To prove: vy is differentiable everywhere except at the surface.
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The proof consists of five parts.



Part I: Existence of partial derivatives of 1" at all points
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Let us take the origin of the coordinate system at r and use spherical coordinate

system.
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When r ¢ V', the integrand is defined and continuous over domain V'. When

r € V', the integrand is defined and continuous over domain V' except at origin r
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where it is undefined. Therefore aaix exists for any r.
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Similarly it can be shown that 5y and —, exist for any r.
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Part I1: Existence of partial derivatives of 15 at points not on S’
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When r ¢ S', the integrand is defined and continuous over domain S’. Therefore

wS
> exists whenr ¢ S'.

ds’
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Similarly it can be shown that e and —~ exist whenr ¢ S’

From Part I and Part 11, we conclude the following statement:

Partial derivatives of i exist at points not in S’
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Part I11: Continuity of partial derivatives of " at points not in V
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is continuous in space exceptatr = r’
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Since superposition of continuous functions is a continuous function:
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is continuous whenr ¢ V'.

.. . aypv aypY : /
Similarly it can be shown that r and —,~ are continuous whenr ¢ V',

Part IV: Continuity of partial derivatives of ¥5 at points notin S’
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N

0 S
lim JLASQ:falLdS’:l
Sl

N=00 £ r—r'|3 r—r’|3 0x
i=

is continuous whenr ¢ S’.
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Similarly it can be shown that — and — are continuous whenr & S’.



Part V: Continuity of partial derivatives of " at points in V'
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Let:
Origin O of our coordinate system lie outside V'

ro = (X0, Yo, Zo) be any point in V' where we wish to show continuity of y"
around which we remove a small volume § € V'

B be the upper bound for |p|
A be the total volume in V'

& be a volume of any shape with ry in its interior (or boundary) and origin O to its
exterior

For a particularr’ € (V' — §), # is continuous in space except at r = r’ and

hence is continuous at ry.

Therefore for any ﬁ > 0, there exists a § such that;
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By (5) and (6), whenever r € §:
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I.e. for any € > 0, there exists a § such that whenever r € §:

oypY LM

‘a—( )—a—(ro) <e&
Il)V

i.e. — is continuous at ry
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Since ry is an arbitrary point in V', M s continuous at every pointin V',
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Similarly it can be shown that "’aiy and "’aiz are continuous at every pointin V.

From Part 111, Part IV and Part V, we conclude the following statement:

Partial derivatives of 1 are continuous at points not in S’

By statements (i) and (ii), ¥ is differentiable at points not in S’



