strengths that deserve to be addressed prior to moving onto the
limitations and areas of growth of the experiment.

1. All the controlled variables were monitored extremely closely such that the independent
variable, surface area (c ), would be able to be isolated from other possible extraneous𝑚2

or confounding variables. Thus, the relationships between the surface area of the circular
cardboard cut out attached to the pendulum bob and the dependent variables of interest
(i.e. coefficient of damping force and measured amplitudes after 8 and 11 oscillations)
can be attributed to the manipulation of the independent variable rather than other
confounding factors. The experimental procedure was kept consistent through
maintaining several controlled variables such as the length of the string, the mass of the
pendulum bob, and the initial displacement. Furthermore, all the experimental data was
extracted in the same location in order to minimize fluctuations in the immediate
surroundings of the pendulum system. This area of strength has been reflected in the
graphical data illustrated above due to the fact that there is an absence of anomalous data
points. Moreover, the minimization of such systematic and random errors increases the
accuracy and overall reliability of the results.

2. The slow-motion tool used in the device throughout the experiment provided
measurements for the pendulum bob’s maximum displacements, and𝐴

𝑛
𝐴

𝑛+𝑚
respectively, from a set point of equilibrium at the 8th and 11th oscillations, to a high
degree of accuracy of precision as it utilizes frame-by-frame software to analyze the
trajectory of the pendulum bob. Therefore, the extracted data values for the respective
amplitudes were not constricted with instrumental uncertainties, but rather, the
uncertainty associated with the ambiguity of human readings which cannot be exactly
quantified. Moreover, the absolute uncertainties in the average amplitudes were
extremely low, ranging from 0.003 while the uncertainty in the average time between±
the nth and mth oscillation was a mere 0.03. As a result, this provided relatively±
consistent data points with an added benefit of little to no random errors; further
reinforcing the precision of the results.

3. The independent variable was manipulated for seven different readings for the surface
area of the circular cardboard cut out attached to the pendulum bob, 4.998, 7.163, 9.731,
12.692, 14.200, 19.792, 23.931 , and the dependent variable was measured𝑐𝑚2

throughout seven different and corresponding readings. Therefore, there was a wide range
of data collected in order to identify a clear pattern between the two variables that cannot
be merely referred to as situational proportionality. The reason why it is kept in
centimeters instead of meters is that the values would have become extremely small and
that would sacrifice the fluidity of the lab report due to the fact that it will become hard to
read and follow with the exceptionally miniscule numbers so an exception is made for not
including the SI unit in this case.

Nevertheless, there are still several uncertainties associated with the data arising from the
various limitations of the experimental setup and procedure that must be addressed as well.

1. Various times upon collecting the data of the respective maximum amplitudes and𝐴
𝑛

, the pendulum often oscillated in a circular trajectory that could not be accounted𝐴
𝑛+𝑚



for within the scopes of the experiment. This is a significant weakness since the
dissipative forces being measured in the form of the coefficient of damping force may
have been affected due to the fact that the air molecules were were not resisting the
pendulum’s motion completely, especially when measuring the maximum amplitudes for
the pendulum bobs with large surface circular cardboard cut out surfaces attached to
them.

2. The moment of displacement of the pendulum bob was also subject, at times, to
increased force as a result of the instant frictional force between the hand displacing the
pendulum bob and the pendulum bob, which may have affected recorded data as it
increased the velocity of release of the pendulum bob. Therefore, this factor may have
affected the results slightly as it was minimized throughout the experiment by ensuring
that I did not release the pendulum bob rashly but rather gently in order to minimize the
aforementioned frictional force.

In order to gain a better understanding of the factors that affect the coefficient of damping forces
experienced by a pendulum system, the effects that different viscous liquids have on the
trajectory of a pendulum, and therefore, damping coefficient may also be investigated. Similarly,
the relationship between the temperature of surrounding air molecules and the damping
coefficient may also be investigated as another alternative that holds real-life applications. Either
of these alternatives are important to explore further as, in the case of experimenting with
different viscous liquids, it is important to engineers to select appropriate liquids in order to
optimize the performance on structures or machines depending on their durability or expected
output. Furthermore, the relationship between temperature and the damping coefficient is another
alternative and practical experiment that is important due to the fact that it is utilized in a
structural sense in terms of assisting engineers in designing structures that maintain a balance
between their dissipative forces in order to mitigate vibrations as a result of varying degrees of
temperature (CMACN).
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