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8.333: Statistical Mechanics I Problem Set # 2 Due: 10/10/07


Probability


1. The book of records: Consider a sequence of random numbers {x1, x2, · · · , xn, · · ·}; the 

entry xn is a record if it is larger than all numbers before it, i.e. if xn > {x1, x2, · · · , xn−1}. 

We can then define an associated sequence of indicators {R1, R2, · · · , Rn, · · ·} in which 

Rn = 1 if xn is a record, and Rn = 0 if it is not (clearly R1 = 1). 

(a) Assume that each entry xn is taken independently from the same probability distri­

bution p(x). [In other words, {xn} are IIDs (independent identically distributed).] Show 

that, irrespective of the form of p(x), there is a very simple expression for the probability 

Pn that the entry xn is a record. 

(b) The records are entered in the Guinness Book of Records. What is the average number 

〈SN 〉 of records after N attempts, and how does it grow for N ≫ 1? If the number of 

trials, e.g. the number of participants in a sporting event, doubles every year, how does 

the number of entries asymptotically grow with time. 

(c) Prove that the record indicators {Rn} are independent random variables (though not 

identical), so that 〈RnRm 0 for m 6 n.〉c = = 

(d) Compute all moments, and the first three cumulants of the total number of records 

SN after N entries. Does the central limit theorem apply to SN?


(e) The first record, of course occurs for n1 = 1. If the third record occurs at trial number


n3 = 9, what is the mean value 〈n2〉 for the position of the second record? What is the


mean value 〈n4〉 for the position of the fourth record?


******** 

2. Dice: A dice is loaded such that 6 occurs twice as often as 1. 

(a) Calculate the unbiased probabilities for the 6 faces of the dice. 

(b) What is the information content (in bits) of the above statement regarding the dice? 

******** 

3. Random deposition: A mirror is plated by evaporating a gold electrode in vaccum by


passing an electric current. The gold atoms fly off in all directions, and a portion of them


sticks to the glass (or to other gold atoms already on the glass plate). Assume that each




� � 

� � 

� � 

column of deposited atoms is independent of neighboring columns, and that the average


deposition rate is d layers per second.


(a) What is the probability of m atoms deposited at a site after a time t? What fraction


of the glass is not covered by any gold atoms?


(b) What is the variance in the thickness? 

******** 

4. Semi-flexible polymer in two dimensions Configurations of a model polymer can be 

described by either a set of vectors {ti} of length a in two dimensions (for i = 1, · · · , N), 

or alternatively by the angles {φi} between successive vectors, as indicated in the figure 

below. 
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The polymer is at a temperature T , and subject to an energy 

N−1 N−1 

H = −κ ti · ti+1 = −κa2 cos φi , 
i=1 i=1 

where κ is related to the bending rigidity, such the probability of any configuration is 

proportional to exp (−H/kBT ).


(a) Show that 〈tm · tn〉 ∝ exp (−|n − m|/ξ), and obtain an expression for the persistence


length ℓp = aξ. (You can leave the answer as the ratio of simple integrals.)


(b) Consider the end–to–end distance R as illustrated in the figure. Obtain an expression 

for R2 in the limit of N ≫ 1. 

(c) Find the probability p(R) in the limit of N ≫ 1. 

(d) If the ends of the polymer are pulled apart by a force F, the probabilities for poly-
F·Rmer configurations are modified by the Boltzmann weight exp 
kB T 

. By expanding this 

weight, or otherwise, show that 

〈R〉 = K−1F + O(F 3) , 



� � 

� � 
� 

and give an expression for the Hookian constant K in terms of quantities calculated before.


********


5. Jarzynski equality: In equilibrium at a temperature T , the probability that a macro­

scopic system is in a microstate µ is p(µ) = exp [−βH(µ)] /Z, where H(µ) is the energy of 

the microstate, β = 1/(kBT ), and the normalization factor is related to the free energy by 

−βF = lnZ. We now change the macroscopic state of the system by performing external 

work W , such that the new state is also in equilibrium at temperature T . For example, 

imagine that the volume of a gas in changed by moving a piston as L(t) = L1 +(L2 −L1)t/τ . 

Depending on the protocol (e.g. the speed u = (L2 −L1)/τ), the process may be close to or 

far from reversible. Nonetheless, the Jarzynski equality relates the probability distribution 

for the work W to the equilibrium change in free energy! 

(a) Assume that the process by which work is performed is fully deterministic, in the sense 

that for a given protocol, any initial microstate µ will evolve to a specific final microstate 

µ ′ . The amount of work performed W (µ) will vary with the initial microstate, and there is 

thus a probability distribution pf (W ) which can be related to the equilibrium p(µ). The 

energy of the final microstate, however, is precisely H ′ (µ ′) = H(µ) + W (µ). Time reversal 

symmetry implies that if we now instantaneously reverse all the momenta, and proceed 

according to the reversed protocol, the time-reversed microstate µ ′ will deterministically 

evolve back to microstate µ, and the work −W (µ) is recovered. However, rather than 

doing so, we first allow the system to equilibrate into its new macrostate at temperature 

T , before reversing the protocol to recover the work. The recovered work −W will now be 

a function of the selected microstate, and distributed according to a different probability 
′ pb(−W ), related to p ′ (µ ′) = exp −βH ′ (µ ′ ) /Z . It is in general not possible to find pf (W ) 

or pb(−W ). However, by noting that the probabilities of a pair of time-reversed microstates 

are exactly equal, show that their ratio is given by 

pf (W ) 
= exp [β(W + F − F ′ )] . 

pb(−W ) 

While you were guided to prove the above result with specific assumptions, it is in fact 

more generally valid, and known as the work–fluctuation theorem. 

(b) Prove the Jarzynski equality 

ΔF ≡ F ′ − F = −kBT ln 
� 

e −βW
� 

≡ −kBT ln dWpf (W )e−βW . 



This result can in principle be used to compute equilibrium free energy differences from 

an ensemble of non-equilibrium measurements of the work. For example, in Liphardt, et. 

al., Science 296, 1832 (2002), the work needed to stretch a single RNA molecule was 

calculated and related to the free energy change. However, the number of trials must be 

large enough to ensure that the averaged exponential, which is dominated by rare events, 

is accurately obtained. 

(c) Use the Jarzynski equality to prove the familiar thermodynamic inequality 

〈W 〉 ≥ ΔF . 

(d) Consider a cycle in which a work W − ω is performed in the first stage, and work 

−W is returned in the reversed process. According to the second law of thermodynamics, 

the net gain ω must be negative. However, within statistical physics, it is always possible 

that this condition is violated. Use the above results to conclude that the probability of 

violating the second law decays with the degree of violation according to 

Pviolating second law(ω) ≤ e −βω . 

******** 

For a recent article on the Jarzynski relation, see Crooks and Jarzynski, Phys. Rev. E 75, 

021116 (2007). A recent publication pertaining to records can be found in J. Krug, J. 

Stat. Mech. (2007) P07001. 




