
1 problem set eight

1. take the Lagrangian

L =
1

2
ẋ2 +

1

2
ẏ2 − x2 − y2 − 2xy (1.1)

and show that it is invariant under the shifts

x̃ = x+ ε, ỹ = y − ε (1.2)

then calculate the corresponding Nöther constant.

2. consider the simple harmonic oscillator with Lagrangian

L =
1

2
mẋ2 − 1

2
kx2 (1.3)

and consider the change

t̃ = t (1.4)

x̃ = x+ ε exp(−iωt) (1.5)

where k = ω2m.

• Calculate the change in the Lagrangian, show it is a total derivative, and find the
corresponding conserved quantity.

• by finding the equations of motion for the system, use direct substitution to show
that

(ẋ+ iωx) exp(−iωt) (1.6)

is constant.

3. consider the Lagrangian

L =
1

2
ẋ2 +

k

x2
(1.7)

• show that this system leaves the action invariant, in the sense given in the lectures,
under the scaling transformation

t̃ = λt (1.8)

x̃(t̃) =
√
λx(t) (1.9)

• take λ = 1 + ε to find the conserved quantity associated with this scaling symmetry.

• show that

−Et+
1

2
xẋ (1.10)

is constant, where E = 1
2
ẋ2 − k

x2
is the total energy, which is constant.
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2 solution set seven

1. substitution shows that the Lagrangian is invariant, meaning that G = 0. Now take the
definition of the proposed symmetry and compare this to the general form to see that
ξ = 0, η(x) = 1, η(y) = −1, then using the expression for the Nöther constant gives

ẋ− ẏ = const (2.11)

Here we have used a generalization of the Nöther theorem we derived in the lectures, so
that we may apply it to multiple variables

ξL−G+
∑
(α)

(η(α) − ξq̇(α)) ∂L

∂q̇(α)
= 0 (2.12)

where

t̃ = t+ εξ(t) (2.13)

q̃(α)(t̃) = q(α)(t) + εη(α)(q, t) (2.14)

2. with the suggested substitutions we note that to first order in ε

L(t̃, x̃) = L(x, t)− imωε
[
ẋe−iωt − iωxe−iωt

]
= L(x, t)− imωε d

dt

[
xe−iωt

]
(2.15)

so we have

ξ = 0, η = e−iωt, G = −imωxe−iωt (2.16)

and the Nöther constant is as advertised. It is important to note that in finding L(x̃) we
simply replace x by x̃, one does not substitute for x using x = x̃− εe−iωt. i.e.

L(x̃) =
1

2
m ˙̃x

2 − 1

2
kx̃2 is CORRECT (2.17)

 L(x̃) =
1

2
m(

d

dt
[x̃− εe−iωt])2 − 1

2
k(̃x̃− εe−iωt)2 is INCORRECT (2.18)

Checking that this quantity is a constant using the equations of motion simply means
differentiate it with respect to t, (this will introduce an ẍ term), then use the equation of
motion to see that it vanishes, i.e.

d

dt
[(ẋ+ iωx) exp(−iωt)] = (ẍ+ iωẋ) exp(−iωt)− iω(ẋ+ iωx) exp(−iωt)

= (ẍ+ ω2x) exp(−iωt)
= 0

where the last line follows from the equation of motion ẍ+ ω2x = 0.
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3. Using the given proposed symmetry we have∫
dt̃L(t̃, x̃) =

∫
λdt

[
1

2λ

(
dx

dt

)2

+
k

λx2

]
(2.19)

=

∫
dt

[
1

2

(
dx

dt

)2

+
k

x2

]
(2.20)

=

∫
dt L(t, x) (2.21)

Where again, we remember that to get L(x̃) we just replace x by x̃, we do not substitute
for it. For λ = 1 + ε we see

t̃ = t+ εt, x̃ = x+
1

2
εx (2.22)

giving ξ = t, η = 1
2
x, G = 0, and a Nöther constant of

t

[
1

2
ẋ2 +

k

x2

]
+

[
1

2
x− tẋ

]
ẋ = const (2.23)

⇒ −t
[

1

2
ẋ2 − k

x2

]
+

1

2
xẋ = const (2.24)

⇒ −Et+
1

2
xẋ = const (2.25)

that this is a constant may be checked explicitly with the equations of motion.
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