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Part O.
MOTIVATION



Standard QM:

- the value a of an observable A is an eigenvalue: Ala) = ala)

= the system has some value only when |¢) is an eigenstate: |¢) = |a)
- but Schrédinger equation = superposition [¢) = >/ c/|a)

= to get a value we need a collapse |¢¥) — |a).

Several problems with a collapse:

- Contextual (happens only when measurement is performed,
not clear how exactly the system knows that it is measured).
- Nonlocal (happens in the whole universe at once).

Possible solution:

- Perhaps an observable (spin, position, ...) has some value v
even when |¢) is not an eigenstate |a)?

- If so, then perhaps collapse is not needed to get a value!
Can it resolve all mysteries of QM?



- Such values v are often called “hidden variables”
because they are not a part of the standard quantum formalism.
- However, this name is misleading because v

are variables that we actually observe in experiments.

= They may be “hidden” to theorists, not to experimentalists.
= I will no longer call them *“hidden variables”.

- Whatever those hypothetic values v are,

they must me compatible with existing experiments.

- But existing experiments are all compatible

with measurable predictions of standard QM.

= T he values must be compatible

with measurable predictions of standard QM.

= T his poses strong restrictions on possible physical laws for wv.

- It turns out that v cannot obey some classical

properties that one would naively expect them to obey.

- Loosely speaking, v either must be |¢) itself (1),

or something that has some properties similar to |¢).

- Those restrictions have forms of various no-go theorems.
- In the rest I present those theorems in more detail.



T he theorems in nutshell:

Naive property 1:

- Measurement just reveals values v that existed before measurement.
No-go theorem 1. (contextuality) refutes it:

- The measurement must somehow create or change values v.

Naive property 2:

- Since we might get rid of nonlocal collapse, the change of v
might be governed by a local law.

No-go theorem 2. (nonlocality) refutes it:

- The change of v must be governed by some nonlocal law.

Naive property 3:

- Since the actual value v might exist even without the eigenstate |a),
the quantum state [¢) might be just our subjective knowledge,

it might not be objectively “real”.

No-go theorem 3. (i-onticity) refutes it:

- If v is objectively “real”, then so is |¢).



Part 1.
PROOF OF CONTEXTUALITY



The first proof: Bell (1966).
The most famous proof: Kochen-Specker (1967).
I present a much simpler proof: Mermin (1990), Peres (1990).

Multiplication table for 9 numbers:

a b c | abc
e f g |efg
? 9 k| ik
aet bfj cgk | aei-bfj-cgk = abc-efg-ijk

Can we do the same for operators?
- Pauli matrices: o7 = 07 =
- Eigenvalues of o4, oy, 0> are £1.

- Spin operator: S, = gax,

ag =1, ogoyor =1, [0z, 0y] = 2i0;



Consider a composite system of two spin-% particles.
- In this system consider the following 9 observables:

ox®1 1RQRo0xr 0xQo0gx
Ox Yoy OyQox 0z 02

1 1 —1

==

1. (-1)#1-1-1

- operators in the same row commute (can be simultaneously measured)
- operators in the same column commute

However, —1 # 1
= impossible to simultaneously assign values to all 9 observables.

= Contextuality:
At least some of the values are created or changed by the measurement.

Note: We tried (and failed) to associate values with
composite operators (o, ® oy, ...),
not with local operators (o4, oy, ...)



Part 2.
PROOF OF NONLOCALITY



- In the proof of contextuality we proved that one cannot
associate values with composite observables (o, ® oy, ...).
- We said nothing about values associated

with local observables (o4, oy, ...).

- To prove nonlocality, we need to prove that one
cannot associate values with local observables.

- However, nonlocality cannot be proved for any state.
- Nonlocality is state-dependent, it appears only for entangled states.

The first and most famous proof: Bell (1964).

- Uses | 1) 1)+ | 1) 1), easy to prepare in experiments.
- However, the proof is not simple mathematically.

10



I present the GHZ proof: Greenberger, Horne and Zeilinger (1989).
simple mathematically
uses a state of 3 entangled particles:

1
ﬁﬂ DD =1THIDID)

not easy to prepare in experiments

IGHZ) =

Here the following notation is used:

- eigenstates of operator o.: ox| 1) = +| 1), 02| L) = —| |)
- direct product ® is understood

- for composite operators the following notation is used

(1) _(2) (3)

Or oy oy =03 "0y "0z
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The state |GHZ) satisfies

Jél)a§2)0§3)|GHZ> = 03(31)052)09(53)|GHZ> = 0?51)0522)03(33)\GHZ> = 4+|GHZ)

Now assume(!) that, for |GHZ), we can associate a value (number) s
with each local observable, e.qg. aél) — sgl)
— The numbers must satisfy

(D@ — (D@3 _ (D)3 g

Sy '8y 'Sy T =

Multiply all three =

( (1) (2) (3))2 NOONCONC) N N N N JE |

But QM tells us that
0?51)0?52)053)|GHZ> = —|GHZ)

which is a contradiction!

— T he assumption was wrong, it is not possible
to simultaneously associate values with all local observables.
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- Contradiction = s-values could not have been preexisting
before measurement.

— Measurement somehow creates or changes them (contextuality).
- Perfect correlation, e.g. s§1)5§2>s§3) —

correlation 4+ contextuality = correlation could not have been
prearranged.
— Correlation must somehow be arranged at the time of measurement.
— The 3 measurement apparatuses must somehow communicate
with each other.

- But measurement apparatuses can be far away from each other.
= Somehow they must communicate instantaneously
(or faster than c¢).

That's the proof of nonlocality!
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Why can’t nonlocality be used to send signals faster than light?

- Signal is an anthropomorphic concept:

Array of symbols (e.g. 01101...) freely chosen by a human agent,
not randomly picked by nature.

- A human can prepare any |[¢) at will.

-E.g. [v)=|D|1T) +|1)|l) guarantees the correlation s,g”sg?) = 1.
- But a human cannot choose in advance whether it will be

(s, s8)) = (1,1) or (s, s87)) = (-1, -1).

- Instead, nature pickes one of those randomly.

(Or perhaps pseudorandomly, but we cannot distinguish

between random and pseudorandom in practice.)
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Some interpretations of QM still deny nonlocality.
- Different interpretations use different arguments.

The most frequent argument for locality: Signal locality.
- Nonlocality proved by the theorem cannot be used to send signals.
— Nonlocality doesn’t have practical consequences.
= It's metaphysics, not physics.

Counterargument:

- If physics was only an empirical science,
nonlocality would be metaphysics.

- But physics is based on empirical data and logic.
- Proof of nonlocality is a combination of both
(correlation is an empirical fact, the rest is logic).
= Proof of nonlocality is physical.

Which argument is more convincing?
- I leave the decision to you!
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Part 3.
PROOF OF y-onticity
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What is the meaning of the quantum state [¢)?
- Is it an objective property of a single system? (¢-ontology)
- Or is it only a tool to calculate probability? (i-epistemology)

PBR theorem:
M.F. Pusey, J. Barrett, T. Rudolph, Nature Phys. 8, 476 (2012).

Consists of

1. Mathematical definition of the difference between
“ontological” and “epistemological’ .

2. Technical proof (with the aid some auxiliary assumptions)
QM = |¢) is ontological (objectively real)!

Main assumption in the proof:
- Some objective properties )\ exist.
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Example from classical probability - coin flipping:

To make it non-trivial, assume unfair coin flipping

p(head) #= p(tail)

- Are p(head) and p(tail) intrinsic properties of a single coin?
- If they are, we shall say that p(head) and p(tail) are real
(objective) properties of the coin.

Two possibilities:

1. Unfair coin

- p(head) # p(tail) because the distribution of the coin-mass
is not uniform

- this is a property of the coin itself

- from the knowledge of A = mass distribution
— p(head), p(tail) can be determined uniquely

2. Unfair flipping
- p(head) # p(tail) because the act of flipping is unfair
- this is not a property of the coin
- from the knowledge of A = mass distribution
— p(head), p(tail) can not be determined uniquely
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This motivates the general definition:

A probability distribution n()\) is ontic
(i.e., corresponds to something real)
Iff it can be determined uniquely from the fundamental ).

Otherwise, () is called epistemic.
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Now apply to QM:
- QM is an unfair game (not all probabilities are equal).
- Is QM an unfair “coin’” or an unfair “flipping” ?

Analogy: coin flipping < QM
set {head, tail} <+ set of all different states in the Hilbert space {|v)}

(|0) is different from [¢/) iff |/) 7= c|i)).)

- In general, experimentalists do not have a full control
over all fundamental degrees of freedom .
= When they prepare |¢y) in the laboratory, this actually means

that they have prepared some probability distribution p()\):
Probability Density

/ >) # | Ff/\x )
N -

\
— -l f II o );1.-
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Assume that for states |¢1), [1o) their A-distributions overlap:

Probability Density

/ _ 4 PG AT
| / \ 1

- For X € overlap, one cannot know whether )\ belongs
to p1(A) or pa(A)

— )\ does not uniquely determine ()

— (by definition) x()\) is not ontic

= [1) is not ontic

= To prove that [¢) is not ontic, it is sufficient to prove

that there is at least one pair |¢1), |Y2) (|11) # clvo))
for which 1 (\) and us>(\) do overlap.

21



— The converse (that [¢) is ontic)

is much more difficult to prove:

- One needs to prove that for any pair |¢1), [¥2) (|11) # clio))
the overlap does not exist:

Probability Density

/___ ) w,(A) 4 AV)
| / N EA
\ &y |" \H“. Ff \

N * .|I II ||I i /1

- Yet, the PBR theorem proves exactly this!

This is not only difficult to prove (sketch in the next section),
but also very surprising:

- The absence of overlap pu1(AN)us(A) =0 VA
is not surprising when (i1 |1Y5) = 0.

- What is surprising is that p1(A\)pu>(A\) =0 VA
even when (11|15) #= 0.
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- Why is that surprising? Because

_ (1lh2) 7 O
1= [dala)al| = [ da(yrla)alys) # O
: = (¢Y1]a){alyo) = 0 for some a
pi(a) = [{aly:)?] = p1(a)p2(a) # 0 for some a
and yet pu1(AN)pus(N) = 0 VA.

- In other words, QM-distributions overlap,
but corresponding A-distributions do not overlap!

23



Sketch of the proof:

- Here I present the proof of the absence of overlap
for a simple example of a pair of non-orthogonal states.
(PBR also generalize it to an arbitrary pair.)

2-dimensional Hilbert space with orthogonal basis |0), |1).
Another orthogonal basis |[+), |—)

_ 19 £11)
Non-orthogonal pair |0), [+):
(0]4+) =1/v2

Goal: prove that pg(M\)py(A) =0 VA
Strategy: assume the opposite and derive a contradiction!
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- assume overlap = finite probability p that A € overlap

Consider two similar systems:
- each prepared either in |0) or |+)

(but experimentalist does not know in which one it is prepared)

nov | g

- probability of overlap in each is p
- assume they are statistically independent
— probability of overlap in both is Pioint =p-p>0
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— Consequence of the assumed overlap:

There is a probability Pisint > 0 that
the outcome will be consistent with all four
possibilities for the initial preparation

(10)[0), [0)[+), [+)]0), and [+)[+))

Now compare it with predictions of QM:
- Measure the joint system in a specially chosen
complete orthogonal basis:

1 1

61) = 101+ 1I0)],  Id2) = 75[10)1=) + D))
1 1

63) = ZSIHID + 20 1da) = T5lH)1=) +1-)+)]

- This basis has the property (notation: |ab) = |a)|b))

(#1100) =0, (¢2|0+) =0, (¢3|+0) =0, (d4]++)=0

— Whatever the outcome of a single measurement will be
(lo1), |P2), |#3), or |¢4)), it is certain that it will eliminate
one of the possibilities (|00), |0+), |+ 0), or |+ +)).

= Point = 0

— Contradiction with the Consequence above! Q.E.D.
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Possible topics for next talks:

Quantum Foundations III: Decoherence

Quantum Foundations IV: Instrumentalism and Bohmian mechanics

Quantum Found’s V: Effective field theories and Bohmian mechanics

Quantum Foundations VI: Suggestions welcome

27



