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MATH2501 Linear Algebra

PROBLEM SHEET 1

Linear Equations and Matrices

1. For each of the following matrices A and vectors b find
the general solution of the system Ax = b by Gaussian
elimination and also by use of the row-reduced echelon
form.

(a) A =





1 −4 −1
−1 3 2
2 −9 2



, b =





12
−7
35



;

(b) A =





0 −3 1
−1 −1 2
2 −7 1



, b =





−1
0
7



;

(c) A =





1 −3 4 −1
3 −1 0 5
−1 3 −2 5



, b =





11
1
1



;

(d) A =





3 4 2 0 −3
−1 0 −2 4 1
2 7 −3 −5 −2



, b =





3
7

−26



.

2. Write down the general solutions for the following sys-
tems of equations
(a) x1 + 2x2 = 4; x2 + 3x3 = 7
(b) x1 + 2x2 = 4; x3 = 7
(c) x1 + 2x2 + x4 = 5; x3 − 5x4 = 8
(d) x1+2x2+3x3+4x4 = 5; 2x1+4x2+7x3+6x4 = 9.

3. Show that the three equations x+y+2z = a, x+z = b,
2x+ y + 3z = c are consistent if c = a+ b.

4. For which values of λ do the equations

x+ 2y + λz = 1

−x+ λy − z = 0

λx− 4y + λz = −1

have
(a) no solutions
(b) infinitely many solutions
(c) a unique solution?
Find the possible solutions when they exist.

5. Find conditions on b1, b2, b3 such that the triple of
equations:

2x1 + 3x2 + 4x3 = b1,

3x1 + 4x2 + 5x3 = b2,

4x1 + 5x2 + 6x3 = b3

has a solution. Find a formula for this solution.

6. For each of the following matrices, find conditions
(if any) on b1, b2, . . . such that there are solutions to
Ax = b, where b = (b1, . . . , bn)

T .

(a) A =





1 −3 3
2 −5 4
2 −9 12





(b) A =





1 −3 2
−3 14 −8
−1 −7 3





(c) A =









−1 1 3
3 3 −6
−1 3 −1
0 −2 1









.

7. Let A =





2 −3 4
3 2 −2
1 −1 3



, B =





−2 1
3 4
−1 5



, C =





−3 2
1 −4
6 2



, D =

(

2 3 1
1 −2 3

)

. Evaluate each of

the following that exists: 3A, −2B, A + B, B + C,
A + 3I, B + 3I, FD, DB, AB, BC, A2, (BD)2, AT ,
BT , BTB, BBT . Note I denotes the 3 × 3 identity
matrix.

8. Use the standard formula to write down the inverse of

the matrix A =

(

4 5
3 4

)

.

9. Using the standard row-reduction algorithm, invert (if
possible) the following matrices:

A =





0 7/2 −1
2 1 −4
1/2 −3 0



 , B =





3 −3 −2
3 −4 −2
−4 3 3



 ,

C =





1 3 −2
0 1 −2
0 0 1



 , D =





0 2 0
1 2 3
−1 4 −2



 , E =





1 2 3
2 3 4
3 4 5



 ,

F =





1 4 1
2 3 1
1 −7 −2



 , G =









5 −6 1 5
−3 5 −1 4
2 −2 1 2
1 −1 0 1









.

10. Show that if B is a square matrix then
(a) BBT and B +BT are symmetric; and
(b) B−BT is skew-symmetric. (A matrix M is skew-

symmetric if MT = −M .)
Show that every square matrix is the sum of a sym-

metric matrix and a skew-symmetric matrix.

11. Find a 2× 2 matrix A such that A2 = I, but A 6= ±I.

12. If K is a skew-symmetric matrix and I + K is non-
singular, prove that the matrix (I + K)−1(I − K)
is orthogonal. (A matrix Q is called orthogonal if
QTD = I.)
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13. Given that A, B, C are n×n invertible matrices, A is
symmetric, B is skew-symmetric and C is orthogonal
simplify the following expressions.
(a) A−1(CB2A)TC;
(b) A(BA)TB−1C6(BC7)TB
(c) C(BC)−1BTA5(BA4)−1C(ABC)T .

14. Factorise each of the following matrices into the form
PLU .

A =

(

1 2
3 4

)

, B =

(

0 1
2 3

)

, C =





1 2 3
2 3 4
5 7 31





D =





0 0 2
0 5 8
3 7 9



 , E =





1 2 3
2 4 7
5 9 6





F =





1 1 1
3 0 4
2 1 1



 , G =





0 0 3
3 7 9
0 5 8



 .

Answers: 1. (a) (2,−3, 2)T , (b) (8, 2, 5)T , (c) (2, 5, 6, 0)T +
λ(−3,−4,−2, 1)T , (d) (5 + λ − 2µ,−3 + µ, µ, 3, λ)T .
2. (a) (−10, 7, 0)T + s(6,−3, 1)T , (b) (4.0, 7)T +
s(−2, 1, 0)T , (c) (5, 0, 8, 0)T + s(−1, 0, 5, 1)T + t(−2, 1, 0, 0)T

(d) (8, 0,−1, 0)T + s(−10, 0, 2, 1)T + t(−2, 1, 0, 0)T . 4. (a)
λ = ±2. (b) λ = 1 (c) λ 6= ±2, 1. 5. b1 = 2b2 − b3. 6. (a)
b3 = 8b1 − 3b2 (b) no conditions (c) b1 + b2 + 2b3 + 5b4 = 0.

7. A + B undefined; B + C =





−5 3
4 0
5 7



; A + 3I =





5 −3 4
3 5 −2
1 −1 6



; B+3I undefined; BD =





−3 −8 1
10 1 15
3 −13 14



;

DB =

(

4 19
−11 8

)

; AB =





−17 10
2 1
−8 12



; BC undefined;

A2 =





−1 −16 26
10 −3 2
2 −8 15



; (BD)2 =





−68 3 −109
25 −274 235
−97 −219 4



;

AT =





2 3 1
−3 2 −1
4 −2 3



; BT =

(

−2 3 −1
1 4 5

)

; BBT =





5 −2 7
−2 25 17
7 17 26



; BTB =

(

14 5
5 42

)

. 8.

(

4 −5
−3 4

)

.

9. A−1 =





24 −6 26
4 −1 4
13 −7/2 14



 B−1 =





6 −3 2
1 −1 0
7 −3 3



 C−1 =





1 −3 −4
0 1 2
0 0 1



 D−1 =





8 −2 −3
1/2 0 0
−3 1 1



 E has no inverse.

F−1 = 1

4





1 1 1
5 −3 1

−17 11 −5



. 11. Many examples exist e.g.

A =

(

1 0
0 −1

)

13. (a) B2 (b) A2CTB2 (c) A2. 14. Many

solutions are possible. Check your answers by multiplica-
tion.
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School of Mathematics and Statistics, University of NSW

MATH2501 Linear Algebra

PROBLEM SHEET 2

Vector Spaces Reviewed

1. Are the following sets subspaces of R3? Give reasons
for your answers:
(a) {x | x2

1 = x3
2};

(b) {x | 2x1 − 3x2 + 3x3 = 13};
(c) {x | 2x1 − 3x2 + 3x3 = 0};
(d) {x | x = t1u1 + t2u2, t1, t2 ∈ R} (u1 and u2 are

fixed elements of R3);
(e) {x | 2x1 + 3x2 − 4x3 = 6};
(f) {x | 2x1 + 3x2 − 4x3 = 0}.
Give a basis for those sets that are subspaces.

2. Is the set

S = {p ∈ P3 | xp′(x)− 2p(x) = 0 for all x ∈ R}

a subspace of P3, the space of all polynomial functions
of x of degree ≤ 3?

3. Let V = C[−1, 1] be the vector space of real valued
continuous functions on [−1, 1], where addition is de-
fined by (f + g)(t) := f(t) + g(t) and scalar multipli-
cation is defined by (λf)(t) = λf(t) for all f, g ∈ V
and λ ∈ R. Define

U :=

{

f ∈ V |
∫ 1

−1

f(t)dt = f(0)

}

and

W :=

{

f ∈ V |
∫ 1

−1

f(t)dt = 1

}

.

Prove that U is a vector space, but W is not.

4. Let V be the set of all sequences {αn} =
{α0, α1, . . . , αn, . . . } of elements of R. Define the ad-
dition of sequences by {αn}+ {βn} := {αn + βn} and
scalar multiplication by λ{αn} := {λαn}. Prove that
V is a vector space over R.

5. (∗) Prove that the following are vector spaces over R:
(a) The set {{αn} | αn+1 − αn = αn+2 − αn+1, n ≥

0, αn ∈ R} of all arithmetic progressions;
(b) The set {{αn} | αn+2 = αn+1 + αn, n ≥ 0, αn ∈

R} of all Fibonacci sequences;
(c) The set {{αn} | {αn} converges , αn ∈ R} of all

convergent sequences.

6. Are the vectors v1 = (1, 2, 3)T , v2 = (2, 3, 4)T and
v3 = (3, 4, 5)T in R

3 independent?

7. The set S = {u,v} is a linearly independent set in
a real vector space V. Suppose that w ∈ V is such
that w /∈ span(S). Show that {u,v,w} is a linearly
independent set.

8. Is the polynomial p(x) = 1 + x + x2 in span{1 − x +
2x2,−1 + x2,−2− x− 5x2}?

9. Show that the set {1, ex, e2x, e3x} is linearly indepen-
dent in the vector space F of all real-valued functions
on R.

10. Consider a possible identity λ1 cos t + λ2 sin t +
λ3t cos t + λ4t sin t = 0 for all t. By evaluating this
identity at certain values of t extract a system of lin-
ear equations for the λi and hence show that the four
functions cos t, sin t, t cos t and t sin t are linearly inde-
pendent.

11. Set f(t) = λ1 cos t+λ2 sin t+λ3 cos 2t+λ4 sin 2t. Eval-
uate

∫ 2π

0

f(t) cos t dt,

∫ 2π

0

f(t) sin t dt,

∫ 2π

0

f(t) cos 2t dt and

∫ 2π

0

f(t) sin 2t dt

to show that the four functions cos t, sin t, cos 2t, sin 2t
are linearly independent.

12. Are the four cubics

p1 = −1− 3x2 + x3, p2 = −1 + 2x+ x2,

p3 = 1− 2x+ x3, p4 = 1− 6x− 4x2 + 3x3

linearly dependent in P3(R)? If so, write p4 as a lin-
ear combination of the other three. Otherwise, write
p = −2 + 6x+ 2x2 − x3 as a linear combination of all
four cubics.

13. Let V be the vector space of all twice-differentiable
real-valued functions defined on R. If f, g ∈ V, then
define

Wf,g(t) :=

∣

∣

∣

∣

f(t) g(t)
f ′(t) g′(t)

∣

∣

∣

∣

.

(a) Prove that if Wf,g(t) 6= 0 then {f, g} is a linearly
independent set in V.

(b) Show that {sin t, cos t} is a linearly independent
set.

In general this Wronskian determinant is significant
in the theory of linear ordinary differential equations.

14. Find the co-ordinate vector of (b1, b2)
T ∈ R

2 with re-
spect to the basis B = {(2, 3)T , (3, 5)T }.

15. Show that the columns of the matrix A below are not
a spanning set for R4. Find a basis for R4 which con-
tains as many of the columns of A as possible.

A =









1 3 3 −7 5
2 6 3 −8 1
3 9 2 −7 3
4 12 0 −4 11









.
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16. Let V = P3(R) be the vector space of polynomials
with real coefficients and degree at most 3. Show that
the set

{t2 + t3, 1 + t+ t2 + t3, t, 1 + t2 + 2t3}
is linearly independent in V. Explain why this set
forms a basis for V and obtain the coordinates of
1 + 2t+ 3t2 + 4t3 with respect to this basis.

17. Find a basis for the column space and the row space

of the matrix





3 4 5
4 5 6
5 6 7





18. Use row-reduction to find a basis for the column space
of A and a basis for the row space of B where A and
B are the following matrices:

A =





−2 1
3 4
−1 5



 , B =

(

2 3 1
1 −2 −3

)

.

19. Find bases for the kernels (nullspaces, NS), row
spaces (RS) and column spaces (CS) of each of the
following matrices. Hence obtain their nullities and
ranks.

A =





1 −2 5 3
−3 5 3 2
3 −5 5 2



 , B =





2 −3 −1
2 −3 −1
−3 3 2





and C =





2 3 −4 2 −3
1 1 2 0 0
−4 0 −4 2 −3



 .

Find the co-ordindates of the vector v = (6, 6,−8)T

with respect to your basis of CS(B) and with respect
to your basis of RS(B).

20. For what values of the unknown k do the following ma-
trices have non-trivial nullspaces? Find the nullspaces
in these cases.

(a) A =

(

1 1− 2k
k − 3 3

)

(b) B =





k 2 2
3k 7 + k 7
1 −2k − 2 −3



.

Answers: 1. (a) No (b) No, (c) Yes, (d) Yes, (e)
No, (f) Yes. 2. Yes. 6. No. 8. Yes. 12.

No. p = p1 + p2 + p3 − p4. 14.

(

5b1 − 3b2
2b2 − 3b1

)

15.

{(1, 2, 3, 4)T , (3, 3, 2, 0)T , (5, 1, 3, 11)T , (1, 0, 0, 0)T } for ex-
ample. 16. (2, 0, 2, 1)T . 17. {(3, 4, 5)T , (4, 5, 6)T }.
18. CS(A) = span{(−2, 3,−1)T , (1, 4, 5)T } RS(B) =
span{(1, 0,−1)T , (0, 1, 1)T }. 19. Ker(A) =
span{(7, 4,−1, 2)T , CS(A) = R

3, RS(A) =
span{(1,−2, 5, 3)T , (0,−1, 18, 11)T , (0, 0, 2, 1)T }. Ker(B) =
span{(3, 1, 3)T }, CS(B) = span{(2, 2,−3)T , (1, 1,−1)T },
RS(B) = span{(2,−3,−1)T , (0,−3, 1)T }. Ker(C) =
span{(2,−4, 1, 6, 0)T , (0, 0, 0, 3, 2)T }, CS(C) = R

3, RS(C) =
span{(2, 3,−4, 2,−3)T , (0, 2,−4, 2,−3)T , (0, 0, 12,−4, 3)T }.
[2, 2] for basis of CS(B) above and [3,−5] for basis of RS(B)
above. 20. (a) for k = 2, Ker(A) = span{(3, 1)T } and
for k = 3

2
Ker(A) = span{(2, 1)T } (b) for k = 0, Ker(A) =

span{(1,−1, 1)T } and for k = −3, Ker(A) = span{(2, 1, 2)T }
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MATH2501 Linear Algebra

PROBLEM SHEET 3

Linear Transformations

1. For each of the following functions either show that
they are linear and find their matrices with respect to
the standard bases, or prove they are not linear:

(a) T : R2 → R
2, T

(

a
b

)

=

(

2a
a− b

)

.

(b) T : R2 → R
2, T

(

a
b

)

=

(

a+ 1
b

)

.

(c) T : P2(R) → P2(R), T (a + bt + ct2) = (a + c) −
(c+ b)t+ (a+ b+ c)t2.

(d) T : P2(R) → P2(R), T (a + bt + ct2) = a + b(t +
1) + c(t+ 1)2.

(e) f : R3 → R
2, f(x1, x2, x3)

T = (9x1 − 2x2, x1 −
5x2)

T .
(f) f : R3 → R

2, f(x1, x2, x3)
T = (9x1 − 2x2, x1 −

5x2 − 3)T .

2. Let V and W be vector spaces and T : V → W be
linear. Show that T is uniquely determined by the
values of T (vi) for every member vi of any basis of V.

3. Given that each of the following maps f is linear and
takes the given values on the given basis vectors for
R

2, find formulae for f(x2, x2)
T .

(a) f(1, 0)T = (3, 4)T , f(0, 1)T = (4, 9)T .
(b) f(4, 7)T = (3, 4)T , f(3, 5)T = (4, 9)T .
(c) f(5, 7)T = (3, 4)T , f(2, 7)T = (2, 5)T .

4. Let P2(R) denote the space of polynomials with real
coefficients and degree ≤ 2. The function f from
P2(R) to P2(R) is defined by f(p)(x) = p′(x).
(a) Show f is linear.
(b) Find the matrix of f with respect to the basis

B = {1, 1 + x, x2}

5. Let f, g be maps P1(R) → R
2, defined by f(a+ bx) =

(

2a+ 3b
a− b

)

and g(a+ bx) =

(

a− b
a+ b

)

.

(a) Show that f and g are linear maps.
(b) Find the matrices of f and g relative to the bases

S′ = {1, x} in P1(R) and S =

{(

1
0

)

,

(

0
1

)}

in

R
2.

(c) Find the matrices of f and g relative to the bases

{1+x, 2−x} in P1(R) and

{(

2
3

)

,

(

1
2

)}

in R
2.

6. (a) Show that B =

{(

1
5

)

,

(

1
6

)}

is a basis for R2.

(b) Suppose that T : R2 → R
2 is linear and has ma-

trix

(

−2 1
5 2

)

with respect to the standard basis

S of R2. What is the matrix of T with respect to
B?

7. Let B =

{(

1
−1

)

,

(

−3
2

)}

be a basis for R2 and sup-

pose that T : R
2 → R

2 is linear and has matrix
(

4 9
1 1

)

with respect to the standard basis S of R2.

What is the matrix of T with respect to B?

8. Let B =

{(

1
4

)

,

(

1
3

)}

be a basis for R2 and suppose

that T : R2 → R
2 is linear and has matrix

(

6 −1
12 −1

)

with respect to the standard basis S of R2. What is
the matrix of T with respect to B?

9. V is a 3-dimensional vector space over R with basis
B = {v1,v2,v3}. Let f be a linear map from V to
V such that f(v1) = 2v1 + 3v3, f(v2) = 4v2 + v3,
f(v3) = −v1+2v2+6v3. Write down the matrices of
f, f2 (that is, f ◦f), 2I−f , with respect to the given
basis. Here I : V → V denotes the identity map.

10. Let Pn(R) be the vector space of polynomials of degree
at most n with coefficients in R.
(a) What is the rank of the differentiation operator

on P3(R)? What is its null space? What is its
matrix with respect to the standard basis S of
P3(R) in both domain and codomain and its ma-
trix with respect to the basis {1, 1 + t, 1 + t +
t2, 1+ t+ t2+ t3} in both domain and codomain?

(b) Verify that the matrix of differentiation three
times is the cube of the matrix of differentiation
once on P3(R).

11. Let V = P3(R) be the vector space of polynomials
with real coefficients and degree at most 3.
(a) Show that the map T : V → R

2 given by T (v) =
(v′(0),v(0))T for all v ∈ V is linear and obtain
its matrix with respect to the standard basis S′

for V in the domain and the basis S for R2 in the
codomain.

(b) Find Ker(T ) and dim(Ker(T )) and also the image
of T , im(T ), in other words find bases for these
subspaces.

(c) Consider the bases B′ = {1, 1 + t, t+ t2, t2 + t3}
of V and B = {(1, 1)T , (1,−1)T } of R

2. Find
the matrices associated with the change of bases
from these new bases to the standard bases in
part a and then use those matrices to calculate
the matrix of T with respect to the new bases.
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Answers: 1. (a) linear,

(

2 0
1 −1

)

(b) not linear‘ (c)

linear





1 0 1
0 −1 −1
1 1 1



 (d) linear





1 1 1
0 1 2
0 0 1



 (e) linear,

(

9 −2 0
1 −5 0

)

. (f) not linear. 3. (a) f(x1, x2)
T = (3x1 +

4x2, 4x1+9x2)
T . (b) f(x1, x2)

T = (13x1−7x2, 43x1−24x2)
T .

4.





0 1 −2
0 0 2
0 0 0



. 5. (b)

(

2 3
1 −1

)

,

(

1 −1
1 1

)

. (c)

(

10 −1
−15 3

)

,

(

−2 5
4 −7

)

. 6.

(

3 7
0 −3

)

. 7.

(

10 −9
5 −5

)

.

8.

(

2 0
0 3

)

. 9. [f ]BB =





2 0 −1
0 4 2
3 1 6



 [f2]BB =





1 −1 −8
6 18 20
24 10 35



 [2I − f ]BB =





0 0 1
0 −2 −2
−3 −1 −4



 10. (a)

Rank is 3, null space span{1}. Matrices









0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0









and









0 1 −1 −1
0 0 2 −1
0 0 0 3
0 0 0 0









11. (a)

(

0 1 0 0
1 0 0 0

)

. (b) im(T ) = R
2,

Ker(T ) = span{t2, t3} so has dimension 2. (c) Matrix for

V is









1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1









, for R
2 is

(

1 1
1 −1

)

. Matrix of T is

1

2

(

1 2 1 0
−1 0 1 0

)

.
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MATH2501 Linear Algebra

PROBLEM SHEET 4

Least Squares, Gram-Schmidt.

1. Find the projection of (x1, x2)
T ∈ R

2 on the line
spanned by (5, 12)T .

2. Find the projection in R
3 (with the usual inner prod-

uct) of (x1, x2, x3)
T on the subspace spanned by

(1, 2, 2)T and (2, 1,−2)T .

3. Find the projection in R
3 (with the usual inner prod-

uct) of (x1, x2, x3)
T on the subspace of R3 orthogonal

to the subspace spanned by (1, 2, 2)T and (2, 1,−2)T .

4. Let M be the matrix





−1 7 11
8 7 11
4 8 1



. Show that the

columns of M form a basis for R3 and use the Gram-
Schmidt process to modify this basis to obtain an or-
thonormal basis.

5. Now use your calculations in Q.4 above to find a QR
factorisation of the matrix M .

6. Let {v1, . . . ,vn} be an orthonormal basis for the inner
product space V. Show that any v ∈ V can be written
v = 〈v1,v〉v1 + . . .+ 〈vn,v〉vn.

7. In this question x = (x1, x2)
T and y = (y1, y2)

T

denote two general elements of the vector space R
2.

Which of the following functions are inner products
on R

2? Give reasons.
(a) 〈x,y〉 = x1x2 + y1y2;
(b) 〈x,y〉 = x1y2 + y1x2;
(c) 〈x,y〉 = x1y1 + 3x2y2;
(d) 〈x,y〉 = x1y2 + 2y1x2;
(e) 〈x,y〉 = x1y1 − 3x2y2?

8. For a real inner product space:
(a) Prove the identity ‖u+v‖2+‖u−v‖2 = 2‖u‖2+

2‖v‖2.
Why is this identity known as the parallelogram

identity?
(b) Prove the identity 4(u ·v) = ‖u+v‖2−‖u−v‖2.
(c) Prove Pythagoras’ Theorem: u ·v = 0 if and only

if ‖u‖2 + ‖v‖2 = ‖v + u‖2.

9. (H) Let u and v be two non-zero vectors in R
n. Show

that the vector w = (‖u‖+ ‖v‖)−1(‖u‖v+ ‖v‖u) bi-
sects the angle between u and v.

10. Use the Gram-Schmidt process to find orthonormal
bases for the spaces:
(a) span{(5, 12)T , (−4, 6)T };
(b) span{(−2, 1,−2)T , (1, 4,−8)T };
(c) span{(2,−3, 6)T , (1, 1,−1)T }.

11. Apply the Gram-Schmidt process to the standard ba-
sis of P3(R) to find an orthogonal basis for P3(R) using
as inner product

〈p, q〉 =
∫ 1

−1

p(t)q(t) dt .

These polynomials are called Legendre polynomials.

12. (a) Let C[−π, π] be the set of real valued continuous
functions on [−π, π]. If 〈f, g〉 = 1

π

∫ π

−π
f(t)g(t) dt

show that 〈f, g〉 defines an inner product on
C[−π, π].

(b) Show that the set

{1/
√
2, cos t, sin t, cos 2t, sin 2t, . . .}

is an orthonormal set with respect to this inner
product.

13. Let V be a finite-dimensional inner product space and
let W ⊆ V be a subspace.

Define W⊥ = {v ∈ V | 〈v,w〉 = 0 for all w ∈ W}.
Show that:
(a) W⊥ is a subspace of V.
(b) W ∩W⊥ = {0}.
(c) dimW + dimW⊥ = dimV.
(d) W⊥⊥ = W.
(e) If v ∈ V, there are unique vectors w1 ∈ W, w2 ∈

W⊥ such that v = w1 +w2.
(f) Assuming V = R

n, pW + pW⊥ = I, where pW
and pW⊥ are the orthogonal projections on W
and W⊥ respectively.

14. (a) For R
3 with the usual inner product calculate

span{(1, 1, 1)T , (1,−1, 1)T }⊥.
(b) In R

4 with the usual inner product find a vector
that is orthogonal to (1, 1, 1,−1)T , (2, 1, 1, 1)T ,
and (1, 2, 0, 1)T .

15. Let W = Ker

(

1 1 −1 −1
1 2 −2 1

)

.

(a) Calculate W⊥.
(b) Find orthonormal bases of W and W⊥.
(c) For v = (1,−1, 2, 3)T , find w1 ∈ W and w2 ∈

W⊥ such that v = w1 +w2.

16. For the following subspaces W find the matrix P of
the projection onto W and the projection of the given
vector v onto W:
(a) W = span{(−2, 1,−2)T , (1, 4,−8)T }, v =

(0, 5, 0)T ;
(b) W = span{(1,−1, 1)T , (−1, 2,−3)T }, v =

(1, 0, 5)T .
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17. Show that

A =

(

5 9
12 11

)

=

(

5/13 12/13
12/13 −5/13

)(

13 177/13
0 53/13

)

is a QR factorisation for the matrix A.

18. Find a QR factorisation for each of the matrices:

(a) A =

(

5 −4
12 6

)

;

(b) B =





−2 1
1 4
−2 −8



;

(c) C =









1 3 2
5 4 4
1 −2 −1
−3 1 3









.

19. Find the line y = a+ bx that best fits the three points
(1, 1)T , (3, 2)T and (4, 6)T in the least squares sense.

20. For the points (−1, 4), (0, 1), (1, 0), (2, 1):
(a) Find the line y = a + bx that is a best fit in the

least squares sense;
(b) Find the quadratic y = a+bx+cx2 that is a best

fit in the least squares sense.

21. Let P,Q,R be the three points (1, 1), (2, 1) and (3, 1)
in R

2 respectively.
(a) Find the line y = ax through the origin that best

fits P,Q,R.
(b) Find the line y = b+ ax that best fits P,Q,R.
(c) Find the line y = b+ax that best fits P,Q,R and

the origin.

22. A farmer fertilises four fields with different amounts x
of fertiliser and gets different yields y. The four yields
are 1

2
, 1, 5

2
and 3 for fertiliser amounts 0, 1, 2, and

3 respectively. Find the line of best fit though these
points.

Show that this line goes through the point whose
x-coordinate is the average amount of fertiliser and
whose y-coordinate is the average yield. Does this al-
ways hold for any four amounts x1, x2, x3, x4 when the
yields are y1, y2, y3, y4?

23. The voltage V of a discharging battery after 0, 1

2
, 1

and 1 1

2
minutes is measured as 3.5, 2, 1.5 and 1 volts

respectively Find the quadratic of best fit for the volt-
age as a function of time.

24. Let v1 = (0, 1, 2, 2)T , v2 = (−6,−1,−2, 7)T , v3 =
(2, 0,−9, 6)T be three vectors in R

4.
Let W = span{v1,v2,v3}.

(a) Using the Gram-Schmidt process give an or-
thonormal basis for W.

(b) Hence, or otherwise, give a QR factorisation of

the matrix A =









0 −6 2
1 −1 0
2 −2 −9
2 7 6









.

(c) Hence, or otherwise, show that the plane
ax + by + cz − w = 0 that best fits (in the least
squares sense) the four points (xi, yi, zi, wi) =

(0,−6, 2,−2), (1,−1, 0, 2), (2,−2,−9,−3), (2, 7, 6, 5)
is given by a = 5/9, b = 1/3, c = 1/3.

25. Find the matrix of a reflection that exchanges the the
vectors v and w when:
(a) v = (12, 3,−5)T and w = (13, 0,−3)T ;
(b) v = (−1, 0, 0, 7)T and w = (−3, 2,−1, 6)T ;
(c) v = (3,−1, 2, 4)T and w = (5, 0,−1, 2)T .
Find also the (hyper)planes fixed by the transforma-
tions.

26. Why is there no reflection that exchanges the vectors

v =





0
−9
0



 and w =





8
0
−4



 ?

27. Let A =





2 2
3 1
6 0



. Find two different QR factorisa-

tions of A, one using the Gram-Schmidt process and
one by Householder transformations.

28. Use the Householder method to find a QR factorisa-

tion for





1 1
2 4
−2 3



.

Answers: 1. 5x1+12x2

169
(5, 12)T . 2. 1

9
(5x1 +

4x2 − 2x3, 4x1 + 5x2 + 2x3,−2x1 + 2x2 + 8x3)
T . 3.

(x1, x2, x3) − 1

9
(5x1 + 4x2 − 2x3, 4x1 + 5x2 + 2x3,−2x1 +

2x2 + 8x3)
T . 4. { 1

9
(−1, 8, 4)T , 1

9
(8,−1, 4)T , 1

9
(4, 4,−7)T }.

5. Q = 1

9





−1 8 4
8 −1 4
4 4 −7



, R =





9 9 9
0 9 9
0 0 9



.

7. (a) no, (b) no, (c) yes, (d) no, (e) no
10. (a) span{(5/13, 12/13)T , (−12/13, 5/13)T };
(b) span{(−2/3, 1/3,−2/3)T , (5/3

√
5, 2/3

√
5,−4/

√
5)T };

(c) span{(2/7,−3/7, 6/7)T , (9/7
√
2, 4/7

√
2,−1/7

√
2)T }.

11. 1√
2
, t

√

3

2
, 3

2

√

5

2

(

t2 − 1

3

)

, 5

2

√

7

2

(

t3 − 3

5
t
)

14.

(a) span{(1, 0,−1)T } (b) (−4, 1, 5, 2)T . 15.

(a) W = span{(0, 1, 1, 0)T , (3,−1, 1, 1)T } W⊥ =
span{(1, 1,−1,−1)T , (0, 1,−1, 2)T } (c) w1

1

4
(9,−1, 5, 3)T

and w2 = 1

4
(−5,−3, 3, 9)T . 16. (a)

1

5





5 0 0
0 1 −2
0 −2 4



; (0, 1,−2)T . (b) 1

6





5 −2 −1
−2 2 −2
−1 −2 5



;

(0,−2, 4)T . 18. (a) 1

13

(

5 −12
12 5

)

,

(

13 4
0 6

)

(b)

1

3

( −2 1 −2

5/
√
5 2/

√
5 −4/

√
5

)(

3 6

0 3
√
5

)

19. 2y = 3x − 2.

21. (a) y = 3x/7, (b) y = 1, (c) 10y = 3(x + 1). 22.

10y = 9x + 4, Yes. 23. V = T 2 − 31T/10 + 69/20.

24. (b) Q = 1

9









0 −6 6
3 −2 2
6 −4 −5
6 5 4









, R =





3 3 −2
0 9 6
0 0 9



.

25. (a) 1

7





6 3 −2
3 −2 6
−2 6 3



, x1 − 3x2 + 2x3 = 0. (b)
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1

5









1 4 −2 −4
4 1 2 2
−2 2 4 −1
−2 2 −1 4









, 2x1 − 2x2 + x3 + x4 = 0. (c)

1

9









5 −2 6 4
−2 8 3 2
6 3 0 −6
4 2 −6 5









, 2x1 + x2 − 3x3 − 2x4 = 0. 26.

Vectors have different norms. 27. 1

7





2 6
3 2
6 −3





(

7 1
0 2

)

=

1

7





−2 −6 −3
−3 −2 6
−6 3 −2









−7 −1
0 −2
0 0



.
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PROBLEM SHEET 5

Determinants

1. (a) Use row reduction to find the determinants of the
following 3× 3 matrices:

A =





−1 1 2
2 4 −1
0 −1 1



 , B =





28 12 0
21 10 1
7 2 −2



 ,

C =





4 0 −4
0 4 4
−2 −3 −1



 , D =





0 1 0
0 0 1
−2 −3 −2



 .

(b) Use row reduction to find the determinants of the
following 4× 4 matrices:

E =









−1 −2 −4 2
1 1 4 −1
−2 0 0 2
−1 0 −1 1









; F =









3 1 1 −2
−1 −6 0 0
2 2 1 −2
−4 −2 −1 3









;

G =









0 3 0 0
−1 1 0 0
0 0 5 −4
0 0 5 −3









.

2. Show that

∣

∣

∣

∣

∣

∣

∣

∣

a b c d
−a b c d
−a −b c d
−a −b −c d

∣

∣

∣

∣

∣

∣

∣

∣

= 8abcd.

3. Find all roots of the polynomial

p(x) = det





x3 8 1
x 2 1
1 1 1



 .

4. Show that det





x2 4 1
x 2 1
2 x 2x



 = (x−1)(x−2)(3x+2).

5. Show that the equation of the plane through three
given non-collinear points (a1, a2, a3), (b1, b2, b3),

(c1, c2, c3) in R
3 is det









1 x1 x2 x3

1 a1 a2 a3
1 b1 b2 b3
1 c1 c2 c3









= 0.

6. (a) Show that if A and B are invertible then
det

(

(AT )7B−15A29(BT )11A−36B4
)

= 1.
(b) Give an example to show that det is not linear

(e.g. find an A and B such that det(A + B) 6=
detA+ detB).

7. Let A be a 5×5 matrix with determinant 6. Let B be
the matrix that results from multiplying the matrix
A by −1. Let C be the matrix obtained from B by
adding twice the first row of B to the third row of B.

Finally let D be the matrix obtained by swapping the
first and fourth columns of C and dividing the second
row by 2. What are the determinants of B, C and D?

8. Suppose A is an n × n real matrix with QR-
decomposition A = QR where the diagonal elements
of R are α1, α2, . . . , αn. Show that

detA = ±α1α2 . . . αn.

9. For what values of x is the determinant
∣

∣

∣

∣

∣

∣

∣

∣

x a b c
a x b c
a b x c
a b c x

∣

∣

∣

∣

∣

∣

∣

∣

= 0?

10. (H) Suppose A =

(

M1 N
0 M2

)

where M1 and M2 are

square matrices. Show that

detA = (detM1)(detM2).

11. (a) Show that

det





1 a a2

1 b b2

1 c c2



 = (a− b)(b− c)(c− a).

(b) (H) Show that if ai ∈ R, 1 ≤ i ≤ n then

det











1 a1 a21 · · · an−1
1

1 a2 a22 · · · an−1
2

...
...

...
...

1 an a2n · · · an−1
n











=
∏

1≤i<j≤n

(aj − ai).

12. Let B =





−2 1
3 4
−1 5



 and C =





−3 2
1 −4
6 2



. Calculate

the determinant of the 2× 2 matrix BTC and explain
without calculation why the determinant of the 3× 3
matrix BCT is zero.

13. Let

A =





0 7/2 −1
2 1 −4

1/2 −3 0



 , B =





3 −3 −2
3 −4 −2
−4 3 3





C =





1 3 −2
0 1 −2
0 0 1



 , D =





0 2 0
1 2 3
−1 4 −2



 .

Calculate the determinants of A, B, C, D, AD and
B + C.

14. Calculate the determinant of the matrix λI−D where
D is the matrix D in the above question.

Answers: 1. (a) -9,-28,0,-2 (b) 2,-7,15 3. 1,2,-3 7. -6,-6,3
9. a, b, c, −(a+ b+ c). 12. 546. 13. − 1

2
, −1, 1, −2, 1,

12. 14. λ3 − 18λ+ 2.



11

School of Mathematics and Statistics, University of NSW
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PROBLEM SHEET 6

1. Eigenvalues, Eigenvectors, Diagonalisation

1. Find the characteristic polynomials of the following
matrices:

A =





−1 1 2
2 4 −1
0 −1 1



 ; B =





28 12 0
21 10 1
7 2 −2



 ;

C =





4 0 −4
0 4 4
−2 −3 −1



 ; D =





0 1 0
0 0 1
−2 −3 −2



 .

2. By considering the rank of A − λI for the following
matrix/number pairs, show that the given number is
an eigenvalue of the matrix.

(a)

(

0 −1
−2 1

)

, −1;

(b)





1 4 2
2 1 −2
−3 4 6



 , 4;

(c)





−8 25 25
−7 21 20
3 −9 −8



 , 1;

(d)

(

1 1− i
2i 2− i

)

, −i.

Find an eigenvector for each of the given eigenval-
ues.

3. Find all eigenvalues and eigenvectors of the following
matrices over R or C:

(a)

(

1 2
−1 4

)

;

(b)

(

2 −2
−2 5

)

;

(c)

(

2 1
−1 0

)

;

(d)

(

−2 4
−5 7

)

;

(e)

(

5i −4i
6i −5i

)

;

(f)





2 1 1
1 1 0
1 0 1



;

(g)





2 0 0
0 3 1
0 1 3



;

(h)





3 1 2
8 7 12
−2 −2 −2



.

The results of this question will be used later (in
Problem Sheets 11 & 12).

4. Diagonalise those matrices in the previous question
that can be diagonalised. Which of those matrices are
similar?

For each diagonalisable matrix M , find a formula
for Mk, k any integer.

5. Find the characteristic polynomials of the matrices:

C3 =





0 0 −a0
1 0 −a1
0 1 −a2



 , C4 =









0 0 0 −a0
1 0 0 −a1
0 1 0 −a2
0 0 1 −a3









.

6. Show that if

M =





2 −5 5
−1 −12 13
−1 −19 20



 and x =





1
2
3



 ,

then Mx = 7x. Let

P =





1 0 0
2 1 0
3 0 1



 .

Find P−1MP .

7. Without calculating any characteristic polynomial

show that 7 is an eigenvalue of the matrix

(

2 5
6 1

)

and calculate the other eigenvalue.

8. Verify that 2 and −3 are eigenvalues of the matrix

A =





2 −5 −5
−4 8 4
4 −11 −7



 .

Find the third eigenvalue and eigenvectors of A for
each eigenvalue.

9. Find a formula for An where A =

(

2 5
6 1

)

and n is an

integer. Is your formula valid for n negative?

10. Let f denote a linear map from V to V. Here V
is a 3-dimensional vector space over R with basis
{v1,v2,v3}, such that

f(v1) = 2v1 + v2 + v3,

f(v2) = 2v2, f(v3) = v2 + v3.

Is there a basis B for V such that [f ]B is a diagonal
matrix? If such a basis exists, find one.

11. Let f be a linear map from R
3 to R

3 with matrix

A =





2 0 −1
0 −3 2
0 −5 3





with respect to the standard basis for R
3.

Find the eigenvalues and eigenvectors of f .
Do the same for the linear map from C

3 to C
3 that

has matrix A relative to the standard basis for C3.

12. (a) Show that if A and B are matrices so that AB
and BA are both defined then AB and BA have
the same trace. Set A = S−1M and B = S in
this and show that S−1MS and M have the same
trace.
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(b) Show that

M =





12 13 14
17 18 19
23 24 70



 and N =





30 41 42
21 35 −23
38 11 36





are not similar.

13. The Fibonacci numbers {fn}n≥0 are defined by
fn+2 = fn+1 + fn for n ≥ 2 with f0 = 0, f1 = 1.
(a) If

A =

(

0 1
1 1

)

,

show that

An =

(

fn−1 fn
fn fn+1

)

; n ≥ 1.

(b) Show that fn+1fn−1 = f2
n + (−1)n.

(c) By diagonalising the A of (a) find a formula for
fn.

14. On the island of Kerguelen three species A,B,C of
feral pigs are in mutual conflict, which is broken off
each spring for breeding. The numbers a′, b′, c′ of
each species on 1 December of any year is deter-
mined in terms of the numbers a, b, c of the species
on 1 December of the previous year by the formula:
a′ = 7a/5 − b/10 − c/8, b′ = −a/5 + 13b/10 − c/8,
c′ = −a/5− b/5 + 5c/4.

Find the population ratio corresponding to a stable
population.

Answers: 1. λ3 − 4λ2 − 4λ + 9; λ3 − 36λ2 − 50λ + 28;
λ3−7λ2+12λ; λ3+2λ2+3λ+2. 2. (a) E−1 = span{(1, 1)T }

(b) E4 = span{(2, 2,−1)T } (c) E1 = span{(0, 1,−1)T } (d)
E−i = span{(i, 1)T } 3. (a) E2 = span{(2, 1)T }; E3 =
span{(1, 1)T }. (b) E1 = span{(2, 1)T }; E6 = span{(−1, 2)T }.
(c) E1 = span{(1,−1)T } (d) E2 = span{(1, 1)T }; E3 =
span{(4, 5)T }. (e) Ei = span{(1, 1)T }; E−i = span{(2, 3)T }.
(f) E0 = span{(−1, 1, 1)T }; E1 = span{(0, 1,−1)T }; E3 =
span{(2, 1, 1)T }. (g) E2 = span{(1, 0, 0)T , (0, 1,−1)T };
E4 = span{(0, 1, 1)T } (h) E2 = span{(−2,−4, 3)T }; E3 =

span{(1, 4,−2)T } 4. a. P =

(

2 1
1 1

)

, D =

(

2 0
0 3

)

b. P =

(

2 −1
1 2

)

, D =

(

1 0
0 6

)

. c. Not diagonalis-

able. d. P =

(

1 4
1 5

)

, D =

(

2 0
0 3

)

. e. P =

(

1 2
1 3

)

,

D =

(

i 0
0 −i

)

. f. P =





−1 0 2
1 1 1
1 −1 1



, D =





0 0 0
0 1 0
0 0 3



.

g. P =





1 0 0
0 1 1
0 −1 1



, D =





2 0 0
0 2 0
0 0 4



. h. Not diagonalis-

able. 5. −λ3−λ2a2−λa1−a0; λ
4+λ3a3+λ2a2+λa1+a0.

6.





7 −5 5
0 −2 3
0 −4 5



. 7. −4. 8. 4, E4 = span{(0,−1, 1)T },

E−3 = span{(1, 0, 1)T }, E2 = span{(−1,−2, 2)T }. 9.

1

11

(

6.7n + 5(−4)n 5.7n − 5(−4)n

6.7n − 6(−4)n 5.7n + 6(−4)n

)

10. No. 11. Over

R : E2 = span{(1, 0, 0)T }; Over C, E2 and Ei = span{(2 +
i, 3 − i, 5)T }; E−i = span{(2 − i, 3 + i, 5)T }. 13. (c) fn =

[((1 +
√
5)/2)n − ((1−

√
5)/2)n]/

√
5. 14. The ratio a : b : c

should be 2 : 3 : 4.
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PROBLEM SHEET 7

Rotations and Reflections

1. Show that the following matrices are the matrices of
rotations in R

2. What are the angles of the rotations?

(a) A =
1

5

(

3 −4
4 3

)

(b) B =
1

2

(√
3 1

−1
√
3

)

.

2. Show that the following matrices represent rotations
in R

3 and in each case find the axis of the rotation
and the size of the angle of rotation.

(a) A =





−1/9 8/9 4/9
8/9 −1/9 4/9
4/9 4/9 −7/9



;

(b) B =





1/2 −1/2 1/
√
2

1/2 −1/2 −1/
√
2

1/
√
2 1/

√
2 0



;

(c) C =





√
3/2 0 −1/2
0 1 0

1/2 0
√
3/2



 .

3. The linear maps R, S and T have matrices

1

9





8 −1 4
−1 8 4
4 4 −7



 ,





1/2 0
√
3/2

0 1 0√
3/2 0 −1/2





and

1

3





2 −2 1
1 2 2
2 1 −2





respectively with respect to the standard basis.
Show that R and S are reflections in some planes

and find those planes. Show that T is a reflection in

some plane composed with a rotation of that plane and
find the plane and the size of the angle of rotation.

4. Determine which of the following matrices is a rotation
and which is a reflection/rotation. For the rotation,
determine the size of the angle and axis of rotation.
For the reflection determine the normal of the plane
of reflection.

A =
1

3





2 −2 1
−1 −2 −2
2 1 −2



 , B =
1

9





4 −7 −4
1 −4 8
8 4 1



 .

5. Verify that the vector (−3, 2,−4)T is an eigenvector
for the matrix

M =
1

15





−5 −2 14
−10 −10 −5
10 −11 2



 .

Now verify efficiently the fact that M represents a ro-
tation.

6. (H) Let V = R
n with its usual inner product, and let

v ∈ V satisfy ‖v‖ = 1. Let H denote the hyperplane
with equation v · x = 0. Find formulæ for:
(a) the projection onto H;
(b) the reflection through H.

Answers: 1. (a) cos−1(3/5) (b) −π
6

2. (a) axis (2, 2, 1)T ,

angle π. (b) axis (
√
2, 0, 1)T , angle 2π

3
(c) axis (0, 1, 0)T , angle

π
6

3. R: x1 + x2 − 4x3 = 0; S: x1 −
√
3x3 = 0; T :

x1 + x2 − 3x3 = 0, cos−1 5

6
. 4. A rotation, angle

cos−1(− 5

6
), axis (3,−1, 1)T . B rotation with reflection, nor-

mal (−1,−3, 2)T .
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PROBLEM SHEET 8

Symmetric Matrices

1. Find an orthonormal basis of R3 consisting of eigen-
vectors for the matrix

A =





5 4 2
4 5 2
2 2 2



 .

Note that A has 1 as an eigenvalue.

2. Find orthogonal matrices that diagonalise the follow-
ing matrices:

A =

(

1 2
2 1

)

, C =









a 1 1 1
1 a 1 1
1 1 a 1
1 1 1 a









B =





2 −2 0
−2 2 0
0 0 8



 , D =





1 −1 0
−1 1 −1
0 −1 1





3. Show that −1 is an eigenvalue of the matrix:

A =





0 −1 2
−1 0 −2
2 −2 3



 .

Find an orthogonal matrix Q such that Q−1AQ is di-
agonal.

4. Suppose that the matrix Q is orthogonal and Q−1AQ
is diagonal. Show that A is symmetric.

5. For each of the following conic sections, find principal
axes, identify the curve and sketch it:
(a) x2 + 4xy + y2 = 1;
(b) 3x2 − 4xy + 3y2 = 1;
(c) x2 + 4xy + 4y2 = 5;
(d) 13x2 + 4xy + 10y2 = 2.

6. For each of the conic sections in the above question
find a rotation that puts the surface into canonical
form and give the angles of the rotations.

7. For each of the following quadratic surfaces, find prin-
cipal axes, identify the surface, sketch the surface and
find the points on the surface closest to the origin :
(a) 2x2 + 2y2 + 5z2 + 2xy + 4xz + 4yz = 1;
(b) x2 + y2 + 2z2 − 2xz − 2yz = 1;
(c) 4z2 + 2xy + 6xz + 6yz = 1;
(d) x2 + y2 + z2 − 4xy − 4xz − 4yz = 3;
(e) 2x2 − y2 − z2 − 4xy − 4xz − 8yz = 1;
(f) −8z2 + 2xy + 4xz − 4yz = 1
(g) 3x2 + 5y2 + 4z2 + 4xz + 4yz = 28.

8. (H) Consider the one-parameter set of surfaces de-
fined by cx2 + (c − 4)y2 + cz2 − 6xz = 1. For which
values of c are the surfaces
(a) ellipsoids;

(b) hyperboloids of one sheet;
(c) hyperboloids of two sheets.
(d) What are the surfaces for the remaining values of

c?
Show that there is a basis for R

3 in which all these
surfaces are in standard form.

9. How many sheets has the hyperboloid in R
3 with equa-

tion x1x2 + x1x3 + x2x3 = 1?

10. Write each of the following functions as a sum of mul-
tiples of squares of independent linear functions.
(a) x2 + 6xy + 4y2;
(b) 2x2 − 4xy + 3y2;
(c) x2 + 8y2 + 5z2 − 4xy + 2xz;
(d) 2x2 + 7y2 + 2z2 − 8xy + 4xz − 10yz;
(e) 2x2 + 4y2 + 5z2 − 4xy + 4xz;
(f) x2+y2+9z2+12w2+4xz+2xw+4yz−2yw−6zw;
(g) x2 + 4y2 + 56z2 + 2xy + 4xz + 28yz.
In each case find the number of negative eigenvalues
that the corresponding symmetric matrix has.

Answers: 1. (2/3, 2/3, 1/3)T , (−1/
√
2, 1/

√
2, 0)T ,

(1/3
√
2, 1/3

√
2,−4/3

√
2)T 2. A: 1/

√
2

(

−1 1
1 1

)

; B:





−1/
√
2 1/

√
2 0

1/
√
2 1/

√
2 0

0 0 1



; C:









1/2 1/2 1/2 1/2

−1/
√
2 1/

√
2 0 0

−1/
√
2 0 1/

√
2 0

−1/
√
2 0 0 1/

√
2









;

D:





−1/
√
2 1/2 1/2

0 −
√
2/2

√
2/2

1/
√
2 1/2 1/2



. 3. 1√
6





√
3

√
2 1√

3 −
√
2 −1

0
√
2 2



.

5. For each of the following conic sections, find principal
axes, identify the curve and sketch it: (a) hyperbola; axes

(1/
√
2, 1/

√
2)T (eigenvalue 3) and (1/

√
2,−1/

√
2) (eigen-

value 1). (b) ellipse ; axes (1/
√
2, 1/

√
2)T (eigenvalue 1)

and (−1/
√
2, 1/

√
2) (eigenvalue 5). (c) two lines ; axes

(1/
√
5, 2/

√
5)T (eigenvalue 5) and (2/

√
2,−1/

√
2) (eigen-

value 0). (d) ellipse; axes (−1/
√
5, 2/

√
5)T (eigenvalue

9) and (2/
√
5, 1/

√
5)T (eigenvalue 14). 6. The rota-

tion matrices are formed by writing down the axes given
in the original solutions as columns in order of increasing
eigenvalues. 7. (a) E7 = span{(1/

√
6, 1/

√
6, 2/

√
6)T };

E1 = span{(1/
√
2,−1/

√
2, 0)T , (1/

√
3, 1/

√
3,−1/

√
3)T };

ellipsoid, closest points ±1/
√
42(1, 1, 2)T . (b) E0 =

span{(1/
√
3, 1/

√
3, 1/

√
3)T }; E3 = span{(1/

√
6, 1/

√
6,−2/

√
6)T };

E1 = span{(−1/
√
2, 1/

√
2, 0)T }; elliptic cylin-

der, closest points ±(1/3
√
2)(1, 1,−2)T . (c)

E−2 = span{(1/
√
3, 1/

√
3,−1/

√
3)T }, E−1 =

span{−1/
√
2, 1/

√
2, 0)T }, E7 = span{(1/

√
6, 1/

√
6, 2/

√
6
T },

hyperboloid of 2 sheets, closest points ±1/
√
42(1, 1, 2)T .

(d) E−3 = span{(1/
√
3, 1/

√
3, 1/

√
3)T }, E3 =
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span{(1/
√
2,−1/

√
2, 0)T , (1/

√
6, 1/

√
6,−2/

√
6)T }, hy-

perboloid of one sheet, closest points the circle
(cos θ)/

√
2(1,−1, 0) + (sin θ)/

√
6(1, 1,−2)T . (e) E−6 =

span{(1/3, 2/3, 2/3)T }, E3 = span{(2/3, 1/3,−2/3)T ,
(−2/3, 2/3,−1/3)T }, hyperboloid of one sheet, clos-
est points the circle 1√

3
cos θ(2/3, 1/3,−2/3)T +

1√
3
sin θ(−2/3, 2/3,−1/3)T . (f) E−9 = span{−1/

√
18, 1/

√
18, 4/

√
18)T },

E0 = span{(2/3,−2/3, 1/3)T }, E1 = span{(1/
√
2, 1/

√
2, 0)T },

hyperbolic cylinder, closest points ±(1/
√
2, 1/

√
2, 0)T 8. (a)

c > 4, (b) 3 < c < 4, (c) −3 < c < 3 (d) c = 4: elliptic cylin-
der; c = 3 hyperbolic cylinder; c ≤ −3 non-existent. 9.

2. 10. (a) (x + 3y)2 − 5y2, One. (b) 2(x − y)2 + y2,
None. (c) (x − 2y + z)2 + 4(y + z/2)2 + 3z2, None. (d)
2(x−2y+z)2−(y+z)2+z2, One. e. 2(x−y+z)2+2(y+z)2+z2,
None. (f) (x + 2z + w)2 + (y + 2z − w)2 + (z − 3w)2 + w2,
None.
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Powers, Cayley Hamilton Theorem

1. For the matrix

A =





0 1 0
−12 0 −4
6 −3 2



 ,

calculate the characteristic polynomial, pA(t). Check
that pA(A) is zero.

2. Show that A and AT have the same characteristic
polynomial for any square matrix A.

3. For the matrices

F =





2 1 1
1 1 0
1 0 1



 ; G =





2 0 0
0 3 1
0 1 3





and H =





3 1 2
8 7 12
−2 −2 −2





use the Cayley-Hamilton Theorem to express the 5th
power and (where possible) the inverse of each matrix
in terms of constants, the matrix and its square. (You
have calculated the characteristic polynomials of these
matrices in Problem Sheet 6.)

4. The 3 × 3 matrix M is known to have characteristic
polynomial λ3 − 3λ+ 2.
(a) Find formulae for M4, M5 and M−1 as linear

combinations of I, M and M2.

(b) The column 3-vectors a(n) =
(

a(n), b(n), c(n)
)T

are known to satisfy a(n + 1) = Ma(n).
You are given b(1) = 1, b(2) = 2, b(3) = 3. Find
b(5).

5. Write down matrices with the following characteristic
polynomials:
(a) λ3 − 5λ2 + 2λ+ 9;

(b) λ6 + λ4 − 7λ+ 1.

6. The sequences {an} and {bn} satisfy the recurrences
an+1 = 3an + 4bn and bn+1 = 5an + 6bn. Given that
a0 = 7 and a1 = 8 calculate a3 without calculating b0,
b1, b2 or b3.

7. Recall the following problem from Problem Sheet 6:
“On the island of Kerguelen three species A,B,C of
feral pigs are in mutual conflict, which is broken off
each spring for breeding. The numbers a′, b′, c′ of
each species on 1 December of any year is determined
in terms of the numbers a, b, c of the species on 1
December of the previous year by the formula:

a′ = 7a/5− b/10− c/8

b′ = −a/5 + 13b/10− c/8

c′ = −a/5− b/5 + 5c/4

Find the population ratio corresponding to a stable
population.”

Show that if an denotes the number of pigs of
species A on 1 December in year n, then, for all n,

an+3 =
79

20
an+2 −

41

8
an+1 +

87

40
an.

Answers: 1. λ3 − 2λ2. 3. F 5 = 40F 2 − 39F , F−1 doesn’t
exist. G5 = 208G2 − 752G+704I. G−1 = 1

16
(G2 − 8G+20I)

H5 = 194H2 − 759H + 774I, H−1 = 1

18
(H2 − 8H + 21I).

4. (a) M4 = 3M2 − 2M , M5 = 9M − 6I − 2M2 and
M−1 = 1

2
(3I − M2) (b) 5. 5. Among others (a)





0 0 −9
1 0 −2
0 1 5



 (b)

















0 0 0 0 0 −1
1 0 0 0 0 7
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 −1
0 0 0 0 1 0

















6. 790.
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Jordan Forms

1. A 12 × 12 matrix A has sole eigenvalue 3. It is given
that ker (A − 3I), ker (A − 3I)2, ker (A − 3I)3 and
ker (A − 3I)4 have dimensions 4, 7, 9 and 10 respec-
tively. What are the possible Jordan forms of A?

2. A 13 × 13 matrix B has sole eigenvalue 1. It is given
that ker (B − I), ker (B − I)2 and ker (B − I)3 have
dimensions 4, 7 and 10 respectively. What are the
possible Jordan forms of B?

3. A 20 × 20 matrix C has characteristic polynomial
(λ2 − 4)10. It is given that ker (C − 2I), ker (C −
2I)2, ker (C − 2I)3 and ker (C − 2I)4 have dimensions
3,6,8,10 respectively. It is given that ker (C + 2I),
ker (C+2I)2, ker (C+2I)3 and ker (C+2I)4 have di-
mensions 3,5,7,8 respectively. What can be said about
the Jordan form of C?

4. Find the Jordan forms, without necessarily calculating
bases, of the matrices:

A =





0 0 −1
1 0 −3
0 1 −3



 , B =





0 1 2
0 0 1
0 0 0



 .

5. Suppose that the matrix D has Jordan form

J3(2)⊕ J4(2)⊕ J5(2)⊕ J3(−3)⊕ J3(−3).

What is the dimension of the kernel (= null space) of
(D − λI)k for each eigenvalue λ and all values of k.

6. Suppose that the matrix E has Jordan form

J2(−2)⊕ J4(−2)⊕ J4(−2)⊕ J1(1)⊕ J5(1).

What is the dimension of the kernel (= null space) of
(E − λI)k for each eigenvalue λ and all values of k.

7. The matrix

A =





−3 1 0
−1 −1 0
5 1 1





has two distinct eigenvalues, one of which is −2. Find
the Jordan form of A and a basis with respect to which
the matrix takes that form.

8. Find the Jordan forms, and bases with respect to
which they take those forms, of the following matrices
(over R):





3 −1 1
2 0 1
1 −1 2



 ,





2 2 −1
−1 −1 1
−1 −2 2



 ,





2 −2 3
10 −4 5
5 −4 6



 ,





2 1 1
0 3 1
0 −1 1



 .

9. Are the matrices




0 1 0
0 0 1
−1 1 1



 and
1

2





2 −5 1
0 −1 3
0 1 1





similar?

10. Which of the following matrices are similar:

A =





4 1 4
−4 0 −7
0 0 2



 , B =





2 0 0
2 5 1
−6 −9 −1



 ,

C =





−1 −2 3
−2 0 2
−4 −3 6



 , D =





1 1 1
1 1 −1
−2 2 4



 .

11. Find the Jordan form J and a transition matrix M
such that J = M−1AM for

A =









−2 1 3 −1
3 0 −2 2
1 1 2 1
1 −1 −3 0









.

12. Show that

A =





1 a c
0 1 b
0 0 1





has only one Jordan block (of size 3) if and only if
ab 6= 0.

13. Let A1, A2 be two 2× 2 matrices, A = A1 ⊕A2 and

P =

(

0 I
I 0

)

,

where I is the 2×2 identity matrix. Find P−1AP and
hence show that A1 ⊕A2 is similar to A2 ⊕A1.

14. Show that J2(0)
2 is the zero matrix. Find J3(0)

2, and
show that J3(0)

3 is the zero matrix.
Generalise these results to Jn(0).

15. One of the eigenvalues of

E =





5 −2 1
4 −1 1
−4 2 0





is 1. Is E diagonalisable or not?

16. Given that the matrix C has Jordan form J1(4) ⊕
J2(4) ⊕ J4(4) ⊕ J4(4), calculate dimker (A− 4I)n for
each integer n.
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17. Given that the matrix

D =









3 1 0 0
0 3 −1 1
0 1 2 1
0 1 −1 4









has an eigenvalue λ = 3, find all the eigenvalues of D.
Find a basis for R4 relative to which the matrix of the
linear transformation represented by D has a matrix
in Jordan form.

Answers: 1. J1(3)⊕J2(3)⊕J3(3)⊕J6(3). 2. J1(1)⊕J3(1)⊕
J3(1)⊕J6(1) or J1(1)⊕J3(1)⊕J4(1)⊕J5(1) or J1(1)⊕J4(1)⊕

J4(1)⊕J4(1). 3. It is J2(2)⊕J4(2)⊕J4(2)⊕J1(−2)⊕J3(−2)⊕
J6(−2). 4. J = J3(−1). J3(0). 5. For k = 1, 2, 3, 4,≥ 5
respectively dimker (D − 2I)k = 3, 6, 9, 11, 12, and for k =
1, 2,≥ 3 respectively dimker (D + 3I)k = 2, 4, 6. 6. For
k = 1, 2, 3,≥ 4 respectively dimker (E + 2I)k = 3, 6, 8, 10,
and for k = 1, 2, 3, 4,≥ 5 respectively dimker (E − I)k =
2, 3, 4, 5, 6. 7. Jordan form is J2(−2) ⊕ J1(1), possible ba-
sis {(−2,−2, 4)T , (1,−1, 0)T , (0, 0, 1)T }. 8. J1(1) ⊕ J2(2).
J1(1)⊕J2(1). J1(2)⊕J2(1). J2(2)⊕J1(2). 9. Yes: they have
the same Jordan form J1(−1) ⊕ J2(1). 10. B and D. 11.

J = J2(−1)⊕ J2(1).
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Matrix exponential

1. Let

A =

(

1 1
0 0

)

B =

(

1 −1
0 0

)

.

Find

AB, BA, A2 + 2AB +B2, (A+B)2,

and

eA · eB , eA+B , eB · eA.
Which of these expressions might you have thought (a
priori) to have been equal? Explain why they are not
equal.

2. Let

A =

(

7 8
−6 −7

)

and B =





3 0 4
2 1 4
−2 0 −3



 .

Show that A and B are both diagonalisable.
Hence find expressions for An and Bn for (n ≥ 0)

and calculate exp(tA) and exp(tB).

3. Let A be a square matrix which satisfies A3 = A2.
Show that expA = I +A+ (e− 2)A2. Hence find

exp





0 2 −1
1 2 −2
0 2 −1



 .

4. Suppose A is a square matrix and t is a scalar. Us-
ing a result about exponentials of matrices from lec-
tures show that exp(tA) is invertible and exp(tA)−1 =
exp(−tA).

5. (a) (H) Show that if A is skew-symmetric (AT =
−A), then exp(A) is orthogonal.

(b) (H) Give an example of an orthogonal matrix
Q for which there is no skew-symmetric A with
Q = exp(A).

6. Calculate exp(tA) for each of the following diagonal-
isable matrices:

(a) A =

(

1 2
−1 4

)

;

(b) A =

(

2 −2
−2 5

)

;

(c) A =





2 1 1
1 1 0
1 0 1



;

(d) A =





2 0 0
0 3 1
0 1 3



.

7. For each of the following matrices A, find exp(tA) by
any method, and check that your answer becomes the
identity matrix when you substitute t = 0:

(a)

(

1 1
−9 −5

)

(b)





3 −1 1
2 0 1
1 −1 2





(c)





−1 1 0
0 −1 0
0 0 −1





(d)





−1 1 −1
0 1 −4
0 1 −3



.

8. Let A be the matrix




2 4 3
4 3 4
−3 −4 −4



 .

Find a basis for R3 consisting of generalised eigenvec-
tors for A, and use it to find etA.

9. Show that if A is an n × n matrix, then exp tA → 0
as t → ∞ whenever all the eigenvalues λ of A sat-
isfy Re(λ) < 0.

10. Calculate exp(tB) for the matrix B =

(

5 1
3 3

)

.

11. Calculate exp(tA) for the matrix A =

(

5 1
−1 3

)

.

12. Let

M =





3 −1 1
2 0 1
1 −1 2



 .

Given that λ = 2 is a repeated eigenvalue of M , find
the other eigenvalue of M . Find an invertible matrix
C such that C−1MC is in Jordan form. Compute etM .

Answers: 1. AB = B; BA = A; A2 + 2AB +

B2 =

(

4 −2
0 0

)

; (A + B)2 =

(

4 0
0 0

)

; expA · expB) =
(

e2 −(e− 1)2

0 1

)

; exp(A + B) =

(

e2 0
0 1

)

; expB · expA =
(

e2 (e− 1)2

0 1

)

. 2. An is I if n is even, A if n

is odd. 3.





2e− 3 2e− 2 5− 3e
2e− 3 2e− 1 4− 3e
2e− 4 2e− 2 6− 3e



. 6. (a)

(

2e2t − e3t 2e3t − 2e2t

−e3t + e2t −e2t + 2e3t

)

; (b) 1

5

(

4et + e6t −2e6t + 2et

−2e6t + 2et et + 4e6t

)

;

(c)







1/3 + 2/3 e3 t 1/3 e3 t − 1/3 1/3 e3 t − 1/3

1/3 e3 t − 1/3 1/6 e3 t + 1/2 et + 1/3 1/6 e3 t − 1/2 et + 1/3

1/3 e3 t − 1/3 1/6 e3 t − 1/2 et + 1/3 1/6 e3 t + 1/2 et + 1/3







(d)







e2 t 0 0

0 1/2 e4 t + 1/2 e2 t −1/2 e2 t + 1/2 e4 t

0 −1/2 e2 t + 1/2 e4 t 1/2 e4 t + 1/2 e2 t






7. (a)
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e−2t

(

1 + 3t t
−9t 1− 3t

)

. (b)





e2t(t+ 1) −te2t te2t

(t+ 1)e2t − et et − te2t te2t

e2t − et et − e2t e2t



.

(c) e−t





1 t 0
0 1 0
0 0 1



. (d) e−t





1 t+ t2/2 −(t+ t2)
0 2t+ 1 −4t
0 t 1− 2t



. 8.

exp tA =





e3t − te−t e3t − e−t e3t − (t+ 1)e−t

e3t − e−t e3t e3t − e−t

(t+ 1)e−t − e3t e−t − e3t (t+ 2)e−t − e3t




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Systems of linear differential equations

1. For each matrix from Problem Sheet 11, Question
6 a) and b), solve the system of differential equa-
tions given by (y)′(t) = A(y) with initial conditions
y(0) = (1, 3)T .

2. For each matrix from Problem Sheet 11, Question
6 c) and d), solve the system of differential equa-
tions given by (y)′(t) = A(y) with initial conditions
(y)(0) = (1, 2, 2)T .

3. Solve the system: Solve the system:

y′1 = 2y1 − y2 + y3,

y′2 = −y1 + 2y2 − y3,

y′3 = y1 − y2 + 2y3.

4. Solve the system:

y′1 = 3y1 − y2 + y3,

y′2 = 2y1 + y3,

y′3 = 2y1 − y2 + 2y3.

with initial conditions y1(0) = y3(0) = 1, y2(0) = 0.
5. (a) Find the general solution of the system

y′(t) = Ay(t), A =

(

2 6
2 3

)

.

(b) Check that the non-homogeneous system

y′(t) = Ay + b(t), b(t) =

(

−2t+ 7
−2t+ 3

)

has a solution

y(t) = f(t) =

(

t
−1

)

.

Write down the general solution.
(c) Find the solution of

y′ = Ay(t) + c(t),

with

c(t) =

(

3e2t

2e2t

)

and y(0) =

(

1
3

)

.

6. Repeat the above question with the following changes:
(a)

A =

(

3 6
1 2

)

, b(t) =

(

−6t2

2t− 2t2

)

,

f(t) =

(

0
t2

)

, c(t) =

(

−6e5t

3e5t

)

, y(0) =

(

0
1

)

.

(b)

A =





11 9 −14
2 4 −2
12 12 −15



 , b(t) =





e2t

−e2t

0



 ,

f(t) =





te2t

−te2t

0



 , c(t) =





6et

−2et

3et



 , y(0) =





2
−1
1



 .

7. Solve the system:

y′1 = 2y1 + y2 + y3 + e5t,

y′2 = 2y1 + 3y2 + 2y3,

y′3 = y1 + y2 + 2y3 − e5t

with initial conditions y1(0) = 1/2, y2(0) = 1/2,
y3(0) = 0.

8. Solve the system y′ = Ay + b(t), where

A =





2 1 0
0 2 1
0 0 2



 , b(t) = e2t





1
3
6





with initial conditions y1(0) = 1, y2(0) = 2, y3(0) = 3.
9. Let

A =





4 1 −1
2 3 −1
2 2 1



 , v =





1
1
1



 .

(a) Find (A− 3I)v and (A− 3I)2v.
(b) Show that the eigenvalues of A are 2 and 3.
(c) Find exp(tA)v.
(d) Solve the system y′ = Ay + (e2t, 0, 2e2t)T

10. Solve the system

y′1(t) = −3y1 + y2 + 3e−2t

y′2(t) = −y1 − y2 + 2e−2t

where y1(0) = 1, y2(0) = 1.
11. (a) Show that

A =





2 0 1
0 −1 0
−1 0 4





has two distinct eigenvalues and then find
exp(tA).

(b) Find a basis for the vector space of solutions of
dy
dt

= Ay.
12. A solution to a system of DE’s is called stable if it

approaches a limit as t → ∞.
Show that all solutions of the system

y′ =

(

−2 1
−1 −2

)

y

are stable. What feature of the matrix accounts for
the stability?

13. (Exam 2006, Session 1) Let

A =





7 3 1
−8 −3 −1
−3 −2 2



 , b =





3
−5
2



 .

Given that A has only one eigenvalue 2,
(a) Find the Jordan chain of A starting with the vec-

tor b.
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(b) Calculate etAv for each non-zero vector v in the
chain in i) above. You may leave these as linear
combinations of the non-zero vectors of the chain
in i).

(c) Solve the system of differential equations

x′ = Ax+ e2t b, x = x(t)

x(0) = 0 =





0
0
0





14. (Exam 2005, Session 2) Let

G =





−3 1 0
−4 −1 −1
0 −3 −3



 , v =





−1
0
4



 , w =





1
2
−3



 .

(a) Show that v is an eigenvector of G and give its
eigenvalue.

(b) Show that w is a generalised eigenvector of G
corresponding to eigenvalue −2.

(c) Give the Jordan form J of G and a matrix P such
that J = P−1GP .

(d) Calculate exp(tG)v and exp(tG)w.
(e) Solve the system of differential equations

y′(t) = Gy + e−2tw

subject to the initial conditions y(0) = v.

Answers: 1. 5e3t
(

1
1

)

− 2e2t
(

2
1

)

; et
(

2
1

)

+

e6t
(

−1
2

)

. 2.





−1
1
1



 + e3t





2
1
1



; e2t





1
0
0



 +

2e4t





0
1
1



. 3. y(t) =





a1e
t + a2e

t + a3e
4t

a1e
t − a3e

4t

−a2e
t + a3e

4t



 4.

y(t) = −1/2et





1
3
1



 + 3/2e3t





1
1
1



 5. (a) αe6t
(

3
2

)

+

βe−t

(

2
−1

)

; (b) αe6t
(

3
2

)

+ βe−t

(

2
−1

)

+

(

t
−1

)

;

(c) e−t

(

−2
1

)

+ 1

4
e6t

(

15
10

)

− 1

4
e2t

(

3
2

)

. 6. (a)y = c1

(

2
−1

)

+

c2e
5t

(

3
1

)

; c1

(

2
−1

)

+ c2e
5t

(

3
1

)

+

(

0
t2

)

; y =

(

0
e5t

)

.

(b) y(t) = c1e
−3t





1
0
1



 + c2e
2t





1
−1
0



 + c3e
t





6
−2
3



;

y(t) = e−3t





1
0
1



 + e2t





1
−1
0



 + tet





6
−2
3



. 7. y =

e5t(1/2, 1/2, 0)T 8. y1 = (t3 + 3t2 + 3t + 1)e2t;
y2 = (3t2 + 6t + 2)e2t; y3 = (3 + 6t)e2t. 9. (a)




1
1
2



 ,





0
0
0



 . (c) e3t





1 + t
1 + t
1 + 2t



 . (d) e3t





1 + t
1 + t
1 + 2t



+e2t





t
0
2t



.

11. (a) exp(tA) =





(1− t)e3t 0 te3t

0 e−t 0
−te3t 0 (1 + t)e3t



. 12.

x =

(

ae−2t sin t+ be−2t cos t
ae−2t cos t− be−2t sin t

)

. The real parts of the eigen-

values are negative.


