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Valence subbands of uniaxially stressed GaAs-Ga,_, Al, As quantum wells are found by solving
exactly the multiband effective-mass equation for the envelope function; as in the particle in a box
problem, we first solve the effective-mass equation in each bulk material, and then we impose
boundary conditions on the linear combinations of bulk solutions. Discrete symmetries of the
effective-mass Hamiltonian are used to decouple the spin-degenerate subbands; the energy levels
are obtained as the zeros of an 8 X8 determinant. The functional form of the wave functions is
given analytically, and is used in order to discuss the heavy-hole-light-hole mixing at finite values
of the in-plane vector kj; the mixing greatly increases when the applied stress reduces the energy
separation at k;=0. Resonances are shown to arise and are due to the degeneracy of discrete lev-
els with states of the continuum at different values of k.

I. INTRODUCTION

Semiconductor heterostructures receive great attention
today, due to their intrinsic interest and to possible ap-
plications in electronic devices. Many methods have
been employed to study their electronic structure and
optical properties: among these, the envelope-
function, !~ tight-binding,® pseudopotential,” and densi-
ty functional method.?

The envelope-function approach, based on the
effective-mass approximation, is easy to apply; it gives a
reasonable description of conduction and valence sub-
bands near the center of the Brillouin zone, provided the
constituent materials are chemically similar, like in the
GaAs-G,_, Al As system. In addition, it is particularly
suited to include external perturbations, like uniaxial
stress’ and magnetic field.> Perhaps the most important
prediction of the effective mass theory is the mixing of
heavy and light holes away from k;=0; this mixing gives
rise to conspicuous nonparabolicities in the space-
quantized valence-band structure, and it has a great
effect on all optical properties of heterostructures, like
resonant Raman scattering,!® polarization of the
luminescence, '! and exciton binding energy.!> When the
I's valence band is described by the 44 Luttinger ki-
netic matrix, the mixing arises from off-diagonal terms
and from current conserving boundary conditions at the
interface. Even if in some cases the observed mixing is
too large to be accounted for by the simple effective
mass theory,!! this approach remains nonetheless a very
useful tool in order to understand the optical properties
of superlattices near the band edge.

In this paper we adopt the four-component envelope-
function formalism in order to study the valence sub-
bands of an isolated quantum well under compressive
stress in the growth direction; we show that the
effective-mass equation can be solved exactly, and com-
pare our results with those of the variational treatments
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employed so far. The method of solution is an extension
of the particle in a box problem of quantum mechanics:
we first solve the effective-mass equation in the well and
barrier materials, and then match the linear combina-
tions of bulk wave functions at the interfaces in order to
find the eigenstates. The components of the envelope
function turn out to be trigonometric functions inside
the well and decreasing exponentials outside (possibly of
complex argument), even at nonzero in-plane wave vec-
tor.

Our method, while in principle equivalent to the vari-
ational solution of previous authors, has several distinct
features. First, off-diagonal terms of the Luttinger Ham-
iltonian, current conserving boundary conditions, and
warping of the subbands in the k,k, plane are taken into
account exactly. Second, the wave functions are given
analytically and are found to be simple; the envelope
function is determined with the same accuracy in all re-
gions of space, even in the barriers, when the com-
ponents are small and the variational method is less ac-
curate; this may be useful in the study of tunneling phe-
nomena. Third, resonant levels above the well, degen-
erate with the continuum, are naturally found with this
approach. On the other hand, it must be remarked that
our calculation is not self-consistent, and it applies as it
stands only to undoped materials.

The remaining part of the paper is organized as fol-
lows. In Sec. IT we discuss the solutions of the effective-
mass equation in each bulk semiconductor, and we show
how the boundary conditions give rise to discrete levels.
In Sec. III we study discrete symmetries acting on the
four-component envelope function, and we use the trans-
formation properties of the envelope function under
specular reflection to decouple the spin degenerate sub-
bands. In Sec. IV we present the results, and treat a
number of topics: heavy-hole-light-hole (HH-LH) mix-
ing, the effect of stress, and Fano resonances. We also
compare our wave functions with the variational results
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of Altarelli.
clusions.

In Sec. V we summarize results and con-

II. EXACT SOLUTION
OF THE EFFECTIVE-MASS EQUATION

We consider an isolated quantum well grown in a
(100) direction, which we take along the quantization

axis z. The well extends from —L/2 to L/2. The
effective mass Hamiltonian describing the I'y valence
band is a 4X4 matrix operator quadratic in k=—iV,
given by!3

P+Q L M 0
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and V(z) is a square-well potential which vanishes inside
the well and equals — ¥, in the barriers. The Luttinger
parameters Y ,Y,,73 are those appropriate to the well or
barrier materials. The Hamiltonian (1) acts on a four-
component envelope function F=(F,F,,F4,F,), and
the electronic wave functions are approximately given by

W(r)=F(r)| $3) +F,(r) | 11) + F3(r) | 21 -1
+Fy(r)|3-2) . 3)

The I'y Bloch functions of both materials at k=0 can be
expressed in terms of the space Bloch functions X, Y,
and Z, and of the spin functions « and 3

1

| %%) T/?(X—HY)(Z ,
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|%_%)=‘/#2(X —iY)B .

X, Y, and Z being the partner functions of the represen-
tation I';s of the zinc-blende point group 7,, which
transform as the p functions on the two sublattices.

The effect of a uniaxial stress along [001] is to add to
(1) a strain Hamiltonian, '“!3
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where b is a deformation potential, S|; and S, are the
compliance constants, and X is the applied stress.
Hence, the effect of stress along [001] is to modify the Q
term of (2 ) to

Q— (k +k2—2k )+& . (7)

We first discuss the solutions of the wave equation in
the bulk. The components of the Bloch vector k are
good quantum numbers, and the envelope function can
be taken of the form F(r)=fe'*",  where
f=(f1,f2.f3.f4) is an eigenvector of the Luttinger ki-
netic matrix, and ky,ky,,k, are real numbers. The secu-
lar equation gives the well-known hole dispersion rela-
tion

E=—P+(Q*+LL +MM")'/? . (8)

The plus sign refers to heavy holes, the minus sign to
light holes. Each eigenvalue is twofold degenerate, since
the Hamiltonian is both inversion and time-reversal in-
variant.

The explicit form of the eigenvectors is easily ob-
tained, and is given below for later use:

R,‘f 0
ik- M | i
Lyo= |t e, Lyto= | ¥ le™r,
0 R,
9)
—L M
R, ikr |0 ikt
Hl(k)—— 0 N Hz(k)— R2 e N
iy Val Lt
where R and R, are defined by
R,=Q—P—E, R,=Q+P+EFE . (10)

We remark that only two of the eigenvectors (9) are
linearly independent.

In the case of the quantum well, the potential V(z)
breaks translation symmetry along z; however, k. and k,
remain good quantum numbers and we can set
F(x ,y,z)—-e Hhax vk yf(z). The effective-mass equation
HF =EF must be supplemented by boundary conditions
at each interface. In the approximation that the Bloch
functions (4) are equal in the two materials, boundary
conditions can be expressed in terms of the envelope
functions alone. They require the continuity of each
component f;(z) of the envelope function and of the fol-
lowing vector:
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The continuity of vector (11) generalizes the usual
derivative boundary condition, and is equivalent to the
Hermiticity of the effective-mass Hamiltonian; it implies
the conservation of current through the boundary, pro-
vided the Bloch functions at both sides are taken to be
equal. This assumption restricts the range of validity of
the envelope-function approach to cases in which well
and barrier materials have similar chemical properties,
like the GaAs-Ga, Al;_, As quantum well.

To calculate the energy levels corresponding to a
given k;, we use the fact that the potential is a constant
in each of the three regions. For each E, we find the
eigenfunctions of the Luttinger Hamiltonian with a
given k|, and with the corresponding values of k,. They
are denoted by *+k;, +k, within the well (Fig. 1), and by
+iX,;, *iX, in the barrier, where E is replaced by
E —V,. Then, we take the most general linear combina-
tion of bulk solutions, and we impose boundary condi-
tions at the two interfaces. In order to have confined
states, both numbers X;, X;, must have a real part, other-
wise we have a continuous spectrum.

Let us count the number of free parameters and of
boundary conditions. Inside the well we have eight in-
dependent eigenfunctions with given E, k;; at both sides
in the barriers we have only four because of the condi-
tion of vanishing at infinity. This makes a total of 16
unknown coefficients. Continuity and current conserv-
ing boundary conditions, at both interfaces, are again 16.
Hence, we end up with a compatibility condition of the
form D (E,k;)=0, where D is a 16X 16 determinant,
which gives the subband dispersion in an implicit form.

energy

FIG. 1. Schematic representation of the solutions of the
heavy- and light-hole dispersion relation at ky=0 and at fixed
E.

The procedure described above can be simplified by
using the reflection symmetry o with respect to the
plane z=0 and time-reversal symmetry. We will show in
Sec. III that the 16X 16 determinant decouples in two
8 X 8 determinants, which yield the Kramers degenerate
hole subbands at a given k.

III. DISCRETE SYMMETRIES
OF THE EFFECTIVE-MASS HAMILTONIAN

A symmetry operator O acts on the electronic wave
function V¥ in the following way:

OV=F||3})+F3 |30 +F3|1—1)+F,|3-3).

(12)
Consider the time-reversal operator. The Bloch func-
tions X, Y, Z of (4) are invariant under T, while a, 8 are

transformed into one another by io,. This gives for the
envelope function

y

Fi(x,,2) 0 0 0 —i||Ft(x,y2)
T Fy(x,y,2) | 0 0 7 O F3(x,y,2)
Fi(x,y,z) 0 —i 0 O Fi(x,y,2)
F4(x,,2) i 0 0 O ||Ff(x,pz2)

(13)

It can be easily verified that 7 is a symmetry of the
effective-mass Hamiltonian, i.e., THT ~'=H; moreover,
this property is independent on the phase of 7.

Though specular reflection with respect to the xy
plane is not a symmetry operation of the T; point group,
it is a good symmetry operation for the quantum well
problem in the effective-mass approximation because we
have neglected k-linear terms in (1). In order to derive
its explicit form we express it as o=R_I, where
R, =exp(—imwJ,), and we obtain

-1

F;(x,y,Z) 0 0 Fl(x’yy'_z)

Fy(x,,2) 0 1 0 O0]lF(x,y,~2)
0’ =

F;(x,y,z) 0 0 —1 0} |F3(x,py,—2) |’

Fy(x,y,z) 0 0 0 1] |Falx,y,—2)

(14)

apart from an overall phase. We shall denote the eigen-
value of o by parity, not to be confused with the eigen-
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value under space inversion I; the reason we are interest-
ed in o is that it leaves the in-plane vector k; invariant,
whereas I changes the sign of k.

By looking at the explicit form of T and o, it can be
seen that the two operators anticommute:

{0,T}=0. (15)

From this important property it follows that T changes
the parity eigenvalue of a state. As a consequence we
can prove that a symmetry operator exists which
changes the function of a given k; with a definite parity
into a function of the same k; with opposite parity.
Such a symmetry operator is R . T, and its very existence
proves that all the bands, double degenerate at every
value of k;, can be chosen with given parity under o."
If one solution is found, the other at the same k is given
by

ik“

R_TF =e VI(f¥(2),f3(2),f3(2),f1(2) . (16)

It can be checked that all boundary conditions are in-
variant under o, in the sense that if a wave function of
definite parity satisfies boundary conditions at the inter-
face z =L /2, it satisfies them at z =—L /2 too. Hence,
in order to simplify the quantum well problem, it suffices
to work with even (or odd) solutions in the two materi-
als, and to impose continuity and current conserving
boundary conditions at one interface.

The solutions of definite parity in the two media can
be taken as linear combinations of (9) with both signs of
k,. We take L,, H, as independent eigenfunctions, and
we choose to work with odd wave functions only.

The envelope function inside the quantum well at
given E, k is then

0 0
_ M sin(k,;z) M sin(k,z)
AC iL;cos(k;z) | T52 iLycos(kyz)
R sin(k;z) R yysin(ky,z)
M cos(k,z) M cos(k;z)
0 0
+B; —R,,cos(ky,z) +B4 | _R jcos(kz) |2
—iL,Tsin(k,,z) —iL/[sin(k;z)

(17)

where k;, k, are the roots of the dispersion relation (8),
and we have defined L, =L (k,k;) and similarly for L,
Ry, Ry, Ry, R,,. We remark that k;, k;, need not be
necessarily real, since the wave function (17) is defined
only for —L /2 <z <L /2. Note that the second and the
fourth component of f change sign as z— —z, but the
first and the third do not;!® the overall parity of the en-
velope function is not related to the position of the
nodes.

In the barrier we replace E by E —V, and we use
X, =—1ik, instead of k,. By keeping only those func-
tions which vanish at infinity, we have, for z > L /2,
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_ M X,z M | -z
f(z)=B; _L, e + By _I, e
Ry Ry,
-M -M
0 — X,z 0 —X;z
+B, | 5 M+Bg |5 e 1, (18)
" | Ry, * | Ry
L L}

where the overbar indicates that the values of the Lut-
tinger parameters are those appropriate to Ga;_,Al, As.
The envelope function for z <L /2 is easily obtained
from (18) by applying the reflection operator o. The
condition of vanishing at infinity implies that both X,
and X, must have a nonzero real part, but they may well
have an imaginary part (in which case, it is easy to see
that X;=X}); when this happens, the envelope function
oscillates at rate Im(X;), while being damped at a rate
Re(X;). In the continuum X, and X, have vanishing real
part and the expansion (18) must include all oscillating
functions.

Attention must be paid to a correct definition of L'
and L', The meaning of L ' is the “Hermitian conjugate
of the operator L”; therefore, since k,=—id/9dz is an
Hermitian operator, k; and k, are unchanged under
Hermitian conjugation, even if they are imaginary.
Similarly, since X,= —ik, by definition, X; and X,
change sign under Hermitian conjugation.

By imposing boundary conditions at z =L /2, we ob-
tain a linear homogeneous system for the coefficients
B, ...,Bg. The zeros of the 8 X8 determinant of this
linear system give the energy eigenvalues of the sub-
bands, for a given k; and for each value of the stress pa-
rameter §.

The determinant depends on the values of the wave

functions (17), (18), and of their derivatives at z =L /2,
given in (11); note that boundary conditions mix
different components of the envelope function. We do
not give an explicit expression of the determinant be-
cause it is rather cumbersome; however, it is easy to ob-
tain it using the above prescription. It has not been pos-
sible to evaluate the determinant in a simple form, ex-
cept in the approximation of infinite well depth, where
the 44 determinant arising from boundary conditions
f =0 gives back the Nedorezov result. !
" In finding the zeros of the determinant, care must be
taken in eliminating spurious solutions, which arise
when the bulk wave functions are not linearly indepen-
dent. This happens in two cases: (a) when k;=0 (or
kh,X[,Xh =0), (b) when k[ Zkh (or X[ =Xh ).

IV. RESULTS FOR HOLE SUBBANDS
AND EIGENFUNCTIONS

In this section we present some results referring to a
GaAs-Ga; _, Al As quantum well with an aluminum
mole fraction x=0.21. We use the following values for
the Luttinger parameters:®° y,=6.85, y,=2.1, y3=2.9
for GaAs and y,=3.45, ¥,=0.68, v;=1.29 for AlAs.
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FIG. 2. Dispersion of the three highest valence subbands in T M fs L
a GaAs-Gag 19Alg21As quantum well of width L=100 A (a) 2 0
with no stress ({=0) and (b) with an applied stress X=2.3 kbar § f2
(=6 meV). In (b) the zero of the energy has been taken to g-o.s (e)
coincide with the top of the bulk GaAs valence band under the s | " o e = i
same stress. z(A) z(A)

The parameters y,7,,7 3 for Gagy 79Aly ;;As are obtained
by linear interpolation. The band gap difference in eV is
taken to be’! AE, =1.04x +0.47x%. We assume a 40%
prescription for the hole barrier depth,?? which gives a
value of V;=95.65 meV. We take®® b=—1.7 eV and
S11=1.17x10"3 kbar~}, §,=—0.37x 1073 kbar~ .

In Fig. 2 we show the three highest subbands of a
100-A-wide quantum well in the two directions {10)
and (11); the subbands are calculated for the case of no
stress ({=0) and for a value {=6 meV of the stress pa-
rameter, which corresponds to a compressive stress of
2.3 kbar. In Fig. 2(b) the zero of the energy has been
taken to coincide with the top of the bulk GaAs valence
band under the same stress (we remind that in bulk
GaAs the degeneracy between HH and LH at k=0 is
lifted by the application of a uniaxial stress and the LH
value is shifted upwards by ). The subbands of Fig.
2(a) are highly nonparabolic, due to the mutual repulsion

FIG. 3. Envelope-function components of the three highest
subbands in the (10) direction in a 100- A GaAs-Gag 70Alg 21ASs
quantum well without stress. The wave functions have been
calculated for kyL=2 and kyL=4.

at k;0; in particular, LH1 has an electronlike effective
mass. A slight warping in the k, k, plane is also present.
When a uniaxial compressive stress is applied [Fig. 2(b)],
the heavy-hole subbands at k;=0 are shifted downwards
relative to the light holes by an amount 2{; the an-
ticrossing behavior arises from the increased repulsion
between HH1 and LH1.

In the case of zero stress, we have compared our re-
sults with those obtained by Altarelli with a variational
procedure.?* The agreement is found to be excellent for
all bound energy states. Sanders and Chang applied the
variational method to include a uniaxial stress.” Also, in
this case we expect good agreement between the two re-

TABLE 1. The variational envelope functions obtained by Altarelli are compared with the exact re-
sults presented in this paper. The values refer to the highest valence subband (HH1) at kL =4 in the
(10) direction in a 100 A GaAs-Gag 10Alg 21 As quantum well without stress. The origin of the z axis

is at the center of the quantum well.

o

z (A) fi f2 f3 f4
Exact envelope functions

0 7.481 1072 0 —1.016x 10! 0

25 5.085x 1072 1.634 1072 —7.229% 1072 4,745 1072
50 7.697 %1073 1.405x 1072 —2.005% 1072 3.077x 1072
75 —1.533% 1073 3.614x 1073 —1.948%x 1073 3.797x 1073
100 —6.114x107* 6.768 10~ —6.837x107° 3.306 < 10~*

Variational envelope functions

0 7.480% 10~2 1.364 10~° —1.017x 107! —7.386x 1077
25 5.082x 1072 1.637x 1072 —7.230% 1072 47421072
50 7.824 1073 1.397x 102 —2.000% 1072 3.066 1072
75 —1.495% 1073 3.570x 1073 —1.976 1073 3.815x 1073
100 —7.297x10~* 6.996 10~* 1.578 <103 1.944x 10
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sults, though we have not made a detailed comparison.

In Fig. 3 we give the components of the envelope
functions f(z) for HH1, LH1, HH2 in the (10) direc-
tion for the case of no stress; the corresponding sub-
bands are those of Fig. 2(a). We remind that the well ex-
tends from —50 to 50 A. A slight discontinuity in the
derivative at z=50 A is present, due to current conserv-
ing boundary conditions. It can be seen that LH1 has a
higher penetration in the barrier than HH1. We notice
that at k,L=2 the largest component in HHI is f,,
whereas the largest component in LH1 is f;; however,
as the wave vector increases to k L=4, the f; com-
ponent of HH1 increases at the expense of f, showing
that HH1 has more light-hole character. The opposite
trend is seen in LH1.

The wave functions shown in Fig. 3 have been com-
pared with variational results obtained with the same set
of parameters.?* This is shown in Table I, where the
values of the envelope functions obtained from the varia-
tional approach are also given for comparison. A linear
combination of the spin-degenerate envelope functions of
Altarelli has been taken in order to compare them with
our envelope functions, which we have chosen to be odd
under the symmetry operator o. The envelope functions
are normalized according to f S, | fi(z)|*dz=1, and z
is measured in angstroms. The agreement is excellent in-
side the well, where the amplitude of the confined level
is large; the variational wave function and our exact
solution coincide up to one part in a thousand. Howev-
er, the absolute precision of the variational calculation
remains constant in space, and the variational result may
considerably differ in the barrier, where the value of the
envelope function is greatly reduced. This indicates that
differences between variational and exact calculations
may show up in the tunneling between two distant quan-
tum wells.

The wave functions for kL =4 of Fig. 3 have values
of X;, X, which have an imaginary part, and which are
the complex conjugate of each other. However, since
Re(X,)>Im(X,), the oscillations implied by (18) are
strongly damped and do not seem to be practically ob-
servable.

It is clear that HH1 and LH1 are strongly mixed at
finite wave vector when their energy separation at k=0
is small, as in Fig. 2(b). We now want to give a quanti-
tative measure of this mixing. The components of the
envelope function inside the well, according to (17), can
be written in the form

hicos(k,z)+1 cos(k;z)
h,sin(k,z)+1,sin(k;z)
fl2)= hscos(kyz)+15cos(k;z)
hgsin(k,z)+14sin(k;z)

At k=0 only the first component of HH1 and the third
component of LH1 are nonvanishing. To give an esti-
mate of the mixing between the bands, which is pro-
duced as we increase the value of k, we consider the ra-
tio h3/h, for HH1. This ratio equals zero at k;=0, and

FIG. 4. Ratio h;/h, for the HHI1 subband of a 100-A
GaAs-Gag 70Alg 5,As quantum well in the (10) direction, for
the values {=0,4,6,7 meV of the stress parameter.

it grows as HH1 and LH1 are mixed. Moreover, the
overlap integrals with the states of the first conduction
band are roughly proportional to A; and h;, so that
h3/h, can be related to the ratio I, /I, of the two linear
polarization components of the luminescence. !

In Fig. 4 we plot the ratio 43 /h; as a function of k
in the direction {10), for the values £=0,4,6,7 meV of
the stress parameter. As HH1 remains above LH1, the
ratio h3/h, at finite wave vector grows rapidly with the
applied stress; however, when LH1 becomes higher in
energy (§=7 meV, not shown in Fig. 2) the HH1 band is
pushed downwards and the mixing decreases. This be-
havior could be observed experimentally by modulating
the applied stress and by monitoring the ratio I, /I, of
the luminescence from the first conduction band; a great
enhancement of I, /I, is predicted for the value of the

0 T T T
HH1 L=78A
Q0>
25k LH1 ]
HH2
E
= -50
(S}
>
=y
@
c
Y

FIG. 5. Confined hole levels in the {10) direction for a 78-
A GaAs-Gag 79Alg 2;As quantum well. The dashed line marks
the onset of the continuum; the well barrier depth is
— V= —95.65 meV.
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stress which makes HH1 and LH]1 coincide at k;=0.

Figure 5 shows the subbands in the (10) direction of
a quantum well of width 78 A, without an externally ap-
plied stress. The dashed line denotes the onset of the
continuum, where X; and X, become pure imaginary.
We note that HH3 band at high k, has an energy below
the well depth — V;=—95.65 meV, these confined states
are resonant with the continuum, the extra energy com-
ing from the motion parallel to the interfaces. These
states are stationary in our model: they become Fano
resonances which decay into the states of the continuum
when some other interaction, like phonon or impurity
scattering, changes the value of k.

A different kind of behavior arises from the LH2
band, which starts as a confined level for small k;, then
it meets the continuum line, where it ceases to exist as a
discrete level. As the value of k; increases, instead of a
real bound state one obtains a virtual antibound state
with a diverging wave function at infinity. When the
well width (or more precisely the parameter V,L?) de-
creases, the whole LH2 band moves towards the contin-
uum until eventually it disappears. When this happens,
a new transmission peak in the continuum below — ¥
occurs as in the one-dimensional scattering problem.
Uniaxial stress can be used in order to tune the energy of
these transmission peaks.

We emphasize that discrete states, resonances, and
continuum states can all be determined in a natural way
by our method. Clearly, the four-component envelope-
function approximation becomes less accurate for excit-
ed states, when the energy differences become compara-
ble to the spin-orbit splitting, which for GaAs is A=1340
meV. For a more accurate treatment the procedure
must be extended to include the k-p coupling to the
split-off band.
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V. CONCLUSIONS

We have studied hole subbands of GaAs-Ga,_, Al As
quantum wells under uniaxial stress. Within the
effective-mass approximation, energy levels and envelope
functions can be determined exactly by solving the
effective-mass equation in each bulk material. Use of
reflection symmetry allows us to decouple the spin-
degenerate subbands, and to obtain the energy eigenval-
ues as the zeros of an 8 X 8 determinant. Uniaxial stress
can enhance the mixing between different valence sub-
bands at k50, and the mixing can be analyzed using
the form of the wave functions. Resonant states of the
Fano type have been shown to arise.

Our method yields a simple and unified treatment of
confined states, resonances, and continuum levels. The
extension to superlattices is straightforward, but since
the superlattice wave number k; is not parity invariant,
the full 16X 16 determinant must be used in that case.
The exact wave functions may be useful in studying tun-
neling between two distant quantum wells, as well as res-
onance scattering at an energy below the well depth;
they can also be the starting point for the construction
of exciton or impurity levels, with the main advantage
that the dependence of the envelope function on z is
analytically known.
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