
To prove:   is differentiable everywhere except at the surface. 

Proof: 
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The proof consists of five parts. 

  



Part I: Existence of partial derivatives of    at all points 
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Let us take the origin of the coordinate system at   and use spherical coordinate 

system. 
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When     , the integrand is defined and continuous over domain   . When 

    , the integrand is defined and continuous over domain    except at origin   

where it is undefined. Therefore 
   

  
 exists for any  . 

Similarly it can be shown that 
   

  
 and 

   

  
 exist for any  . 

  



Part II: Existence of partial derivatives of    at points not on    
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When     , the integrand is defined and continuous over domain   . Therefore 

   

  
 exists when     . 

Similarly it can be shown that 
   

  
 and 

   

  
 exist when     . 

From Part I and Part II, we conclude the following statement: 

(i) Partial derivatives of   exist at points not in    

  



Part III: Continuity of partial derivatives of    at points not in    

 

       
 is continuous in space except at      

Therefore   
 

       
      is continuous in space except at      

Since superposition of continuous functions is a continuous function: 
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is continuous when     . 

Similarly it can be shown that 
   

  
 and 

   

  
 are continuous when     . 

Part IV: Continuity of partial derivatives of    at points not in    

 

       
 is continuous in space except at      

Therefore   
 

       
      is continuous in space except at      

Since superposition of continuous functions is a continuous function: 
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is continuous when     . 

Similarly it can be shown that 
   

  
 and 

   

  
 are continuous when     . 

  



Part V: Continuity of partial derivatives of    at points in    

 

Let: 

Origin   of our coordinate system lie outside    

              be any point in    where we wish to show continuity of    

around which we remove a small volume      

  be the upper bound for     

  be the total volume in    

  be a volume of any shape with    in its interior (or boundary) and origin   to its 

exterior 

For a particular          ,  
 

       
 is continuous in space except at      and 

hence is continuous at   .  

Therefore for any 
 

    
  , there exists a   such that: 

1. Whenever     and           , 
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2. For all  , 
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Let: 
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By (2): 
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By (3) and (4): 
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By (1), whenever     and          : 
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By (5) and (6), whenever    : 

     |
   

  
    

   

  
    |  |[

   

  
    

   

  
    ]  [

   

  
    

   

  
    ]| 

 |
   

  
    

   

  
    |  |

   

  
    

   

  
    | 

 
  

 
 

 

 
   

        |
   

  
    

   

  
    |    

i.e. for any    , there exists a   such that whenever    : 
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i.e. 
   

  
 is continuous at    

Since    is an arbitrary point in   , 
   

  
 is continuous at every point in   . 

Similarly it can be shown that 
   

  
 and 

   

  
 are continuous at every point in   . 

From Part III, Part IV and Part V, we conclude the following statement: 

(ii) Partial derivatives of   are continuous at points not in    

 

By statements (i) and (ii),   is differentiable at points not in    

 

 

 


