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in the inertial frame F’, will gradually increase from zero. However,
as we are concerned with the instantaneous acceleration, only
infinitesimal values of v’ are involved anyway, and the restriction on
Eq. 14 is rigorously fulfilled. For E,, the transverse field component
in F, the transformation is £, = yFE |, so that dp’, /dt’ = qE’) =
gvE . But on transforming the force back to frame F we have
dp,/dt = (1/v)(dp’/dt’), so the v drops out after all:

P liveig) = qE, (am

t Y

The message of Eqgs. 16 and 17 is simply this: The force on a charged
particle in motion through F is g times the electric field E in that
frame, strictly independent of the velocity of the particle. Figure 5.19
is a reminder of this fact, and of the way we discovered it.

You have already used this result earlier in the course, where
you were simply told that the contribution of the electric field to the
force on a moving charge is gE. Because this is familiar and so simple,
you may think it is obvious and we have been wasting our time proving
it. Now we could have taken it as an empirical fact. It has been veri-
fied over an enormous range, up to velocities so close to the speed of
light, in the case of electrons, that the factor + is 10*. From that point
of view it is a most remarkable law. Our discussion in this chapter has
shown that this fact is also a direct consequence of charge invariance.

INTERACTION BETWEEN A MOVING CHARGE
AND OTHER MOVING CHARGES
5.9 We know that there can be a velocity-dependent force on a
moving charge. That force is associated with a magnetic field, the
sources of which are electric currents, that is, other charges in motion.
Oersted’s experiment showed that electric currents could influence
magnets, but at that time the nature of a magnet was totally myste-
rious. Soon Ampere and others unraveled the interaction of electric
currents with each other, as in the attraction observed between two
parallel wires carrying current in the same direction. This led Ampére
to the hypothesis that a magnetic substance contains permanently cir-
culating electric currents. If so, Oersted’s experiment could be under-
stood as the interaction of the galvanic current in the wire with the
permanent microscopic currents which gave the compass needle its
special properties. Ampére gave a complete and elegant mathematical
formulation of the interaction of steady currents, and of the equiva-
lence of magnetized matter to systems of permanent currents. His
brilliant conjecture about the actual nature of magnetism in iron had
to wait a century, more or less, for its ultimate confirmation.
Whether the magnetic manifestations of electric currents arose
from anything more than the simple transport of charge was not clear
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to Ampere and his contemporaries. Would the motion of an electro-
statically charged object cause effects like those produced by a contin-
uous galvanic current? Later in the century Maxwell’s theoretical
work suggested the answer should be yes. The first direct evidence was
obtained by Henry Rowland, to whose experiment we shall return at
the end of Chapter 6.

From our present vantage point, the magnetic interaction of
electric currents can be recognized as an inevitable corollary to Cou-
lomb’s law. If the postulates of relativity are valid, if electric charge
is invariant, and if Coulomb’s law holds, then, as we shall now show,
the effects we commonly call “magnetic” are bound to occur. They
will emerge as soon as we examine the electric interaction between a
moving charge and other moving charges. A very simple system will
illustrate this.

In the lab frame of Fig. 5.20a, with spatial coordinates x, y, z,
there is a line of positive charges, at rest and extending to infinity in
both directions. We shall call them ions for short. Indeed, they might
represent the copper ions that constitute the solid substance of a cop-
per wire. There is also a line of negative charges that we shall call
electrons. These are all moving to the right with speed v,. In a real
wire the electrons would be intermingled with the ions; we’ve sepa-
rated them in the diagram for clarity. The linear density of positive
charge is Ao in esu/cm. It happens that the linear density of negative
charge along the line of electrons is exactly equal in magnitude. That
is, any given length of “wire” contains at a given instant the same
number of electrons and protons.t The net charge on the wire is zero.
Gauss’ law tells us there can be no flux from a cylinder that contains
no charge, so the electric field must be zero everywhere outside the
wire. A test charge g at rest near this wire experiences no force
whatever.

Suppose the test charge is not at rest in the lab frame but is
moving with speed v in the x direction. Transform to a frame moving
with the test charge, the x’, y” frame in Fig. 5.2056. The test charge ¢
is here at rest, but something else has changed: The wire appears to
be charged! There are two reasons for that: The positive ions are closer
together, and the electrons are farther apart. Because the lab frame
in which the positive ions are at rest is moving with speed v, the dis-
tance between positive ions as seen in the test charge frame is con-
tracted by \/1 — v?/c? or 1/v. The linear density of positive charge
in this frame is correspondingly greater; it must be y\o. The density
of negative charge takes a little longer to calculate, for the electrons
were already moving with speed vg in the lab frame. Hence their linear
density in the lab frame, which was — A\, had already been increased

1t doesn’t have to, but that equality can always be established, if we choose, by
adjusting the number of electrons per unit length. We assume that has been done.
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FIGURE 5.20

A test charge g moving parallel to a current in a wire.
(@) In the lab frame the wire, in which the positive
charges are fixed, is at rest. The current consists of
electrons moving to the right with speed v,. The net
charge on the wire is zero. There is no electric field
outside the wire. (b) In a frame in which the test charge
1s at rest the positive ions are moving to the left with
speed v and the electrons are moving to the right with
speed vg. The linear density of a positive charge is
greater than the linear density of negative charge. The
wire appears positively charged, with an external field
E; which causes a force gE, on the stationary test
charge g. (¢) That force transformed back to the lab
frame has the magnitude gE;/+y, which is proportional
to the product of the speed v of the test charge and
the current in the wire, —AgVp.

by a Lorentz contraction. In the electrons’ own rest frame the negative
charge density must have been —\o/vo, Where v, is the Lorentz factor
that goes with vy.

Now we need the speed of the electrons in the test charge frame
in order to calculate their density there. To find that velocity (vg in
Fig. 5.20b) we must add the velocity —v to the velocity vy, remem-
bering to use the relativistic formula for the addition of velocities (Eq.

6 in Appendix A). Let 8§ = vgy/c, Bo = vo/c, and B = v/c. Then
Bo — B
b= —— (18)
% = T 88

The corresponding Lorentz factor vy{, obtained from Eq. 18 with a
little algebra, is

= (1 = B6)7"* = yyo(l — BBo) (19)
This is the factor by which the linear density of negative chargc in the
electrons’ own rest frame is enhanced when it is measured in the test
charge frame. The total linear density of charge in the wire in the test
charge frame, \’, can now be calculated:

Ao
= vA — — ¥voll — 530) YBBoAo (20)

/T s |

factor for positive charge negative charge factor for
transformation density in density in transformation
to test charge ions’ rest electrons’ to test charge
frame frame rest frame frame

The wire is positively charged. Gauss’s law guarantees the existence
of a radial electric field E} given by our familiar formula for the field
of any infinite line charge:

_ 2_)\/ — 2vBBoAo

4 rl

(21)

At the location of the test charge g this field is in the —)” direction.
The test charge will experience a force
24YBBoAo

r/

F,=qE;, = — (22)

Now let’s return to the lab frame, pictured again in Fig. 5.20c.
What is the magnitude of the force on the charge g as measured
there? If its value is gEj in the rest frame of the test charge, observers
in the lab frame will report a force smaller by the factor 1/+. Since r
= r’, the force on our moving test charge, measured in the lab frame,
is
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Now —Agug or —AgBgc is just the total current 7 in the wire, in the lab
frame, for it is the amount of charge flowing past a given point per
second. We'll call current positive if it is equivalent to positive charge
flowing in the positive x direction. Our current in this example is neg-
ative. Our result can be written this way:

21

Fy =5 qus (24)

F, (23)

We have found that in the lab frame the moving test charge experi-
ences a force in the y direction which is proportional to the current in
the wire, and to the velocity of the test charge in the x direction.

It is a remarkable fact that the force on the moving test charge
does not depend separately on the velocity or density of the charge
carriers but only on the product, o) in our example, that determines
the charge transport. If we have a certain current 7, say 10’ esu/sec
which is the same as 3.3 milliamps, it does not matter whether this
current is composed of high-energy electrons moving with 99 percent
of the speed of light, of electrons in a metal executing nearly random
thermal motions with a slight drift in one direction, or of charged ions
in solution with positive ions moving one way, negatives the other. Or
it could be any combination of these, as Problem 5.18 will demon-
strate. Furthermore, the force on the test charge is strictly propor-
tional to the velocity of the test charge v. Our derivation was in no
way restricted to small velocities, either for the charge carriers in the
wire or for the moving charge g. Equation 24 is exact, with no
restrictions.

Let’s see how this explains the mutual repulsion of conductors
carrying currents in opposite directions, as shown in Fig. 5.1 at the
beginning of this chapter. Two such wires are represented in the lab
frame in Fig. 5.21a. Assume the wires are uncharged in the lab frame.
Then there is no electrical force from the opposite wire on the positive
ions which are stationary in the lab frame. Transferring to a frame in
which one set of electrons is at rest (Fig. 5.21b), we find that in the
other wire the electron distribution is Lorentz-contracted more than
the positive ion distribution. Because of that the electrons at rest in
this frame will be repelled by the other wire. But when we transfer to
the frame in which those other electrons are at rest (Fig. 5.21c¢), we
find the same situation. They too will be repelled. These repulsive
forces will be observed in the lab frame as well, modified only by the
factor v. We conclude that the two streams of electrons will repel one
another in the lab frame. The stationary positive ions, although they
feel no direct electrical force from the other wire, will be the indirect
bearers of this repulsive force if the electrons remain confined within
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the wire. So the wires will be pushed apart, as in Fig, 5.1h, until some
external force balances the repulsion,

Moving parallel to a current-carrving conductor, the charged
particle experienced a force perpendicular to its direction of motion.
What il it moves, instead, at right angles to the conductor? A velocity
perpendicular to the wire will give rise to a force parallel to the wire—
again, a force perpendicular to the particle’s direction of motion. To
s how this comes about, let us return to the lab frame of that system
and give the test charge a velocity v in the p direction, as in Fig. 5.22a.
Transferring to the rest frame of the test charge (Fig. 5.225), we find
the positive ions moving vertically downward., Certainly they cannot
cause a horizontal field at the test-charge position. The x” component
of the field from an ion on the left will be exactly cancelled by the x'
component of the feld of a symmetrically positioned ion on the right.
The effect we are looking for is caused by the electrons, They are all
moving obliquely in this frame, downward and toward the right, Con-
sider the two symmetrically located electrons ¢, and e, Their electric
fields, relativistically compressed in the direction of the electrons’
mation, have been represented by a brush of field lines in the manner
of Fig. 5.14, You can see that, although ¢, and e, are equally far away

FIGURE 5.21

{a) Lab frarme with two wires carrying cfrend in
oppoeie dirgctions. A5 in melal wire, current 15 due Bo
modion of negatve ions (elecinong) only, (8 Best frame
of ehecirons mowing 1. Male that in wire 2 positive jons
are compressed, bul sleciron disiribulicn is contracied
eyen mone, (&) Rest frame of electrons nowire 2. Just
as in (0), the obher wire appears o these elecnons al
rest 1o be negalively charged.
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FIGURE 5.22

(&) The “ware’ with ils current of moving negative
charges, of “elecirons.” i5 The sarme as in Fig. 5.20,
bul now the test charge & moving toward the wire, (5]
In tha resl frame of he 1281 charge e posilive
charges, or “wons,"" are moving in the —§ direclion
The electons are moving cbliguely. Because 1he felkl
of & moving charge is sfronger in directions mare
mearly perpendicular o ils welocly, an ebeciron on the
right, such &5 &, causes a stronger feld al the posibon
af he kest charge than does & symmetnically locaied
elecinon on the lett. Tharefore the vector sum ol The
lelds has i this frarme a component in the £ direction
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from the test charge, the field of electron e, will be stronger than the
field of electron ) at that location. That is because the line from e; to
the test charge is more nearly perpendicular to the direction of motion
of e;. In other words, the angle # that appears in the denominator of
Eq. 12 is here different for ¢, and e, so that sin® # = sin® . That
will be true for any symmetrically located pair of electrons on the line,
as you can verify with the aid of Fig. 5.23. The electron on the right
always wins. Summing over all the electrons is therefore bound 1o
vield a resultant field £ in the & direction. The »* component of the
electrons’ field will be exactly cancelled by the field of the ions. That
E7 is zero is guaranteed by Gauss's law, for the number of charges
per unit length of wire is the same as it was in the lab frame. The wire
is uncharged in both frames.

{a) i
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Electron i
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| x
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The force on our test charge, gE;, when transformed back into
the lab frame, will be a force proportional to v in the & direction,
which is the direction of v > B il B s a vector in the ¥ direction,
pointing at ws out of the diagram. We could show that the magnitude
of this velocity-dependent force is given here also by Eg. 24: F =
2guifre®. The physics needed is all in Eq. 12, but the integration is
somewhal laborious and will not be undertaken here,

In this chapter we have seen how the fact of charge invariance
implies forces between electric currents. That does not oblige us to
ook on one fact as the cause of the other. These are simply two aspects
of electromagnetism whose relationship beautifully illustrates the
more general law: Physics is the same in all inertial frames of
reference.

If we had to analyze every system of moving charges by trans-
forming back and forth among various coordinate systems, our task
would grow both tedious and confusing. There is a better way. The
overall effect of one current on another, or of a current on a moving
charge, can be described completely and concisely by introducing a
new field, the magnetic field.

FIGURE 5.23

& closer lock al the geomebry of Fig. 5225, showing
thal, lor anp pair of elecirons equidisiant from the test
charge, the ome on the nght will kave a largar value of
gin® &' Hence, according to Eg. 512, il will produce the
sironger fisdd at the test charge.
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