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CHAPTER SEVEN

FIGURE 7.2

jap & ccrrj,.r_'ﬁng rod moves Innough & magnenic liskd.
(1) Ay charge g that raveds with the rod is acted upon
by the tarce [gfchw » B. (] The reference frama F
mowes with 1he rod; in this frame there is an elecinc
field E".
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other, and the contact of the inducing one with the battery made
when the inductive eflect was required; but as the particular
action might be supposed to be exerted only at the moments of
making and breaking contact, the induction was produced in
another way. Scveral feet of copper wire were stretched in wide
zigzap forms, representing the letter W, on one surface of a
broad board; a second wire was stretched in precisely similar
forms on a second board, so that when brought near the first,
the wires should everywhere touch, except that a sheet of thick
paper was interposed. One of these wires was connected with the
galvanometer, and the other with a voltaic battery. The first wire
was then moved towards the second, and as it approached, the
needle was deflected. Being then removed, the needle was
deflected in the opposite direction. By first making the wires
approach and then recede, simultaneously with the vibrations of
the needle, the latter soon became very extensive; but when the
wires ceased to move from or towards each other, the galvanom-
eter needle soon come to its usual position,

As the wires approximated, the induced current was in the
contrary direction to the inducing current. As the wires receded,
the induced current was in the same direction as the inducing
current. When the wires remained stationary, there was no
induced current.

In this chapter we study the electromagnetic interaction that
Faraday explored in those experiments. From our present viewpoint,
induction can be seeén as a natural consequence of the lorce on g
charge moving in a magnetic field. In a limited sense, we can derive
the induction law from what we already know. In following this course
we again depart from the historical order of development, but we do
so (borrowing Faraday's own words from the end of the passage first
quoted) "o give the most concise view of the whole”

A CONDUCTING ROD MOVING
THROUGH A UNIFORM MAGNETIC FIELD
7.2 Figure 7.2a shows a straight piece of wire, or slender metal rod,
supposed to be moving at constant velocity v in a direction perpendic-
ular to its length. Pervading the space through which the rod moves
there is a uniform magnetic field B, constant in time. This could be
supplied by a large solenoid enclosing the entire region of the diagram.
The reference frame F with coordinates x, y, z is the one in which this
solenoid 15 at rest. In the absence of the rod there 15 no electric feld
in that frame, only the uniform magnetic fizld B,

The rod, being & conductor, contains charged particles that will
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move if a force is applied to them. Any charged particle that is carried
along with the rod, such as the particle of charge g in Fig. 7.254, nec-
essarily moves through the magnetic field B and does therefore expe-
rience a force

f=§vxs (1)

With B and v directed-as shown in Fig. 7.2, the force is in the positive
x direction if g is a positive charge, and in the opposite direction for
the negatively charged electrons that are in fact the mobile charge
carriers in most conductors. The consequences will be the same,
whether negatives or positives, or both, are mobile.

When the rod is moving at constant speed and things have set-
tled down to a steady state, the force f given by Eq. 1 must be bal-
anced, at every point inside the rod, by an equal and opposite force.
This can only arise from an electric field in the rod. The electric field
develops in this way: the force f pushes negative charges toward one
end of the rod, leaving the other end positively charged. This goes on
until these separated charges themselves cause an electric field E such
that, everywhere in the interior of the rod,

gt = —f (2)

Then the motion of charge relative to the rod ceases. This charge dis-
tribution causes an electric field outside the rod, as well as inside. The
field outside looks something like that of separated positive and neg-
ative charges, with the difference that the charges are not concen-
trated entirely at the ends of the rod but are distributed along it. The
external field is sketched in Fig. 7.3a. Figure 7.3b is an enlarged view
of the positively charged end of the rod, showing the charge distribu-
tion on the surface and some field lines both outside and inside the
conductor. That is the way things look, at any instant of time, in frame
F.

Let us observe this system from a frame F” that moves with the
rod. Ignoring the rod for the moment, we see in this frame F’, indi-
cated in Fig. 7.2¢, a magnetic field B’ (not much different from B if
vis small) together with a uniform electric field, as given by Eq. 6.63,

’

E'=-L_XB = xB 3)
C C

When we add the rod to this system, all we are doing is putting a
stationary conducting rod into a uniform electric field. There will be
a redistribution of charge on the surface of the rod so as to make the
electric field zero inside, as in the case of the metal box of Fig. 3.6, or
of any other conductor in an electric field. The presence of the mag-
netic field B” has no influence on this static charge distribution. Figure
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(k)

(a)

URE 7. i i i :
o . 7.4a shows some electric field lines in the frame F', and in the mag-

&) The edecinc feld, as seen atl one mstant of time, in i . T
the frarme F. There is an ekeciric field in the vicinity of nified view of the end of the rod in Fig. 7.45 we observe that the elec-

the rod, end also weside the rod. The sources of he tric field inside the rod is zero.

fiedd are charges on the surtace of Bhe rod, 85 shown in Except for the Lorentz contraction, which is second order in

() the erlarged view of the fight-hand end ot the fod. 7 the charge distribution scen at one instant in frame F, Fig. 7.35,
is the same a5 that seen in F. The electric fields differ because the
field in Fig. 7.3 is that of the surface charge distribution alone, while
the electric field we see in Fig. 7.4 is the field of the surface charge
distribution plus the uniform electric field that exists in that frame of
reference. An observer in F says: “Inside the rod there has developed
an electric field E = (v/c) X B, excrting a force gE = — giv/c) X
B which just balances the force giv/c) X B that would otherwise
cause any charge g to move along the rod.™ An observer in F says



' (a)

(b)

“Inside the rod there is no electric field, and although there is a uni-
form magnetic ficld here, no force arises from it because no charges
are moving.” Each account is correct.

FIGURE 7.4

(@) Tha electnc feld n the frame £ in which be rod s
at rest, This field iz a superposition of a general field
E’, uniform throughout space, and the field of the
surface charge distribution. The resull is Zero electnic
field inside the rod, shown in magnified detail in (5)
Compare wilh Fig. 7.3,
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. A LOOP MOVING THROUGH
Frame F A NONUNIFORM MAGNETIC FIELD

FIGURE 7.5

(a) Here the wire loop is moving in a uniform magnetic
field B. (b) Observed in the frame F’, in which the loop
is at rest, the fields are B’ and E’.

7.3 What if we made a rectangular loop of wire, as shown in Fig.
7.5, and moved it at constant speed through the uniform field B? To
predict what will happen, we need only ask ourselves—adopting the
frame F’—what would happen if we put such a loop into a uniform
electric field. Obviously two opposite sides of the rectangle would
acquire some charge, but that would be all. Suppose, however, that
the field B in the frame F, though constant in time, is not uniform in
space. To make this vivid, we show in Fig. 7.6 the field B with a short
solenoid as its source. This solenoid, together with the battery that
supplies its constant current, is fixed near the origin in the frame F.
(We said earlier there is no electric field in F; if we really use a sole-
noid of finite resistance to provide the field, there will be an electric
field associated with the battery and this circuit. It is irrelevant to our
problem and can be ignored. Or we can pack the whole solenoid, with
its battery, inside a metal box, making sure the total charge is zero.)

Now, with the loop moving with speed v in the p direction, in
the frame F, let its position at some instant ¢ be such that the magnetic
field strength is B, at the left side of the loop and B, along the right
side (Fig. 7.6). Let f denote the force which acts on a charge ¢ that
rides along with the loop. This force is a function of position on the
loop, at this instant of time. Let’s evaluate the line integral of f, taken
around the whole loop: On the two sides of the loop which lie parallel
to the direction of motion, f is perpendicular to the path element ds,
so these give nothing. Taking account of the contributions from the
other two sides, each of length w, we have

ff-ds=q—:(Bl—Bz)w )

If we imagine a charge g to move all around the loop, in a time
short enough so that the position of the loop has not changed appre-
ciably, then Eq. 4 gives the work done by the force f. The work done

per unit charge is (1/q) f f - ds. We call this quantity electromotive

force. We use the symbol & for it, and often shorten the name to emf.
& has the same dimensions as electric potential. It is measured in stat-
volts, or ergs per unit charge, in the CGS system. The SI unit is the
volt.

1
E = — J f-ds (%)
q
The term electromotive force was introduced earlier, in Section 4.10.

It was defined as the work per unit charge involved in moving a charge
around a circuit containing a voltaic cell. We now broaden the defi-
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PROBLEM 7.11

wire each, wound around a large block of wood. The turns of the sec-
ond spiral (that is, single-layer coil) were interposed between those of
the first, but separated from them by twine. The diameter of the cop-
per wire itself was %o inch. He does not give the dimensions of the
wooden block or the number of turns in the coils. In the experiment,
one of these coils was connected to a “battery of 100 plates.” See if
you can make a rough estimate of the duration in seconds and mag-
nitude in amperes of the pulse of current that passed through his
galvanometer.

7.11 Part (a) of the figure shows two coils with self-inductances L,
and L,. In the relative position shown their mutual inductance is M.
The positive current direction and the positive electromotive force
direction in each coil are defined by the arrows in the figure. The equa-
tions relating currents and electromotive forces are
dl, dl, di, dl,

61— leth'gt- and 62——L2E%'ME
Given that M is always to be taken as a positive constant, how must
the signs be chosen in these equations? What if we had chosen, as we
might have, the other direction for positive current, and for positive
electromotive force, in the lower coil? Now connect the two coils
together as in part (b) of the figure to form a single circuit. What is
the inductance L’ of this circuit, expressed in terms of L,, L,, and M?
What is the inductance L” of the circuit formed by connecting the
coils as shown in (¢)? Which circuit, (b) or (¢), has the greater self-
inductance? Considering that the self-inductance of any circuit must
be a positive quantity (why couldn’t it be negative?), see if you can
draw a general conclusion, valid for any conceivable pair of coils, con-
cerning the relative magnitude of L, L,, and M.

7.12 An ocean current flows at a speed of 2 knots (approximately
1 meter/sec) in a region where the vertical component of the earth’s
magnetic field is 0.35 gauss. The conductivity of seawater in that
region is 0.04 (chm-cm)~'. On the assumption that there is no other
horizontal component of E than the motional term (v/c) X B, find
the density of horizontal electric current in amps/m?. If you were to
carry a bottle of seawater through the earth’s field at this speed, would
such a current be flowing in it?

7.13 A coil with resistance of 0.01 ohm and self-inductance 0.50
millihenry is connected across a large 12-volt battery of negligible
internal resistance. How long after the switch is closed will the current
reach 90 percent of its final value? At that time, how much energy, in
joules, is stored in the magnetic field? How much energy has been
withdrawn from the battery up to that time?
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nition of eml 1o include any influence that causes charge (o circulate
ground a closed path. 11 the path happens to be a physical circuit with
resistance K, then the emfl & will cawse a current to flow according to
Obm’s law: I = &/R. In the particular case we are considering, T is
the force that acts on a charge moving in a magnetic field, and & has
the magnitude

rz=%w.—ﬂl} (6)

The electromative lforce given by Eq. 6 i related in a very simple way
o the rate of change of magnetic flux through the loop. By the mag-
netic flux through a loop we mean the surface integral of B over a
surface which has the loop for its boundary. The Aux & through the
closed curve or loop C in Fig. 7.7a 18 given by the surface integral of
B over 5:

v, = | B (1)
5

We could draw infinitely many surfaces bounded by €. Figure
1.7h shows another one, 55, Why don't we have to specily which sur-
face to use in computing the fux? It doesn’t make any difference

because J-B « oI will have the same value for all surfaces. Let's take

aminute to settle this point once and for all. The flux through 5; will

FIGURE T.6
Hera the field B, obsenead in F, 5 nod undform IF weries
in both ceeclion and magrilude from place o place.
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FIGURE 7.7
(&) The flux throuoh O is
& = B - da,
5

(0} & = analher surface which has O as its boundary
Thi will do st as well for computbing 4.

(cl Combining 5, and S5 1o make a closed suface, lor

which J_H - ¢a must vanish, proves trat ,L,l' A,

LIH " O,

be _L:B + da;. Notice that we let the vector da; stick out from the

upper side of 53, to be consistent with our choice of side of 5. This
will give a positive number il the net Mux through C is upward.

Py = B - da; (8]
Sy
We learned in Section 6.2 that the magnetic field has zero divergence:
div B = 0, It follows then from Gauss’ theorem that, if § is any closed
surface (“balloon™) and I is the volume inside it;

L_n . da = Jp_divﬂ-du =0 (9)

Apply this to the closed surface, rather like a kettledrum, formed by
joining our 5, to 83, as in Fig. 7.7¢. On &; the outward normal is
oppasite the vector da; we used in calculating the flux through C
Thus

D=Jsll-:fs=J-H=dl,+JB-{—daz}

B - Ilrﬂl s B - dﬂl []ﬂ'}
| ¥ ]

This shows that it doesn’t matter which surface we use to compute the
flux through C.

This is all pretty obvious if you realize that div B = 0 impliesa
kind of spatial conservation of Aux. As much flux enters any volume
as leaves it. (We are considering the situation in the whole space at
one instant of time.) It is often helpful to visualize “tubes" of fAux. A
Mux tube {Fig. 7.8) is a surface at every point on which the magnetic
field line lies in the plane of the surface. It is 2 surface through which
no flux passes, and we can think of it as containing a certain amount
of flux, as a telephone cable contains wires, Through any closed curve
drawn tightly around a flux tube, the same Aux passes. This could be
said about the electric field E only for regions where there is no electric
charge, since div E = 4mp. The magnetic held always has zero diver-
gence cverywhere.

Returning now to the moving rectangular loop, let ws find the
rate of change of flux through the loop. In time dt the loop moves a
distance v dt. This changes in two ways the total flux through the loop,

which is JH - da over a surface spanning the loop. As you can see in

Fig. 7.9, flux is gained at the right, in amount Bywu df, while an
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FIGURE 7.8
A flux tube. Magnetic field lines lie in the surface of the
tube. The tube encloses a certain amount of flux ®. No

matter where you chop it, you will find that f B - cda

over the section has this same value ®. A flux tube
doesn’t have to be round. You can start somewhere
with any cross section, and the course of the field lines
will determine how the section changes size and shape
as you go along the tube.

Position of loop
at time ¢ Position of loop

at time t + dt

FIGURE 7.9
In the interval dt the loop gains an increment of flux
B,wv dt and loses an increment B,wv dt.

amount of flux Bywv dt is lost at the left. Hence d®, the change in
flux through the loop in time dt, is

Comparing Eq. 11 with Eq. 6, we see that, in this case at least, the
electromotive force can be expressed as
1 d®

6 = —;E (12)



266

CHAPTER SEVEN

FIGURE 7.10
The loop moves from position C, to position C; in time
at.

We can show that this holds quite generally, for a loop of any
shape moving in any manner. The loop C in Fig. 7.10 occupies the
position C, at time ¢, and it is moving so that it occupies the position
C, at time t + dt. A particular element of the loop ds has been trans-
ported with velocity v to its new position. S indicates a surface that
spans the loop at time ¢. The flux through the loop at this instant of
time is

(1) = LB - da (13)
The magnetic field B comes from sources that are stationary in our
frame of reference and remains constant in time, at any point fixed in
this frame. At time ¢ + dt a surface which spans the loop is the orig-
inal surface S, left fixed in space, augmented by the “rim” dS.

(Remember, we are allowed to use any surface spanning the loop to
compute the flux through it.) Thus

(1 + dr) = JSHJSB - da = ®(1) + LSB ~da (14

Hence the change in flux, in time dt, is just the flux through the rim
ds, j B - da. On the rim, an element of surface area da can be
ds

expressed as (v dr) X ds, so the integral over the surface dS can be
written as an integral around the path C, in this way:

dd = B-da=fB~[(vdt)><ds] (15)
ds c
Since dt is a constant for the integration, we can factor it out and have
dd J’
— = B-(vXd 16
o . (v s) (16)
The product a - (b X ¢) of any three vectors satisfies the relation a -
(b X ¢) = —(b X a) - ¢. Using this identity to rearrange the inte-
grand in Eq. 16, we have
dd J‘
— = — X B) - d 17
o . (v ) - ds (17)

Now the force on a charge g which is carried along by the loop is just
q(v X B)/c, so the electromotive force, which is the line integral
around the loop of the force per unit charge, is just

1
6=ZJC(VXB)-ds (18)

Comparing Eq. 17 with Eq. 18 we get the simple relation already
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given in Eq. 12, but valid now for arbitrary shape and motion of
the loop. (We did not even have to assume that v is the same for all
parts of the loop!) In summary, the line integral around a moving
koop of f/g, the lorce per unit charge, is just —1 /¢ times the rate
of change of Aux through the loop,

The sense of the line integral and the direction in which flux is
called positive are to be related by a right-hand-thread rule. For
instance, in Fig. 7.6, the flux s wpward through the loop and is
decreasing, Taking the minus sign in Eq. 12 into account, our rule
would predict an electromotive force which would tend to drive a pos-
itive charge around the loop in a counterclockwise direction, as seen
looking down on the loop (Fig. 7.11).

There is a better way to look at this question of sign and direc-
tion. Motice that il a current should flow in the direction of the
induced electromotive force, in the situation shown in Fig. 7.11, this
current itsell would create some flux through the loop in a direction
o counteract the assumed Mux change. That is an essential physical
fact, and not the consequence of an arbitrary convention about signs
and directions. It is a manifestation of the tendency of systems to resist
change. In this context it is traditionally called Lenz's law,

Another example of Lenz’s law is illustrated in Fig. 7.12. The
conducting ring 15 falling in the magnetic field of the coil. The flux
through the ring is dowmward and is increasing in magnitude. To
counteract this change, some new flux upward is needed. [t would take
a current fowing around the ring in the direction of the arrows to
produce such flux. Lenz's law assures us that the induced emf will be
in the right direction to cause such a current.

If the electromotive force causes current to flow in the loop
which is shown in Figs. 7.6 and 7.11, as it will if the loop has a finite
resistance, some energy will be dissipated in the wire, What supplies
this energy? To answer that, consider the force that acts on the cur-
rent in the loop if it Aows in the sense indicated by the arrow in Fig.
7.11. The conductor on the right, in the field &,, will experience a force
toward the right, while the opposite side of the loop, in the field B,
will be pushed toward the left. But 8, is greater than #,, so the net
force on the loop is toward the left, oppasing the motion. To keep the
loop moving at constant speed some external agency has to do work,
and the energy thus invested eventually shows up as heat in the wire,
Imagine what would happen if Lenz's law were violated, or if the force
on the loop were to act in a direction to assist the motion of the loop!

A very common element in electrical machinery and electrical
instruments is a loop or coil that rotates in a magnetic field. Let's
apply what we have just learned to the system shown in Fig. 7.13, a
single loop rotating at constant speed in a magnetic field that is
approximately uniform. The mechanical essentials, shaft, bearings,
drive, etc,, are not drawn, The field B is provided by the two fixed coils.

FIGURE T.11

The Bux thraugh he loop is upward and is decreasing
in magnibuce a5 bime goes on. The amow shows e
directian af the electiomatie force, thal is, the
direction in which positive charge tends 1o be driven.

FIGURE T.12

Ag the ning falla, the downward flux through the ning =
ncreasing. Lenz's law lells us that the induced emi will
e iy the direclion indicaled by the arrows, for thal is
the direchion in which Curren] must Bow 1o peoduce
upaward flux theough the ring, The system reacts so as
o oppose the change that s coourring
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FIGURE 7.13

The two coils produce a magnetic field B which is Suppose the loop rotates with angular velocity w. in radians/sec. If its
approximately uniform in the vicinity of the loop. In the . . . ] _

loop, rotating with angular velocity w, a sinusoidally position at any instant 1s.spe01ﬁed by t.h'e angle 0, then 8 = wt + a,
varying electromotive force is induced. where the constant « is Slmply the position of the lOOp att = 0. The

component of B perpendicular to the plane of the loop is B sin .
Therefore the flux through the loop at time ¢ is

&(7) = SBsin (wt + @) (19)

where S is the area of the loop. For the induced electromotive force
we then have

SB
<§=———=—Twcos(wt+a) (20)

If the loop instead of being closed is connected through slip rings to
external wires, as shown in Fig. 7.13, we can detect at these terminals
a sinusoidally alternating potential difference.

A numerical example will show how the units work out. Suppose
the area of the loop in Fig. 7.13 is 80 cm?, the field strength B is 50
gauss, and the loop is rotating at 30 revolutions per sec. Then w = 27



# 30, or 188 radians/sec. The amplitude, that is, the maximum mag-
nitude of the oscillating electromotive force induced in the loop, is

_ SBw _ (80 em?®)(50 gauss)( 188 sec™')

6 ¢ 3% 10" em/sec 21

= 2,51 % 107 gauss-cm or statvoll

One gauss-cm is equivalent to | statvolt, Remember that electric field
E and magnetic field 8 have the same dimensions in our CGS system,
being related by a dimensionless factor v/e.

A STATIONARY LOOP

WITH THE FIELD SOURCE MOVING

T.4 We can, if we like, look at the events depicted in Fig. 7.6 from
a frame of reference that is moving with the loop. That can’t change
the physics, only the words we use to describe it. Let £, with coordi-
nates x*, 3, 2', be the frame attached to the loop, which we now regard
as stationary (Fig. 7.14). The coil and battery, stationary in frame F,
are moving in the — ) direction with velocity v* = —v. Let 8] and
B3 be the magnetic field measured at the two ends of the loop by

FIGURE 7.14

Ag cbserved in the frame £, the keop is al rest, the
field ecurce ia moving. The fields B® and E” are both
presend and are funclions of bolh position and time.
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observers in F” at some instant #’. At these positions there will be an
electric field in F’. Equation 6.63 tells us that

vV X B{ v XBj

E| = — =
c ¢ (22)
E£=_V'XB§=VXB§
C C

For observers in F” this is a genuine electric field. It is not an
electrostatic field. The line integral of E’ around any closed path in
F’ is not generally zero. In fact, the line integral of E” around the
rectangular loop is

J E' - ds’ = %(B{ — By (23)

We can call the line integral in Eq. 23 the electromotive force
&’ on this path. If a charged particle moves once around the path, &’
is the work done on it, per unit charge. & is related to the rate of
change of flux through the loop. To see this, note that, while the loop
itself is stationary, the magnetic field pattern is now moving with the
velocity —v of the source. Hence for the flux lost or gained at either
end of the loop, in a time interval dt’, we get a result similar to Eq.
11, and we conclude that

1 d¥’

& = o dr (24)

We can summarize as follows the descriptions in the two frames
of reference, F, in which the source of B is at rest, and F’, in which
the loop is at rest:

An observer in F says, “We have here a magnetic field which,
though it is not uniform spatially, is constant in time. There is no elec-
tric field. That wire loop over there is moving with velocity v through
the magnetic field, so the charges in it are acted on by a force (v/¢)
X B dynes per unit charge. The line integral of this force per unit
charge, taken around the whole loop, is the electromotive force 6 and

it is equal to —(1/¢)(d®/dt). The flux ® is fB - da over a surface

S which, at some instant of time ¢ by my clock, spans the loop.”

An observer in F” says, “This loop is stationéry, and only an
electric field could cause the charges in it to move. But there is in fact
an electric field E’. It seems to be caused by that magnetlike object
which happens at this moment to be whizzing by with a velocity —v,
producing at the same time a rather strong magnetic field B’. The

electric field is such that j E’ - ds’ around this stationary loop is not
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zero but instead is equal to —1/c times the rate of change of flux

through the loop, d®’/dt’. The flux &’ is JB’ - da’ over a surface

spanning the loop, the values of B’ to be measured all over this surface
at some one instant ¢, by my clock.”

Our conclusions so far are relativistically exact. They hold for
any speed v = ¢ provided we observe scrupulously the distinctions
between B and B’, ¢ and 7, etc. If v < ¢, so that v?/c* can be
neglected, B’ will be practically equal to B, and we can safely ignore
also the distinction between ¢ and ¢’.

A UNIVERSAL LAW OF INDUCTION

7.5 Let’s carry out three experiments with the apparatus shown in
Fig. 7.15. The tables are on wheels so that they can be easily moved.
A sensitive galvanometer has been connected to our old rectangular
loop, and to increase any induced electromotive force we put several
turns of wire in the loop rather than one. Frankly though, our sensi-
tivity might still be marginal, with the feeble source of magnetic field
pictured. Perhaps you can devise a more practical version of the exper-
iment in the laboratory.

Experiment I With constant current in the coil and table 1 station-
ary, table 2 moves toward the right with speed v. The galvanometer
deflects. We are not surprised; we have already analyzed this situation
in Section 7.3.

FIGURE 7.15

We imagine that either table can move or, with both
tables fixed, the current /in the coil can be gradually
changed.

Galvanometer

Table 2
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Experiment II With constant current in the coil and table 2 station-
ary, table 1 moves to the left with speed v. The galvanometer deflects.
This doesn’t surprise us either. We have just discussed the equivalence
of Experiments I and II, an equivalence which is an example of
Lorentz invariance or, for the low speeds of our tables, Galilean invar-
iance. We know that in both experiments the deflection of the galva-
nometer can be related to the rate of change of flux of B through the
loop.

Experiment III Both tables remain at rest, but we vary the current
I in the coil by sliding the contact K along the resistance strip. We do
this in such a way that the rate of decrease of the field B at the loop
is the same as it was in Experiments I and I1. Does the galvanometer
deflect?

For an observer stationed at the loop on table 2 and measuring
the magnetic field in that neighborhood as a function of time and posi-
tion, there is no way to distinguish among Experiments I, II, and III.
Imagine a black cloth curtain between the two tables. Although there
might be minor differences between the field configurations for II and
I11, an observer who did not know what was behind the curtain could
not decide, on the basis of local B measurements alone, which case it
was. Therefore if the galvanometer did not respond with the same
deflection in Experiment III, it would mean that the relation between
the magnetic and electric fields in a region depends on the nature of
a remote source. Two magnetic fields essentially similar in their local
properties would have associated in one case, but not in the other, an

electric field with J-E - ds # 0.

We find by experiment that III is equivalent to I and II. The
galvanometer deflects, by the same amount as before. Faraday’s
experiments were the first to demonstrate this fundamental fact. The
electromotive force we observe depends only on the rate of change of
the flux of B, and not on anything else. We can state as a universal
relation Faraday’s law of induction:

If C is some closed curve, stationary in coordinates x, p,
z, if S is a surface spanning C, and if B (x, y, z, t) is the mag-
netic field measured in x, y, z, at any time ¢, then

_ __lif _ _Ld®
6’—ch ds = c dt SB da = c dt (25)
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Using the vector derivative curl, we can express this law in dif-
ferential form. If the relation

1d

E-ds=————fB-a’ 26

f c cdt Js a (26)

is true for any curve C and spanning surface S, as our law asserts, it
follows that at any point

1d4dB
IE= — —— 27

cur o (27)

To show that Eq. 27 follows from Eq. 26, we proceed as usual to let

C shrink down around a point;which we take to be a nonsingular point

for the function B. Then in the limit the variation of B over the small

patch of surface a that spans C will be negligible and the surface inte-

gral will approach simply B - a. Now by definition (Eq. 2.61) the limit

approached by J. E - ds as the patch shrinks is a - curl E. Thus we
C

have, in the limit,

1d 1 dB
a-curlE——;dt(B-a)—a'<—zz> (28)
Since this holds for any infinitesimal a, it must be thatt
1 dB
1E= — ——
cur oy (29)

Recognizing that B may depend on position as well as time we shall
write dB/dt in place of dB/dt. We have then these two entirely equiv-
alent statements of the law of induction:

fE-ds=—1i B-da
c cdt Js (30)
curl E =—1@

c at

In Eq. 30 the electric field E is to be expressed in our CGS units of
statvolts/cm, with B in gauss, ds in cm, da in cm?, and ¢ in cm/sec.

The electromotive force § = J. E - ds will then be given in statvolts.
c

tIf that isn’t obvious, note that choosing a in the x direction will establish that

B
(curl E), = — ;d_tx , and so on.



